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Odds and Ends — what we have left out




What we have left out

Point-to-point bells and whistles

= Persistent communication

= Message probing: MPI_Probe,...

= One-sided communication: MPI_Put, MPI_Get, MPI_Accumulate,...
= Partitioned communication

Collectives bells and whistles

= MPIl_Reduce_scatter, MPIl_Scan,...

MPI 1/O
Virtual topologies
MPI shared memory communication
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Computer Architecture and Performance issues

In MPI programming




Performance issues — overview

Basics of parallel computer architecture
Affinity and pinning

Simple scaling laws

Benchmarking and performance assessment
Tracing tools
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Basics of parallel computer architecture




At the core: the stored-program computer
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Shared memory: a single cache-coherent address space
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Distributed memory: no cache-coherent single address space
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Modern supercomputers are
shared-/distributed-memory hybrids
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Parallelism in modern computers

ode (2 sockets + memory + I/0O,
possibly multiple chips
per socket)

Registers Exec. units

L1 cache

Core
H
e 4

L2 cache

Supercomputer
(many nodes, high-performance
network, storage)

Die or multiple dies, “package” (up to >100 cores)
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A modern CPU compute node (AMD Zen2 “Rome”
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Adding accelerators to the node
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accelerator
die core

hyper-thread
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Turning it into a cluster
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Adding permanent storage
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Point-to-point data transmission performance

= Simple “Hockney model” for data
transfer time

|74 |74
Teomm = /1+3’ Beff:

Tcomm

A: latency, b: asymptotic BW

= Reality is more complicated
= System topology
= Caching effects
= Contention effects
= Protocol switches
= Collective communication
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Distributed-memory systems today

“Hybrid” distributed-/shared-memory
systems

= Cluster of networked
shared-memory nodes

= ccNUMA architecture per node il B e

= Multiple cores per ccNUMA
domain
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Communication network

= EXxpect strong topology effects in communication performance
= Intra-socket, inter-socket, inter-node, all have different 4 and b
= On top: Effects from network structure
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Characterizing communication networks

= Network bisection bandwidth B}, is a general metric for the data transfer
“capability” of a system:

Minimum sum of the bandwidths of all connections cut when splitting the
system into two equal parts

= More meaningful metric for system
scalability: bisection BW per node: B, /N, des

= Bisection BW depends on
= Bandwidth per link
= Network topology

Introduction to Parallel Programming with MPI 2024-04-12 A 16
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Affinity control (pinning) of processes




Anarchy vs. affinity with a heat equation solver
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Reasons for caring about affinity:

= Eliminating performance variation

= Making use of architectural features

= Avoiding resource contention
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Pinning of MPI processes

= Highly implementation and system dependent!

= Intel MPI: env variable I_MPI PIN PROCESSOR LIST (MPI only) or
I MPI PIN DOMAIN (MPI+OpenMP)

= OpenMPI: choose between several mpirun options, e.g.,
-bind-to-core, -bind-to-socket, -bycore, -byslot ...

= Cray’s aprun

= Platform-independent tools: 1likwid-mpirun
(likwid-pin, numactl)

Introduction to Parallel Programming with MPI 2024-04-12
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Which way to pin

= MPI-only code: I _MPI_PIN_PROCESSOR LIST
= Many options

= Straightforward use:

$ mpirun -genv I_MPI_PIN_PROCESSOR LIST=0-71

pins one process on each physical core

-np 144 ./a.out
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Benchmarking and performance assessment

More info:
Lecture “Experiments and Data Presentation in High Performance
Computing”



https://youtu.be/y1n0IJZiPuw

Benchmarking: two kinds (and a half)
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Proper definition of benchmark cases

Benchmarking is a vital part of development and performance analysis

1. Define proper benchmark case(s) (input data sets)

Reflect(s) “production” workload

Tolerable runtime (minutes at most)

2. Document system settings and execution environment

Software: compilers, compiler options, library versions, OS version, ...
Hardware: CPU type, network, [... many more ...]

