
Programming Techniques for Supercomputers:
Introduction
Performance
Profiling
Measurement and Reporting
Benchmarks

Prof. Dr. G. Wellein(a,b)

(a) Erlangen National Center for High Performance Computing
(b) Department für Informatik

University Erlangen-Nürnberg
Sommersemester 2024

April 16, 2024 2PTfS 2024

One thing up front: “cycle gymnastics”

 Two time metrics are used in the lecture:
 absolute time (seconds; s)

 relative time on the processor (processor cycle time or cycle)

 1 cycle [cy] = smallest unit of time on a CPU (“heartbeat”)

 1 GHz = 109 cy/s 1 cy = 10-9 s

 Typical clock speeds (CPU): 2.0 Gcy/s,…4.0 Gcy/s (or GHz)

 Typical clock speeds (GPU): 1.0 Gcy/s,…2.0 Gcy/s (or GHz)

April 16, 2024 3PTfS 2024

One thing up front: “cycle gymnastics” – Peak Performance

 Peak performance of 20-core CPU running at 2.4 GHz:

Ppeak = 1536 Gflop/s = 1.536 Tflop/s

 How many Flops per cycle per core is that?

1536 � 109 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
20 𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹 � 2.4 � 109 𝑐𝑐𝑐𝑐𝐹𝐹

= 32
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑐𝑐𝑐𝑐 � 𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐

 Typical duration of a double precision multiply instruction: 4 cycles

› How much time is that? 4 𝑐𝑐𝑐𝑐
2.4�109𝑐𝑐𝑐𝑐𝑠𝑠

= 1.67 � 10−9𝐹𝐹 = 1.67 ns

April 16, 2024 4PTfS 2024

One thing up front: “cycle gymnastics” – Memory Bandwidth

 Basic unit of traffic: Byte

 Unit of bandwidth: Bytes/s

 Typical memory bandwidth (20 cores): 160 Gbytes/s = 1.6 ∙ 1011 Bytes/s

 How many bytes per cycle is that (20 cores)?
160�109𝐵𝐵𝑐𝑐𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠
2.4�109𝑐𝑐𝑐𝑐𝑠𝑠

= 67 𝐵𝐵𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵
𝑐𝑐𝑐𝑐

 But: 32 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵
𝑐𝑐𝑐𝑐�𝑐𝑐𝐹𝐹𝑐𝑐𝐵𝐵

∗ 20 𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐 = 640 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵
𝑐𝑐𝑐𝑐

Profiling

Performance

Performance: Why thoroughly measure and report it?
 Determine which computer is best suited for a given (set of) application(s)?

 Gaming PC or Atom based Laptop?
 Cluster or fat server? Fast CPU? Intel or AMD or GPU?
 Which applications? Which input/data sets?

 Validate impact of new optimization / implementation / parallelization strategy and
present to others
 Results need to be interpreted and potentially reproduced by other scientists
 Compare with other / previous work
 Justify efficient usage of expensive resources

 Determine “attainable” capabilities of individual parts of the computer
 E.g., data transfer / IO / computational capabilities
 Often required to guide optimization strategies Performance Modeling

April 16, 2024PTfS 2024 6

April 16, 2024PTfS 2024

Performance: What is a good measure/metric?
 Performance = WORK / TIME
 “Pure” metrics – basic choices for “WORK”

 Flop/s: Floating Point Operations per Second

(often cited for technical & scientific applications)

 MIPS: Millions of Instructions per Second

(computer architect’s view)

 How to determine WORK, e.g., “Floating Point Operations”?
 Count them manually (high level code / algorithm)
 Use CPU event counters tools (e.g., LIKWID)

number of floating-point operations executed
TIME

Number of Instructions executed
106 * TIME

7

April 16, 2024PTfS 2024

Some WORK metrics may fool the observer
 “My vector update code runs at 2,000 MFlop/s on a 2GHz processor!”
 Great – isn’t it?

