Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Programming Techniques for Supercomputers:
Introduction

Prof. Dr. G. Wellein@b)

(@ Erlangen National Center for High Performance Computing
(®) Department flr Informatik

University Erlangen-Nurnberg
Sommersemester 2024

One thing up front: “cycle gymnastics”

= Two time metrics are used in the lecture:

= absolute time (seconds; s) S :

= relative time on the processor (processor cycle time or cycle)

= 1 cycle [cy] = smallest unit of time on a CPU (“heartbeat”) [Memory]

* 1 GHz=10%cy/s €> 1¢cy=107s

= Typical clock speeds (CPU): 2.0 Gceyl/s,...4.0 Gey/s (or GHz)

= Typical clock speeds (GPU): 1.0 Gey/s,...2.0 Gey/s (or GHz)

PTfS 2024 April 16, 2024

One thing up front: “cycle gymnastics”™ — Peak Performance

= Peak performance of 20-core CPU running at 2.4 GHz:
Poeak = 1936 Gflop/s = 1.536 Tflop/s

= How many Flops per cycle per core is that?

1536-109@ . Flops
20 cores - 2.4 - 109% cy - core

A

= Typical duration of a double precision multiply instruction: 4 cycles

» How much time is that? #Cgfﬂ =1.67-10"°s = 1.67 ns

PTfS 2024 April 16, 2024

One thing up front: “cycle gymnastics™ — Memory Bandwidth

= Basic unit of traffic: Byte [PPIfP[rlP P[P P
:'----------["f'i“i'!L';“_[‘_"f __________ j
/

= Unit of bandwidth: Bytes/s / emory]

= Typical memory bandwidth (20 cores): 160 Gbytes/s = 1.6 - 10"! Bytes/s

160-1098%tes
S

Bytes

=67
2.4-109% cy

b

x 20 core = 640

cy-core cy

= How many bytes per cycle is that (20 cores)?

Flops Flops

= But: 32

PTfS 2024 April 16, 2024

FAU F/Augldghﬁl bng

Profiling

Performance

Performance: Why thoroughly measure and report it?

Determine which computer is best suited for a given (set of) application(s)?
Gaming PC or Atom based Laptop?
Cluster or fat server? Fast CPU? Intel or AMD or GPU?
Which applications? Which input/data sets?

Validate impact of new optimization / implementation / parallelization strategy and
present to others

Results need to be interpreted and potentially reproduced by other scientists

Compare with other / previous work

Justify efficient usage of expensive resources

Determine “attainable” capabilities of individual parts of the computer
E.g., data transfer / 10 / computational capabilities
Often required to guide optimization strategies - Performance Modeling

PTfS 2024 April 16, 2024

Performance: What is a good measure/metric?

Performance = WORK/ TIME

“Pure” metrics — basic choices for “WORK”
Flop/s: Floating Point Operations per Second

number of floating-point operations executed
TIME

(often cited for technical & scientific applications)

MIPS: Millions of Instructions per Second

Number of Instructions executed
105 * TIME

(computer architect’s view)

How to determine WORK, e.g., “Floating Point Operations™?
Count them manually (high level code / algorithm)
Use CPU event counters - tools (e.g., LIKWID)

PTfS 2024 April 16, 2024

Some WORK metrics may fool the observer

“My vector update code runs at 2,000 MFlop/s on a 2GHz processor!”
Great —isn't it?

for (1i=0; i<n; i++)
{

a[i]= 3.0%*cO+cl*c2 +c3*cd*a[i] -1.d0 *a[il; Tis a[i]loaded/stored
} from/to main memory:
S #FLOP =8 *n Same execution time but...
d0 = 3.0*cO+cl*c2;
... but my ’
: 1 = *c4-1.d0;
MFlop/s rate is d c3*e do
only Va! for (i=0; i<n; i++)

{
a[i]= d0 + dl*al[i];
}

> #FLOP= 2*n+5

- Define WORK carefully — independent of implementation issues

PTfS 2024 April 16, 2024 8

Performance — choices for WORK

lterations: Total number of loop iterations performed: WORK = n iterations (see previous
slide)
- Performance metric: lterations / s

Lattice Site/ Cell / Particle Updates: Often used for stencil codes or Lattice Boltzmann fluid
solvers: WORK = number of sites/cells/particles to be updated/computed
- Performance metric: Cell updates / s

Physical simulation time: Often used in molecular dynamics codes: WORK = Physical time
(e.g. nanosenconds) a system is propagated
- Performance metric: nanoseconds / day

Complete problem solution: WORK: “1” well-defined problem
- Performance metric: 1 /s

PTfS 2024 April 16, 2024 9

Performance — TIME

Simplest performance metric (“

Measures time to solution

bestseller”): 1/ TIME

Carefully specify the “problem” you solved!
Best metric thinkable, but not intuitive in all situations (see later)

Problem: Which TIME?

