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Odds and Ends — what we have left out




What we have left out

= Point-to-point bells and whistles
= Persistent communication (more efficient PtP)
= Message probing: MPI_Probe,... (is there a message waiting?)

= One-sided communication: MPIl_Put, MPIl_Get, MPI_Accumulate,...
(only one rank necessary to get data across)

= Partitioned communication (better communication of threads are present)

Collectives bells and whistles
= MPI_Reduce_scatter, MPI_Scan, neighborhood collectives, ...

MPI I/O (reading and writing files through MPI, in parallel)
Virtual topologies (make known to MPI who communicates with whom)
MPI shared memory (more efficient intra-node communication)
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Computer Architecture and Performance issues

In MPI programming




Performance issues — overview

= Basics of parallel computer architecture
Affinity and pinning

Simple scaling laws

Benchmarking and performance assessment
Tracing tools
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Basics of parallel computer architecture




At the core: the stored-program computer
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Shared memory: a single cache-coherent address space
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Distributed memory: no cache-coherent single address space
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Cluster/
supercomputer

Modern supercomputers are
shared-/distributed-memory hybrids
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Parallelism in modern computers

ode (2 sockets + memory + /0O,
possibly multiple chips
per socket)

Core
Registers Exec. units H
L1 cache E

L2 cache

Supercomputer
(many nodes, high-performance

network, storage)
Die or multiple dies, “package” (up to >100 cores)
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A modern CPU compute node (AMD Zen2 “Rome”
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Adding accelerators to the node

accelerator
die

hyper-thread
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Turning it into a cluster

NIC —

NIC ----

NIC —

NIC----

NIC —

NIC ----

NIC -~

NIC ----

NIC ----

communication network

12

2025-04-10

Introduction to Parallel Programming with MPI



Adding permanent storage
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NIC —

communication network
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Point-to-point data transmission performance
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Distributed-memory systems today

“Hybrid” distributed-/shared-memory
systems

= Cluster of networked
shared-memory nodes

= ccNUMA architecture per node

= Multiple cores per ccNUMA
domain

Communication network

= Expect strong topology effects in communication performance
= Intra-socket, inter-socket, inter-node, all have different 4 and b
= On top: Effects from network structure

Introduction to Parallel Programming with MPI 2025-04-10 15



Characterizing communication networks

= Network bisection bandwidth B, is a general metric for the data transfer
“capability” of a system:

Minimum sum of the bandwidths of all connections cut when splitting the
system into two equal parts

= More meaningful metric for system
scalability: bisection BW per node: B, /N, des

= Bisection BW depends on
= Bandwidth per link
= Network topology

Introduction to Parallel Programming with MPI 2025-04-10 /— & 16
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Affinity control (pinning) of processes




Anarchy vs. affinity with a heat equation solver

2000
1P P 1P P|

1500 |- _ : 3 . L's " e : = . L's - in
z | @ ] I gy T — '.3
@ 1 111
E‘IOOO* E — { Memory Memory ]
-§ @ 1 2x 10-core Intel lvy Bridge, OpenMPI

ool No gfﬁnity _set_tings

E -> high variation 2000
¢ ‘S I L‘D ‘ 1|S I 2‘0
# MPI processes 1500 — —

Reasons for caring about affinity:

1000 —

Performance [MLUP/s]

= Eliminating performance variation

With affinity, physical cores,

S00— _— . -
= Making use of architectural features 7 filling left socket first:

mpirun -bind-to-core -byslot ..

= Avoiding resource contention 0 T ——
# MPI processes -

Introduction to Parallel Programming with MPI 2025-04-10 18



Pinning of MPI processes

= Highly implementation and system dependent!

= Intel MPI: env variable I_MPI PIN PROCESSOR LIST (MPI only) or
I _MPI_PIN DOMAIN (MPI+OpenMP)

= OpenMPI: choose between several mpirun options, e.g.,
-bind-to-core, -bind-to-socket, -bycore, -byslot ...