 Define WORK carefully – independent of implementation issues

for(i=0; i<n; i++)
{

a[i]= 3.0*c0+c1*c2 +c3*c4*a[i] -1.d0 *a[i];
}

 #FLOP = 8 * n

d0 = 3.0*c0+c1*c2;
d1 = c3*c4-1.d0;

for(i=0; i<n; i++)
{

a[i]= d0 + d1*a[i];
}

 #FLOP = 2* n + 5

If is a[i]loaded/stored
from/to main memory:

Same execution time but…

… but my
MFlop/s rate is

only ¼!

8

Performance – choices for WORK
 Iterations: Total number of loop iterations performed: WORK = n iterations (see previous

slide)
 Performance metric: Iterations / s

 Lattice Site/ Cell / Particle Updates: Often used for stencil codes or Lattice Boltzmann fluid
solvers: WORK = number of sites/cells/particles to be updated/computed
 Performance metric: Cell updates / s

 Physical simulation time: Often used in molecular dynamics codes: WORK = Physical time
(e.g. nanosenconds) a system is propagated
 Performance metric: nanoseconds / day

 Complete problem solution: WORK: “1” well-defined problem
 Performance metric: 1 / s

April 16, 2024PTfS 2024 9

Performance – TIME
 Simplest performance metric (“bestseller”): 1 / TIME
 Measures time to solution
 Carefully specify the “problem” you solved!
 Best metric thinkable, but not intuitive in all situations (see later)

 Problem: Which TIME?

 LINUX / UNIX command time :

>time ./test.x
>34.650u 0.612s 0:35.28 99.9%

>time ./testwIO.x
>33.802u 0.608s 0:43.64 78.8%

 > xxxu yyys mm:ss CPUratio%

xxx USER CPU time [s] yyy SYSTEM CPU time [s]
mm:ss Elapsed time CPUratio (xxx+yyy)/mm:ss

April 16, 2024PTfS 2024 10

Performance – TIME

 Stay away from CPU time – it‘s evil!
 Elapsed time (WALLTIME) is the time you wait for your result!

(Always use dedicated resource, e.g., one node)

 WALLTIME as difference of two timestamps on UNIX(-like) systems

 Replaces gettimeofday()
 Code available in the exercise templates
 Works fine for serial timings – due care for parallel apps is required

#include <stdlib.h>
#include <time.h>

double getTimeStamp() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9; }

April 16, 2024PTfS 2024 11

Profiling

Where do I spend my time?

Performance: Where do I spend my time

 How do I know where my code spends most of its time?
 This is called “Profiling”
 Profiling may impact runtime (i.e., performance) Qualitative insight
 Two kinds: instrumentation and sampling

 Sampling
 Application is interrupted at regular intervals while running; stack trace is recorded

and all info is statistical. No recompilation required

 Instrumentation
 Application code is (automatically) instrumented at compile time such that runtime

contributions of all subroutines, functions, etc. can be determined

 Many advanced profiling tools exist, e.g., Intel Amplifier, Oprofile, Codeanalyst –
we start with simple one (gprof – instrumentation based)

April 16, 2024PTfS 2024 13

Profiling with gprof

 Basic profiling tool under Linux: gprof
 Compiling for a profiling run (use compiler-specific flag)

icc -pg …… -o a.out
./a.out

 After running the binary, a file gmon.out is written to current directory
 Human-readable output via

gprof a.out

 Compiler inlining should be disabled for profiling
 But then the executed code isn’t what it should be…

 Profiling may (substantially) reduce overall code performance

April 16, 2024PTfS 2024 14

April 16, 2024PTfS 2024

Profiling with gprof: Example

Test of kernel routine:
 Initialize

 Run the 2 computational
kernels 10 times

15

April 16, 2024PTfS 2024

Profiling with gprof: Example

Butterfly graph

Who calls whom and how often?

16

April 16, 2024PTfS 2024

Profiling with gprof: Example (C++)
Example with wrapped double class:

class D {
double d;

public:
D(double _d=0) : d(_d) {}
D operator+(const D& o) {
D r;
r.d = d+o.d;
return r;

}
operator double() {
return d;

}
};

const int n=10 000 000;
D a[n],b[n];
D sum;

for(int i=0; i<n; ++i)
a[i] = b[i] = 1.5;

double s = timestamp();
for(int k=0; k<10; ++k) {
for(int i=0; i<n; ++i)
sum = sum + a[i] + b[i];

}

Main program:

17

Profiling with gprof: Example (C++) profiler output

 icpc -O3 -pg perf.cc

 icpc -O3 -fno-inline -pg perf.cc

 But where did the time actually go?
 Butterfly (callgraph) profile also available
 Real problem also with libraries
 Sometimes you have to roll your own little profiler (timing functions within the code)

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name

101.01 0.41 0.41 main

% cumulative self self total
time seconds seconds calls ns/call ns/call name
46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D const&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)
24.82 1.27 0.31 main

April 16, 2024PTfS 2024 18

Probing hardware performance

What does the hardware do?