Runtime options: Threads/processes per node, affinity, large pages,
[... many more ...]

3. Document measurement methodology
Number of repetitions, statistical variations, ...

Introduction to Parallel Programming with MPI 2024-04-12
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Performance and time

= Performance is a “higher is better” metric: P(N) = S(N) x P(1)
= How much work can be done per time unit?

Work: flops, iterations, “the problem,” ...

. : #if 'defined( POSIX C_SOURCE)
Time: wall-clock time #define POSIX C_SOURCE 199309L

#fendif

#include <time.h>

Measuring performance:

. [ double get walltime () {
double s = get walltime(); Return struct timespec ts;
// do your work here " J clock gettime (CLOCK MONOTONIC, &ts);
double e = get walltime(); Ime return (double)ts.tv_sec +
double p = work/ (e-s); stamp (double)ts.tv _nsec * 1l.e-9;
. !}
= Caveat: For double get walltime () ({
Timer resolution is finite! Fortran } return get walltime();
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Popular blunders: runtime !'= performance

= Just presenting runtime is almost always a bad idea!
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Popular blunders: speedup != performance

Speedup hides the “higher is better’ quality when comparing different

systems or cases
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Limits of parallelism: simple scaling laws




Metrics to quantify the efficiency of parallel computing

= T(N): execution time of some fixed workload with N workers

= How much faster than with a single worker?

> parallel speedup: S(N) = %

= How efficiently do those N workers do their work?

- parallel efficiency: e(N) = %

= Warning: These metrics are not performance metrics!

Can we
predict
S(N)? Are
there limits
to it?
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Assumptions for basic scalability models

= Scalable hardware: N times the iron can work N times faster
= Work is either fully parallelizable or not at all
= For the time being, assume a constant workload

|deal world:
All work is perfectly parallelizable
S(N) =N, e=1

.

Introduction to Parallel Programming with MPI 2024-04-12
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A simple speedup model for fixed workload

One worker normalized executiontime: T(1) =s+p =1
s: runtime of purely serial part
p: runtime of perfectly parallelizable part

Parallel execution: T(N) =s + 2

N

p/N

Introduction to Parallel Programming with MPI 2024-04-12 30



Amdahl’'s Law (1967) — “Strong Scaling”

= Fixed workload speedup with s being the fraction of nonparallelizable work

S(N) T(l) 1 . —0—:s=0.1 s=0.01 =—=@=s=0.001
B B 1—s :

OO R
= Parallel efficiency: e(N) = m :

1 2 3 4 5 6 7 8 9 10
# workers

Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). Association
for Computing Machinery, New York, NY, USA, 483—-485. DOI:10.1145/1465482.1465560
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Fundamental limits in Amdahl’s Law

= Asymptotic speedup

_ 1
W, SN =5 /

= Asymptotic parallel efficiency

lim £(N) = 0 ;

- Asymptotically, nobody is doing anything except the worker that gets the
serial work!

= |n reality, it's even worse...
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Strong scaling plus overhead

= Let c(N) be an overhead term that may include communication and/or
synchronization

= T(N)=s+%+c(N)

= What goes into c(N)? Typical examples: ¢(N) =
= Communication pattern = kN2 (aII-to-aII on bus network)
= Synchronization strategy " klog N (optimal synchronization)
= Message sizes " kN (one sends to all)
. 2 : :
Network structure " A+ kN 3 (Cartesian domain
- decomposition,

nonblocking network)
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A simple speedup model for scaled workload

= What if we could increase the parallel part of the work only?
—> the larger p, the larger the speedup

= This is not possible for all applications, E
but for some

= “Weak scaling”
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A simple speedup model for scaled workload

= Parallel workload grows linearly with N

> T(N)=s+ % = s + p, i.e., runtime stays constant

= Scalability metric?
- How much more per second can be done with N workers than with

one worker?

s+ p) Gustafson’s Law

s+p) + (A -s)N (“weak scaling”)

S(N) =

John L. Gustafson: Reevaluating Amdahl's law. Commun. ACM 31, 5 (May 1988), 532-533.
DOI:10.1145/42411.42415
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Gustafson’s Law for weak scaling

= Linear speedup (but not proportional unless s = 0) with N:
S(N)=s+ (1 —-s)N - unbounded speedup!