= Cray’s aprun

= Platform-independent tools: likwid-mpirun
(l1ikwid-pin, numactl)

Introduction to Parallel Programming with MPI 2025-04-10
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Simple example (Intel MPI)

= MPI-only code: I _MPI_PIN_PROCESSOR_LIST
= Many options

= Straightforward use:

$ mpirun -genv I_MPI_PIN_PROCESSOR LIST=0-71

pins one process on each physical core

-np 144 ./a.out

Introduction to Parallel Programming with MPI
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Limits of parallelism: simple scaling laws




Metrics to quantify the efficiency of parallel computing

= T(N): execution time of some fixed workload with N workers

= How much faster than with a single worker?

(1)

—> parallel speedup: S(N) = T(N)

= How efficiently do those N workers do their work?

> parallel efficiency: e(N) = S(N)

= Warning: These metrics are not performance metrics!

Can we
predict
S(N)? Are
there limits
to it?

Introduction to Parallel Programming with MPI
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Assumptions for basic scalability models

= Scalable hardware: N times the iron can work N times faster
= Work is either fully parallelizable or not at all
= For the time being, assume a constant workload

|deal world:
All work is perfectly parallelizable
S(N) =N, e=1

.

Introduction to Parallel Programming with MPI 2025-04-10
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A simple speedup model for fixed workload

One worker normalized execution time: T(1) =s+p =1
s: runtime of purely serial part
p: runtime of perfectly parallelizable part

p=1-s

Parallel execution:  T(N) = s + =

N

p/N

Introduction to Parallel Programming with MPI 2025-04-10



Amdahl’s Law (1967) — “Strong Scaling”

» Fixed workload speedup with s being the fraction of nonparallelizable work

T(l) 1 . ——5=0.1 $=0.01 ==@=s=0.001
SIN) = T(N) 1—s5 :
™)~ 7
N 5
= Parallel efficiency: e(N) = m :

1 2 3 4 5 6 7 8 9 10
# workers

Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). Association
for Computing Machinery, New York, NY, USA, 483—485. DOI:10.1145/1465482.1465560
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Fundamental limits in Amdahl’'s Law

= Asymptotic speedup

_ 1
W, SN =5 ;

= Asymptotic parallel efficiency

1\111—r>r<:}o e(N)=0 ;

- Asymptotically, nobody is doing anything except the worker that gets the
serial work!

= |n reality, it's even worse...

Introduction to Parallel Programming with MPI 2025-04-10 26



Strong scaling plus overhead

» Let c(N) be an overhead term that may include communication and/or
synchronization

> T(N)=S+%+C(N)

= What goes into ¢(N)? Typical examples: ¢(N) =
= Communication pattern = kN2 (aII-to-aII on bus network)
= Synchronization strategy " klog N (optimal synchronization)
= Message sizes " kN (one sends to all)
. e
Network structure " A4+ kN 3 (Cartesian domain

decomposition,
nonblocking network)

Introduction to Parallel Programming with MPI 2025-04-10 27



A simple speedup model for scaled workload

= What if we could increase the parallel part of the work only?
—> the larger p, the larger the speedup

= This is not possible for all applications, E
but for some

= “Weak scaling”

Introduction to Parallel Programming with MPI 2025-04-10 28



A simple speedup model for scaled workload

= Parallel workload grows linearly with N

> T(N)=s+ % = s + p, i.e., runtime stays constant

= Scalability metric?
- How much more per second can be done with N workers than with

one worker?

s+ p) Gustafson’s Law

=5+ (1—-5s)N

S(N) = s+p) (“weak scaling”)

John L. Gustafson: Reevaluating Amdahl's law. Commun. ACM 31, 5 (May 1988), 532-533.
DOI:10.1145/42411.42415
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Gustafson’s Law for weak scaling

» Linear speedup (but not proportional unless s = 0) with N:
S(N) =s+ (1 —-—s)N - unbounded speedup!

= \Weak scaling is the solution to the Amdahl dilemma: Why should we build
massively parallel systems if all parallelism is limited by the serial fraction?

= Extension to communication?

eT(N)=s+%+c(1v)=1+c(1v)

Much more relaxed
__ (s+pN)/(1+c(N)) _ s+(1-s)N '
2> SINV) = (s+p)/1 ~ T14c(V) conditions on c(N)

Introduction to Parallel Programming with MPI 2025-04-10 30



How can we determine the model parameters?