Probing Performance behavior
 Once a hotspot is identified determine the hardware utilization

 Performance counters allow to monitor processor events:
 The number and kind of instructions executed
 The data transfers executed for each cache/memory level
 The clock speed at which the processor runs
 The power/energy consumption
 …

 likwid-perfctr (from likwid toolbox) allows easy access to performance
events and provides useful derived metrics, e.g., main memory bandwidth or
Flop/s or cycles/instruction
 https://github.com/RRZE-HPC/likwid

 See separate lecture Thomas Gruber

April 16, 2024PTfS 2024 21

https://github.com/RRZE-HPC/likwid

Best Practices for Performance Measurement &
Reporting
Measuring performance in a reproducible way

April 16, 2024PTfS 2024

Performance: Impact factors

“My code runs on an Intel Xeon Sandy Bridge processor 12 times
faster than the results reported for code A in [xyz].”

23

Performance: Impact factors
 For a given code/problem, performance may be influenced by many factors

 For reproducibility of performance results:
 All critical factors need to be reported!
 Sensibility and stability analysis!
 Statistics – fluctuations among several runs (min/max/median)

Performance

CPU
Clock speed, SMT,
#cores, cache size

Memory
Interface, Size, Speed

Vendor / Board

IO subsystem

Compiler
Version, Flags

OS
Parameters,

Version, Libraries
BIOS

Settings

Libraries

gnu, Intel, pgi,
pathscale

Atlas, mkl,
fftw,…

SuSe,
RedHat,
Ubuntu,…

April 16, 2024PTfS 2024 24

Performance Measurement: Best Practices
 Preparation

 Consider to automate runs with a script (shell, python, perl)
 Reliable timing/timer granularity (minimum time which can be measured?)
 Document code generation (flags, compiler version)
 Document system state (clock frequency, turbo mode, memory, caches,…)

 Doing
 Get exclusive system
 Fix clock speed
 Control Affinity / Topology– where does my code/threads/processes run exactly?
 Working set size – code input parameters?!
 Is result deterministic and reproducible Statistics: Mean, Median, Best ??
 Basic variations: Thread count, affinity, working set size runtime
 Check: Are the results reasonable?

April 16, 2024PTfS 2024 25

Performance Measurement: Best Practices (cont.)
 Postprocessing

 Documentation
 Plan variations to gain more information
 Many things can be better understood if you plot them (gnuplot, xmgrace)
 Use statistics to report performance fluctuations
 Try to understand and explain the result
 Is there a (simple) model which can (qualitatively) explain the performance levels and

variations?

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz
Memory Bandwidth 48 GB/s

do k = 1 , Nk; do j = 1, Nj
do i = 1, Ni

y(i,j,k) = const*
$ (x(i-1,j,k) + x(i+1,j,k)
$ + x(i,j-1,k) + x(i,j+1,k)
$ + x(i,j,k-1) + x(i,j,k+1))

enddo
enddo; enddo

April 16, 2024PTfS 2024 26

Benchmarks

Benchmarks provide insights beyond the hardware fact sheet

Benchmarks: Classification
1. Real (full) applications: Solves real world problem but includes everything and may run for hours or days on

thousands of processors!

2. Proxy applications or mini-apps: Small and simplified code which allows to capture relevant performance
features of real (full) scale applications, e.g., Mantevo [1], Exascale proxy applications [2], or SPEC [3]

3. Kernels: “Small” code pieces representing single steps of (proxy) applications e.g., solvers (LINPACK,…)
or time-consuming computational steps (STREAM, (sparse) matrix-vector multiplication,…). Easy to port,
analyze and optimize. Also very popular with vendors, easy to report (everyone knows the popular ones)

4. Toy benchmarks: Small pieces of code implementing popular algorithms (e.g. quicksort). Typically used for
getting students started with programming.