LINUX / UNIX command time :

>time ./test.x

>34.650u 0.612s 0:35.28 99.9%

>time ./testwIO.x

>33.802u 0.608s 0:43.64 78.8%

> XXXu yyysS mm:ss CPUratio%

xxx = USER CPU time [s]
mm:ss > Elapsed time

yyy =2 SYSTEM CPU time [s]
CPUratio 2 (xxx+yyy)/mm:ss

PTfS 2024

April 16, 2024

10

Performance — TIME

Stay away from CPU time —it's evil!

Elapsed time (WALLTIME) is the time you wait for your result!
(Always use dedicated resource, e.g., one node)

WALLTIME as difference of two timestamps on UNIX(-like) systems

#include <stdlib.h>
#include <time.h>

double getTimeStamp () {
struct timespec ts;
clock gettime (CLOCK MONOTONIC, &ts);
return (double)ts.tv sec + (double)ts.tv nsec * 1l.e-9; }

Replaces gettimeofday ()
Code available in the exercise templates
Works fine for serial timings — due care for parallel apps is required

PTfS 2024 April 16, 2024

11

FAU F/Augldghﬁl bng

Profiling

Where do | spend my time?

Performance: Where do | spend my time

How do | know where my code spends most of its time?

This is called “Profiling”
Profiling may impact runtime (i.e., performance) = Qualitative insight

Two kinds: instrumentation and sampling
Sampling
Application is interrupted at regular intervals while running; stack trace is recorded
and all info is statistical. No recompilation required

Instrumentation

Application code is (automatically) instrumented at compile time such that runtime
contributions of all subroutines, functions, etc. can be determined

Many advanced profiling tools exist, e.g., Intel Amplifier, Oprofile, Codeanalyst —
we start with simple one (gprof — instrumentation based)

PTfS 2024 April 16, 2024 13

Profiling with gprof

Basic profiling tool under Linux: gprof
Compiling for a profiling run (use compiler-specific flag)

After running the binary, a file gmon . out is written to current directory
Human-readable output via

gprof a.out

Compiler inlining should be disabled for profiling
But then the executed code isn’t what it should be...

Profiling may (substantially) reduce overall code performance

PTfS 2024 April 16, 2024

14

Profiling with gprof: Example

 fmp=

gprof ./lbmkernel-pg

t profile:

sample counts 0.0l seconds.
s cumulative j
time seconds seconds calls

80,05
15.
=

S, Fd

time

cumulative
seconds

self
seconds

16
1
10

-

[73]

relax_standard_flipped_il_2g_
init_flipped_il
bounceback_inde

1

munmap
0. get_time_info_

3.95 MAIN

0.00 speed_info_mlups_

[TR TS Iy RO N I T

the percentage of the total running time of the
program used by this function.

a running sum of the number of seconds accounted
for by this function and those listed above it.

the number of secon counted for by this
function alone. This is the major sort for this
listing.

the number of tim
this function is

the average number of millise
function per call, if this function is profiled.
else blank.

the average number of milliseconds spent in this
function and 1ts descende p 1f
function 1s profiled, else blank.

f the function. N1 the minor sort

5 listing. The ind ' he location of
rof listing. If the index is

here it would appear in

Test of kernel routine:
Initialize

Run the 2 computational
kernels 10 times

PTfS 2024

April 16, 2024

15

Profiling with gprof: Example

Call graph (explanation follows)

granularity: each sample hit covers 4 byteis) for 0.25% of 3.96 seconds

index % self children called name
: 1/1 main [2]
[1] oo, 7 : 3, 1 MAIN _ [1]
- 3. 0C 10/10 - tandard flipped i1 2g [3]
; ' ed i1 29 [4]
index_flipped il 2g [5]

obsin_ [7]
make_bouncebacklist_ [6]
get_time_info_ [
speed_info_mlups_ [10]

<spontanecus>

Butterfly graph

MAIN_ [1]

ATM [1]
relax_standard_flipped i1 2q_ [3 Who calls whom and how often?
MAIN [1]
init_flipped il 2
make bouncebs ist_ [B]