= Manual analysis: Requires in-depth knowledge of hardware and program
= Curve fitting: Less insight, but also less cumbersome

- | o
= Example: Strong scaling of 121 g °
hypothetical code on “Meggie” 1ol ;. T
node @FAU (10 cores per socket, _ Ei,«’
2 sockets per node) s T
= Use “extended Amdahl’s” with kN & 6; ,f" ¢ — — §=0.075, k=0
Overhead 4l ,, | O Measured
- 000
22;" |
= Result: .|.|i.|.|.|.|.|.|
Best fit is not a good fit at all o 20 % 800 60 70 80
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Resource bottlenecks

= Example: array update loop
// MPI-parallel
for (i=0; i<10000000; ++i)
a[i] = a[i] + s * c[i];
= Amdahl's: s =0,c(N) =0

= Perfect speedup? No!

= Saturation because of memory ____—+

bandwidth exhaustion

40

GB/s

Amdahl’s Law assumes perfect scalability of resources
Reality: Computer architecture is plagued by bottlenecks!
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Separation of scaling baselines is key!

» |ntra-socket scaling is often not covered by the model
= Model assumes “scalable resources”

i | | | b Model well suited ! ! ! |
for internode
scaling! T« R
-
2 ;p ]
Q 4
: : : > /
Separating scaling baselines 3 g
is important in modeling! &St ,.f'
;
!! — — 5=0, k=0.051
] 1— q —
] Socket saturation . o
\_I Scaling baseline: due to memory Scaling baseline:
[ 1 core . 1 node
| | , | bandwidth , , , |
1 2 3 4

5 10 15 20

# cores # nodes
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Amdahl generalized: load imbalance

time

-

= Load imbalance at sync points

- More specifically, execution time imbalance “

= p/N assumption no longer valid in general work / wait

work wait

= Hard to model in general, but two corner cases: work | wai

= Afew “laggers” waste lots of resources Sync\mﬁi
- Single lagger - Amdahl’'s Law

= Afew “speeders” might be harmless  — e
work wait |

= Tuning advice e
- Avoid sync points s

- Turn laggers into speeders —
Sync point |

Introduction to Parallel Programming with MPI 2025-04-10
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Benchmarking and performance assessment

More info:
Lecture “Experiments and Data Presentation in High Performance

Computing”



https://youtu.be/y1n0IJZiPuw

Benchmarking: two kinds (and a half)

Introduction to Parallel Programming with MPI 2025-04-10



Proper definition of benchmark cases

Benchmarking is a vital part of development and performance analysis

1. Define proper benchmark case(s) (input data sets)

Reflect(s) “production” workload

Tolerable runtime (minutes at most)

2. Document system settings and execution environment

Software: compilers, compiler options, library versions, OS version, ...
Hardware: CPU type, network, [... many more ...]

Runtime options: Threads/processes per node, affinity, large pages,
[... many more ...]

3. Document measurement methodology
Number of repetitions, statistical variations, ...

Introduction to Parallel Programming with MPI 2025-04-10
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Performance and time

= Performance is a “higher is better” metric: P(N) = S(N) X P(1)
= How much work can be done per time unit?

Work: flops, iterations, “the problem,” ...

. . . #if 'defined( POSIX C_SOURCE)
Time: wall-clock time #define POSIX C_SOURCE 199309L

#endif

#include <time.h>

Measuring performance:

. [ double get _walltime() {
double s = get walltime(); Return struct timespec ts;
// do your work here time < clock_gettime (CLOCK MONOTONIC, &ts);
double e = get walltime(); 'me return (double)ts.tv_sec +
double p = work/ (e-s); stamp (double)ts.tv_nsec * 1l.e-9;
.}
= Caveat: For double get walltime () {
Timer resolution is finite! Fortran return get _walltime();

Introduction to Parallel Programming with MPI 2025-04-10



Popular blunders: runtime != performance

= Just presenting runtime is almost always a bad ideal

. . I
Insights hidden by
trivial dependency:
10000 “larger problems 200
B need more time” 0
=
o el
. 3
£ &
< S
€ 1000 S 100
: ) [}
Performance metric &
reveals interesting
behavior worth
investigating! |
190500 7000 2000 0500 7000 2000
Problem size Problem size
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Popular blunders: speedup != performance

Speedup hides the “higher is better’ quality when comparing different
systems or cases