5. Synthetic benchmarks (microbenchmarks): Simulate operations and data accesses of a variety of applications
without having any relation to the application codes

Kernels are central for structured performance modelling!

[1] https://mantevo.github.io ; [2] https://proxyapps.exascaleproject.org ; [3] www.spec.org

April 16, 2024PTfS 2024 28

https://mantevo.github.io/
https://proxyapps.exascaleproject.org/
http://www.spec.org/

Benchmarks – HPC standard benchmarks

 STREAM Attainable main memory bandwidth (microbenchmark)

 LINPACK Top500 Ranking / Attainable peak performance (solver)

 HPCG Preconditioned conjugate-gradient solver (solver)

 SPEC-HPC Industry standard (HPC proxy app suite)

April 16, 2024PTfS 2024 29

Benchmarks: STREAM for memory bandwidth
 http://www.cs.virginia.edu/stream/
 Performs four “streaming” tests:

 Copy: A(1:N) = B(1:N)

 Scale: A(1:N) = s*B(1:N)

 Add: A(1:N) = B(1:N)+C(1:N)

 Triad: A(1:N) = B(1:N)+s*C(1:N)

 Results are reported in MByte/s (data
transfer rate)

 No changes are allowed
 Tests the attainable

main memory bandwidth
 Stream & stream-like tests are used throughout the lecture

April 16, 2024PTfS 2024 30

http://www.cs.virginia.edu/stream/

Benchmarks – LINPACK: Towards Peak Performance

 Solve large dense linear system of equations, i.e.,
𝐴𝐴 𝑥𝑥 = 𝑏𝑏

 with 𝐴𝐴 is a dense 𝑁𝑁 × 𝑁𝑁 matrix

 Algorithm: LU factorization of 𝐴𝐴
(+ forward/backward substitution) with
effort 2

3
𝑁𝑁3 + 𝛰𝛰(𝑁𝑁2)

 Highly parallel implementations are available

 Achieves high fraction of machine peak performance (see 1st lecture)

(see http://www.netlib.org/benchmark/hpl/algorithm.html)

April 16, 2024PTfS 2024 31

http://www.netlib.org/benchmark/hpl/algorithm.html

Benchmarks: HPCG – Something more realistic?

 HPCG: High Performance Conjugate Gradient benchmark

 Basic algorithm: Conjugate Gradient with a local symmetric Gauss-Seidel
preconditioner

 Synthetic 3D sparse linear system (stencil-structure)

 Strong correlation with
main memory bandwidth and
STREAM benchmark

 https://www.top500.org/hpcg/ Figure from:
https://devblogs.nvidia.com/parallelforall/optimizing-high-

performance-conjugate-gradient-benchmark-gpus/

April 16, 2024PTfS 2024 32

https://www.top500.org/hpcg/

	Programming Techniques for Supercomputers:�Introduction
	One thing up front: “cycle gymnastics”
	One thing up front: “cycle gymnastics” – Peak Performance
	One thing up front: “cycle gymnastics” – Memory Bandwidth
	Profiling
	Performance: Why thoroughly measure and report it?
	Performance: What is a good measure/metric?
	Some WORK metrics may fool the observer
	Performance – choices for WORK
	Performance – TIME
	Performance – TIME
	Profiling
	Performance: Where do I spend my time
	Profiling with gprof
	Profiling with gprof: Example
	Profiling with gprof: Example
	Profiling with gprof: Example (C++)
	Profiling with gprof: Example (C++) profiler output
	Probing hardware performance
	Probing Performance behavior
	Best Practices for Performance Measurement & Reporting
	Performance: Impact factors
	Performance: Impact factors
	Performance Measurement: Best Practices
	Performance Measurement: Best Practices (cont.)
	Benchmarks
	Benchmarks: Classification
	Benchmarks – HPC standard benchmarks
	Benchmarks: STREAM for memory bandwidth
	Benchmarks – LINPACK: Towards Peak Performance
	Benchmarks: HPCG – Something more realistic?