= Weak scaling is the solution to the Amdahl dilemma: Why should we build
massively parallel systems if all parallelism is limited by the serial fraction?

= Extension to communication?

>TWN) =s+2+c(N) =1+ ()

Much more relaxed
(s+pN)/(1+c(N)) s+(1-s)N
2 S(N) = G e conditions on ¢(N)

Introduction to Parallel Programming with MPI 2024-04-12 36



How can we determine the model parameters?

= Manual analysis: Requires in-depth knowledge of hardware and program

= Curve fitting: Less insight, but also less cumbersome

B i o
= Example: Strong scaling of 12 g ¢ i
hypothetical code on “Meggie” ok g P )
node @FAU (10 cores per socket, _ 27"
2 sockets per node) 3 o .
= Use “extended Amdahl’'s” with kN & 6; ’," ¢ — — $=0.075, k=0 ]
overhead al !’ O Measured 1
» wo i
2 -
= Result: ?b........
Best fit is not a good fit at all 1020 30 40 50 60 80
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Resource bottlenecks

= Amdahl’s Law assumes perfect scalability of resources
= Reality: Computer architecture is plagued by bottlenecks!

= Example: array update loop

40

// MPI-parallel
for (i=0; i<10000000; ++i) 30

a[i] + s * c[i];

GB/s

af[i] =

_____________ (RGP ey g ————————

= Amdahl's: s =0,c(N) =0
= Perfect speedup? No!
= Saturation because of memory
6 7 8

bandwidth exhaustion o1
1 2 3 4 5
# Threads

[ wamry ] 7

10
8-core CPU (Intel Sandy Bridge)

2024-04-12 38
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Separation of scaling baselines is key!

* Intra-socket scaling is often not covered by the model
= Model assumes “scalable resources”
| | | |

- T Model well suited .
for internode
I scaling! ST«
-~
2r ,p -
2 /
Separating scaling baselines 8 o
is important in modeling! ) /
;
!! — — $=0, k=0.051
1+ 9 -
’ _ _ Socket saturation Scaling baseline:
i \_-I Scaling baseline: due to memory 1gnode ’
A i lc?re " bandwidth l I l l
5 10 15 20 1 2 3 4
# cores # nodes
2024-04-12 39
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Amdahl generalized: load imbalance

time

-

= Load imbalance at sync points

= More specifically, execution time imbalance “

= p/N assumption no longer valid in general work / wait

|

:

- |

work wait !
|

|

|

= Hard to model in general, but two corner cases: WO e
= Afew “laggers” waste lots of resources N~—

Sync point |

- Single lagger - Amdahl’s Law .

= Afew “speeders” might be harmless — L
work wait |

= Tuning advice work
= Avoid sync points ==

= Turn laggers into speeders o
Sync point |
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MPI tracing tools




MPI tracing tools

= Allow the user to track events and statistics pertaining to MPI
communication and code execution

Popular tools

= Intel Trace Analyzer and Collector (ITAC)
= VAMPIR (commercial)

= Paraver

Powerful tools
Potential to produce massive amounts of data
Danger of “drowning in data”




Intel Trace Analyzer and Collector

------------------------------------------------------------------------------------

3 Environment preparation i
$ module load itac intel intelmpi ¢

--------------------------------------------------------------------
-

-trace

_ Collector: compilation, linking and run
% mpiicc -trace myProg.c -o ${binary}

--------------------------------------------------------------------------------

format
STF: Structured Trace File

${binary}.stf

---------------------------------------------------------------------------------

aa¥aan
............................................................................
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Basic features of ITAC

X[ Intel® Trace Analyzer

{ Event-based approach that record { | — e
» user function calls Pl EEEE EE JE EE