45 180
40 ’q'; 160
35 / E w0 _—
a 30 o 120
g S e
T 25 ~ 100
o 3 J 4
o 20 c 80
%) / ©
(@)
10 ‘T 40
Y /
5 {r o 5 gA/‘/
0 T T T O T T T
0 20 40 60 0 20 40 60
=@—-NEC == Cluster # CPUs or nodes =@=NEC == Cluster # CPUs or nodes
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MPI tracing tools




MPI tracing tools

= Allow the user to track events and statistics pertaining to MPI
communication and code execution

Popular tools

= Intel Trace Analyzer and Collector (ITAC)
= VAMPIR (commercial)

= Paraver

Powerful tools
Potential to produce massive amounts of data
Danger of “drowning in data”

Introduction to Parallel Programming with MPI 2025-04-10
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Intel Trace Anayzer and Collector

X/ Intel® Trace Analyzoer

Event-based tool recording user s
function calls and MPI =

. - 1767.5s 17685s 1769.5s 17715s 17725s 177B5s 17745s
communication calls AT T TS
PO Col om) om| om om m| om m|
P1 Col om) om)| om o m)| o m|
P2 Col om| om| om| om om m!
6e-3s Duration of Collective Ops
. . . ae-3s Single
Ul for advanced visualization = | |
I | L
os 17675s 17685s 17695s 17705s 17715s 17725s 17735s 177455

176805 1769.05 1770.05 177105 177205 177305 1774.05

MPL_Wal
\. Intel® Trace Analyzer MPI_Send

* User_Code
- ComputeWAXPBY_ref
Summary: xhpcg.stf - ComputeSYMGS_rel

Total time: 1.88e+04 sec. Resources: 9 processes, 1 node.

FFEST Lcadsalance  callTree
Ratio Top MPI functions Al procesees & v:tggzs::er
This section represents a ratio of all MPI calls to the rest of your  This section lists the most active MPI functions from all MPI calls in the a; ion. | i, N mea || et meceiver
code in the application ma o Show advanced.. 184363 | 2.223¢3
4 AH Processes - &
ComputeSPMV_ref 18.7874 s 184363 | 22233
MPI_Allreduce I 75.8 s - CompuleWAXPEY 226e-6s ° o o
MPI Wait I 758 5 CompLeeDGTPrOdUCE, Fef B54.2980-3 5 ! Description
i Compute c6s Wait at Barrier
MPI_Send [ 7835 i ComputeSYMGS _ref 3943825 [
MPLirecy | 0.683 ComputeWAXPBY_refl 1.6031s | wait time
- { ComputeDotProduct 9le6s
MPI_Wtime 0145 User_Code 654.169¢3s | py barrier

M Serial Code - 1.86e+04 sec 99.1% | i — B N
W MPIcalls - 160 sec 0.8 %
Where to start with analysis
For deep analysis of the MPl-bound application click *Continue >" ta apen the To optimize node-level performance use:
tracefile View and leverage the Intel® Trace Analyzer functiona Intel® VTune™ Amplifier XE for:
 Performance Assistant - to identify possible performance pmmems - algarithmic level tuning with hotspots and threading efficiency analysis;
" Imbaiance Diagram. for detailed imbalance pverview - micraarchitecture level luning with general exploration and bandwidth analysis;
- Tagglng/Filtering - for therough customlzable analysls Intel® Advisor for:

- vectorlzation optimization and thread prototyping
For more Information, see documentation fer the respective tool:

Analyzing MP| applications with Intel® VTune™ Amplifier XE
Analyzing MPI applications Intel® Advisor

[ Show Summary fage when opening a tracefile
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Event timeline view

17545 17585 1762s 1766 s 1770s
17565 1760s 1764 s 1768 s 1772s
PO (o] onCi§Co o] o] o] onCyCo (o] o] o] o] o] (o] (o] (o] o] onCiCo (o] o] o] Co or
Pl (o] onCCo o] o] o] omCiCo (o] o] o] o] o] (o] (o] (o] o] onC{NCo onCiiCo o] ICo or
P2 o onCgCo onCiCo onC@iCo tu 0 0 0 (s} (s} 0 0 0 0 o 0 0 nl:n (s} ICo or
P3 o onCgCo onCCo onC{@iCo o 0 0 0 (o] (s} (o] (o] o (o] o 0 onCCo (o] ICo or
P4 (o] onCCo onCCo onCiConiCdCo (o] o] o] o] o] (o] (o] (o] o] o (o] onCiiCo o] Co or
P5 (o] (o] Co o] o] o] o] o (o] o] o] o] o] (o] (o] (o] o] o (o] (o] Co o] ICo or
P& o 0 Co onCKCo onC@iCo o 0 0 0 (s} (s} o o 0 0 o 0 0 Co 0 ICo or
P7 (o] o Co onCKCo onC{iCo o o (o] (o] 0 o] (o] (o] o 0 o o o ICo 0 Co or
P8 (o] (o] Co onC&Co onCMCo onCMCo (o] (o] o] o] (o] (o] (o] o] o (o] (o] Co o] Co or
175%4s 175%8s 1762s 1766 s 1770s
175%6s 1760s 1764 s 1768s 1772s
= Timeline of MPI and user function execution
= Message visualization
= Context menu provides details on functions/messages
= Zoom/pan
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MPI_Wait

MPI_Send

User_Code
ComputeWAXPBY_ref
ComputeSYMGS_ref
ComputeDotProduct_ref
ComputeSPMVY_ref

20e-3s Duration of Collective Ops
— Multiple
10e-3s — single
oL N I | | K C | | N |.
1754 s 1758s 1762s 1766 s 1770s
1756s 1760s 1764s 17685 1772s

= Time spent in different MPIl/user functions across processes
= Duration of certain things (collectives, PtP)
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Performance advice

F Issue [ ion (%) Duration
- Wait at Barrier  0.00% 29.882e-3 s
i~ Late Broadcast  0.00% 2e-6s

Show advanced..

Description Affected Processes Source Locations (Root Causes)

Wait at Barrier
wait time

Pl —| barrier |_
P2 barrier "

wait time
—| barrier —
time
-

This problem occurs when barrier collective operations (such as MPI_Barrier or all-to-
all operations such as MPI_Alltoall which also result in barrier) are not synchronized.

The result is that these operations wait for the last barrier operation to start. Usually
this preblem indicates load imbalance in a program.

To resolve this problem, make sure that barrier operations are called at
approximately the same time by all processes. This can be done by adding
computation prier to the earlier barrier calls or by lessening the computation prior to
the later barrier calls.

Affected Processes shows the distribution of the issue duration per process.

Source Locations shows source locations (with corresponding durations) that are root
causes of this problem.

- Wait at Barrier  0.00%
i~ Late Broadcast  0.00%
Show advanced..

Performance Issue  Duration (%) Duration

29.882e-3 s
2e-6s

Process Duration (%)
Process 6 0.00%
0.00%
0.00%
0.00%

Process 3 0.00%
- Process 0 0.00%
Process 7 0.00%
- Process 5 0.00%

Duration

6.287e-3 s
5.742e-3 s
44e3s

4.057e-3s
3.992e-35
1.988e-3 s
1.897e-3s
1.519e-3 s

Context-sensitive

advice on typical

performance patterns

Introduction to Parallel Programming with MPI
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Message profile

= \Who sends how much to whom?

PO Pl P2 P3 P4 FS5) P& Pz P8 Sum Mean jtdDe
= = How long does it take?
" = Effective bandwidth?
E P3
= |m
]
o P5
)
m P6
stdDev

Sender

Introduction to Parallel Programming with MPI 2025-04-10



Collective operations profile

PO P1 P2 P3 P4 P5 P& P7 P8 sum Mean StdDewv
MPI_Bcast 60e-6 | 6.6666Te-6 | BE6.66Te-0
MPI_Allreduce 9.46671 9.80818 10.6684 75.8164 | 8.42405 3.81376
sum 6.98828 | 2.41009 | 14.1332 | 9.46671 | 9.80818 | 2.28142 | 12.1689 | 7.89127 | 10.6684 | 75.8165
Mean 3.49414 | 1.20504 | 7.06659 | 4.73336 | 4.90409 | 1.14071 | 6.08444 | 3.94564 | 5.33422 4.21203
StdDev 3.49413 | 1.20504 | 7.06658 | 4.73335 | 4.90409 | 1.1407 | 6.08444 | 3.94563 | 5.33422 5.00135