» MPI communication caIIs
"Eamgy EEmagy s 4e-3s - single
2e-3s
0s 1767.5s 17685s 1769.5s 17705s 1771.5s 17725s 1773.5s 17745 s
7 7

MPI_Wait
MPI_Send
User_Code
ComputeWAXPBY_ref
ComputesYMGS_ref

N & o m

N Intel® Trace Analyzer

Flat Profile Load Balan
Summary: xhpcg.stf All_Processes
Total time: 1.88e+04 sec. Resources: 9 processes, 1 node. [ = Show advanced.
4 All_Processes
" . ComputeSPMV_ref 18.7874 s
Ratio Top MPI functions ComputeWAXPEY PO
This section represents a ratio of all MPI calls to the rest of your  This section lists the most active MPI functions from all MPI calls in the application. ComputeDotProduct_ref 854.298e-35 | LEDEEIN  Affected Pr
code in the application. - ComputeSPMV 4le-6 5 wait at Barrier
ComputeSYMGS_ref 39.4382s N
ComputeWAXPBY_ref 160315 | walt ime
MPI_Allreduce I 75.8 S - ComputeDotProduct 91e-6 s
MPI_Wait I 75.8 s User_Code 654.169e-35 | _ |p] barrier
MPI_Send I 7.835414 L K r
MPI_lrecy | 0.683 sec (0.00363 %)
MPI_Wtime 0.14 sec (0.000745 %)
M Serial Code - 1.86e+04 sec 99.1%
W MPI calls - 160 sec 0.8%
Where to start with analysis
For deep analysis of the MPI-bound application click "Continue >" to open the Ta optimize node-level performance use:
tracefile View and leverage the Intel® Trace Analyzer functionality: Intel® VTune™ Amplifier XE for: .
. toi i § - algorithmic level tuning with hotspats and threading efficier sis;
. me B‘E"acz";:;fé‘,ffﬁwtgef;L':Pi'"‘\’::‘saﬁlfep:gm;““ problems - microarchitecture level tuning with general exploration and bandwidth analysis;
B Pl " " Intel® Advisor for:
Tagging/Filtering - for thorough customizable analysis - vectorization optimizatien and thread prototyping.
For more information, see documentation for the respective tool:
Analyzing MPI 1s with Intel® VTune™ Amplifier XE
Analyzing MP| applications with Intel® Advisor
¥ Show Summary Aage when opening a tracefile
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Some features of ITAC

Flat Profile Load Balance Call Tree Call Graph

|Chi|dren of All_Processes " PO PL P2 P3 P4 PS5 P6 P7 P8 Sum Mean itdDer
Min.Radius: # Per Row: o
PO P1 P3 Legend n
ComputeSPMV_ref
= ComputeWAXPBY P2 |
= ComputeDotProduct_ref b T
= ComputeSPMV O a
P7 = ComputeSYMGS_ref . 2 Pa
= ComputeWAXPBY_ref q’
ComputeDotProduct o PS5
User_Code GJ - )
= MPI_Comm_size ]
= MPI_Comm_rank m P7
MPI_Finalize —
MPI_Bcast [~ = Be
= MPI_lrecv Sum [ |
= MPI_Wtime
= MPI_Send Mean
StdDev

Sender

PO P1 P2 P3 P4 [5) P6 P7 P8 Sum Mean StdDev
MPI_Bcast 60e-6  6.66667e-6 @ 666.667e-9
MPI_Allreduce 9.46671 9.80818 10.6684 | 75.8164  8.42405 3.81376
Sum 6.98828 | 2.41009 | 14.1332 | 9.46671 | 9.80818 | 2.28142 | 12.1689 | 7.89127 | 10.6684 | 75.8165
Mean 3.49414 | 1.20504 | 7.06659 | 4.73336 | 4.90409 | 1.14071 6.08444 | 3.94564 5.33422 4.21203
StdDev 3.49413 | 1.20504 | 7.06658 | 4.73335 | 4.90409 | 1.1407  6.08444 | 3.94563 5.33422 5.00135
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Timeline view
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