= Time spent in collective call
= Data volume sent/received

Introduction to Parallel Programming with MPI 2025-04-10



Functions profile, call tree/graph, load imbalance

Flat Profile Load Balance Call Tree Call Graph
Name TSelf TSelf TTotal #Calls TSelf /Call
4 All_Processes
ComputeSPMV_ref 5.46742e+3s 5.51519e+3 s 44244 123.574e-3s
- ComputeWAXPBY 53.862e-3 5 4752345 31995 1.68345e-65
ComputeDotProduct_ref 264.986 s | 329.014 s 33408 7.93181le-3s
ComputeSPMV 15.826e-3 s 2.49945e+3 s 10863 1.45687e-6s
ComputeSYMGS_ref 11.9892e+3s [ 12.0259%e+3s 76608 156.5e-3 s
ComputeWAXPBY_ref 495.263s | 495,263 s 33345 14.8527e-3s
- ComputeDotProduct 31.118e-3 s 315.682 s 32049 970.951e-9s
- User_Code 432,994 s 18.8104e+3 s 9 48.1104 s
MPI_Comm_size 132.739e-3 s 132.739e-3 5 120861 1.09828e-6s
-~ MPI_Comm_rank 63.288e-3 s 63.288e-3 s 120861 523.643e-9s
- MPI_Finalize 4.043e-3 5 4.043e-3 5 9 449.222e-6 5
MPI_Bcast 60e-6 s 60e-6 5 9 6.66667e-6 5
MPI_lrecv 682.73e-3 5 682.73e-3 5 537120 1.27109e-6 5
MPI_Wtime 140.191e-3 s 140.191e-3 5 223353 627.666e-95
MPI_Send 7.83291s 7.83291 s 537120 14.5832e-6s
MPI_Allreduce 75.8164 s 75.8164 s 33534 2.26088e-3 s
MPI_Wait 75.7904 s 75.7904 s 537120 141.105e-6s
Load Balance Call Tree Call Graph
Children of All_Processes
Min.Radius: ‘ 32 :| # Per Row: |4 :‘
PO Legend
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ComputeSPMV_ref
= ComputeWAXPBY

= ComputeDotProduct_ref

= ComputeSPMV

= ComputeSYMGS_ref

= ComputeWAXPBY_ref
ComputeDotProduct
User_Code

= MPI_Comm_size

= MPI_Comm_rank
MPI_Finalize

= MPI_Bcast

= MPI_Irecv

= MPI_Wtime

= MPI_Send

ComputeSPMV_ref called by User_Code

i~ ComputeSPMV_ref

4 Callees
ComputeSPMV_ref calling MPI_Comm_size
ComputeSPMV_ref calling MPI_Comm_rank
ComputeSPMV_ref calling MPI_Irecv
ComputeSPMV_ref calling MPI_Send
ComputeSPMV_ref calling MPI_Wait

ComputeSPMV_ref called by ComputeSPMV 2.49475e+3 s [

2.97267e+3s
5.46742e+3s

Call Tree Call Graph
All_Processes. -
Name Tself Tself Tmotal #calls  Tself ccall
4 All Processes
4 User_Code 432994 s 18.8104e+3s 9 48.1104 s
-~ MPI_Bcast 60e-6 s 60e-6s 9 6.66667-6 s
MPI_Comm_rank le-6s le-6s 9 111.111e-9s
MPI_Comm_size 3e6s 3e6s 9 333.333e-8 s
MPI_witime 95.84e-3 5 95.84e-35 156537 612.251e9s
- MPI_Allreduce 11.8325 s 11.8325s 126 93.909e-3s
4 ComputeSPMV_ref 2.97267e+3s 3.01576e+3s 33381 89.0527e-3s
- MPI_Comim_size 36.969¢-3 5 36.969e-3s 33381 1.10749e6s
i MPI_Comm_rank 17.688e-3s 17.688e-3s 33381 529.882e9s
- MPI_Irecv 175.253e-3 5 175.253e-35 148360 1.18127e-6%5
= MPI_SEnd 2.13018 s 2.13018 s 148360 14.3582e-6 S
- MPI_Wait 40.7319 s 40.7319's 148360 274.548=-6'5
4 ComputeSYMGS_ref 11.9892¢+3 5 I 12.0259¢+3 5 76608  156.5¢3s
! MPI_Comm_size 82.736e3 5 82.736e3s 76608 1.07999¢6 5
- MPI_Comm_rank 38.209e-3 s 38.209e-3s 76008 498.76e-9s
- MPI_Irecv 420.928e-3 5 420.928e-3 5 340480 1.23628e-65
- MPI_send 4.18757 5 418757 5 340480 1229965
- MPL_Wait 31.9995 s 31.9995 s 340480 93.9836e6 5
- ComputeWAXPBY_ref 20.0829 s 20.08295 1350 14.8762e-3 s
4 ComputeDotProduct_ref 10.7614 s 13.3636s 1359 7.91865e-3 s
L MPI_Wtime 1.935e-3s 1.935e-3s 2718 711.921e-9s
|- MPAllreduce 2.60027 s 2.60027s 1359 1.91337e3s
4 ComputeSPMV 15.826¢-3 5 2.49945¢+35 10863 1.45687c65
4 ComputeSPMV _ref 2.49475e43 5 2.49943e435 10863 229.656e3 5
- MPI_Comm_size 13.031le-3s 13.031e-3s 10863 1.19958e-6s
MPI_Comim_rank 7.39%e-3s 7.39e-3s 10863 680.291e-9s
- MPIrecy 86.549¢-3 5 86.549e-35 48260 1.79265¢6 5
i MPISend 151516 5 1.515165 48280 31.3828e65
- MPIWalt 3.0595 3.0595 48280 63.3595e-6%
4 ComputeWAXPBY 53.862e-3 s 475.234s 31995 1.68345e-6s
1
Flat Profile Load Balance Call Tree Call Gra
‘ All_Processes '|
Name TSelf TSelf TTotal #Calls  TSelf /Call
4 All_Processes
4 Callers

2.49943e+3 s 10863 229.656e-3
3.01576e+3 s 33381 89.0527e-3
5.51519e+3 s 44244 123.574e-3
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Options for taking traces

= Caveat: Tracing can generate vast amounts of data!

= Compiler switches (only works with legacy Intel compiler and wrappers
[mpiicc, mpiicpc, mpiifort])
= —-trace # record MPI calls (also possible with mpirun/mpiexec)
= —tcollect -trace # record MPI and user code function calls
# potential of large overhead and large trace size
= —tcollect-filter=func.txt -tcollect —-trace #filterfile

func.txt example

.*' OFF

. *ComputeDotProduct.*' ON
. *ComputeSYMGS.*' ON

. *ComputeSPMV.*' ON

' . *ComputeWAXPBY.*' ON

Introduction to Parallel Programming with MPI 2025-04-10 50



More (important) configuration options

VT_FLUSH_PREFIX

VT_LOGFILE_PREFIX

VT_LOGFILE_FORMAT

VT_LOGFILE_NAME
VT_MEM_BLOCKSIZE

VT_MEM_FLUSHBLOCKS

VT_MEM_MAXBLOCKS

VT_CONFIG_RANK

... depends
current
working
directory
STF
${binary}.stf
64 KB

1024

1024

directory for temporary flush files

directory for physical trace
information files

SINGLESTE: rolls all trace files into
one file (.single.stf)

control the name for the trace file

trace data in chunks of main memory

flushing is started when the number
of blocks in memory exceeds this
threshold

maximum number of blocks in main

memory, if exceed the application is

stopped until AUTOFLUSH/ MEM-

OVERWRITE/ stop recording trace
info

control the process that reads and
parses the configuration file

|

= Avoid rapid-fire dumping

trace data into shared
filesystems!

= Your fellow cluster users

will hate you for it.
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Alternatives

= |TAC is deprecated by Intel and will not be further developed (as of 2025)
= Intel recommends VTune as a replacement, but this is not competitive

= Other tools with similar functionality
= VVampir (commercial, scalable) https://vampir.eu/
= Scalasca (for highly scalable programs, no trace view) https://www.scalasca.org/
= Paraver https://tools.bsc.es/paraver

= Jumpshot
Don’t even bother.
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