MAIN__ [1]
bounceback_index_flipped_il_2g_ [

MAIN__ [1]
init flipped i
make bouncebacklist_

MAIN _ [1]
obsin_ [7]

n

ontaneous:=
[E]

munmap

PTfS 2024 April 16, 2024

Profiling with gprof: Example (C++)

Example with wrapped double class:

class D {
double d;
public:

D (double d=0)
D operator+(const D& o) {

};

}

D r;
r.d = d+o.d;
return r;

:d(_d) {}

operator double() {

}

return 4d;

Main program:

const int n=10 000 000;
D a[n],b[n];
D sum;

for(int i=0; i<n; ++1i)
a[i] = b[i] = 1.5;

double s = timestamp() ;
for (int k=0; k<10; ++k) {
for(int i=0; i<n; ++1i)
sum = sum + a[i] + b[i];

PTfS 2024

April 16, 2024

17

Profiling with gprof: Example (C++) profiler output

icpc -03 -pg perf.cc

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
101.01 0.41 0.41 main

icpc -03 -fno-inline -pg perf.cc

% cumulative self self total

time seconds seconds calls ns/call ns/call name

46.44 0.59 0.59 200000000 2.93 4.48 D::operator+ (D consté&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)

24 .82 1.27 0.31 main

But where did the time actually go?
Butterfly (callgraph) profile also available

Real problem also with libraries
Sometimes you have to roll your own little profiler (timing functions within the code)

PTfS 2024 April 16, 2024

18

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Probing hardware performance

What does the hardware do?

Probing Performance behavior

Once a hotspot is identified - determine the hardware utilization

Performance counters allow to monitor processor events:
The number and kind of instructions executed
The data transfers executed for each cache/memory level
The clock speed at which the processor runs
The power/energy consumption

likwid-perfctr (from 1likwid toolbox) allows easy access to performance

events and provides useful derived metrics, e.g., main memory bandwidth or
Flop/s or cycles/instruction

https://github.com/RRZE-HPC/likwid

LIKWID

See separate lecture - Thomas Gruber

PTfS 2024 April 16, 2024

21

https://github.com/RRZE-HPC/likwid

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Best Practices for Performance Measurement &
Reporting

Measuring performance in a reproducible way

Performance: Impact factors

“My code runs on an Intel Xeon Sandy Bridge processor 12 times
faster than the results reported for code A in [xyz].”

PTfS 2024 April 16, 2024

23

Performance: Impact factors

For a given code/problem, performance may be influenced by many factors

CPU
Clock speed, SMT, . .
#cores, cache size Compiler 9nu, Intel, pgi,
Memory Version, Flags Pathscale
Interface, Size, Speed \ . . Atlas. mK
)) Libraries o
~ Performance ’
Vendor / Board oS SuSe,
\‘\/J Parameters, RedHat,
1O subsystem Version, Libraries Ubuntu,...
BIOS
Settings

For reproducibility of performance results:
All critical factors need to be reported!
Sensibility and stability analysis!
Statistics — fluctuations among several runs (min/max/median)

PTfS 2024 April 16, 2024

24

Performance Measurement: Best Practices

Preparation

Consider to automate runs with a script (shell, python, perl)

Reliable timing/timer granularity (minimum time which can be measured?)
Document code generation (flags, compiler version)

Document system state (clock frequency, turbo mode, memory, caches,...)

———

ﬂluﬂ|12ﬂ|12ﬂ|ﬂ“|12ﬂ|ﬂﬂ|ﬂﬂ|ﬂ :ﬂlﬂﬂlﬂﬂlﬂﬂlﬂﬂlﬂlﬂlﬂlﬂlﬂﬂlﬂ
PI/PIP[P|PIP[P|P ‘plp[plP[PP|[P]P
D o] D LiD 1] D L1D |*]] D LiD D D L1D LiD *]
L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
. : L3 | : L3 :
Doing — Memoryintorace fm={_ Momoryimerae 'J
Get exclusive system
[Memory } [Memory

Fix clock speed
Control Affinity / Topology— where does my code/threads/processes run exactly?
Working set size — code input parameters?!

Is result deterministic and reproducible - Statistics: Mean, Median, Best ??
Basic variations: Thread count, affinity, working set size <- runtime

Check: Are the results reasonable?

PTfS 2024

April 16, 2024

25

Performance Measurement: Best Practices (cont.)

Postprocessing
Documentation

Plan variations to gain more information

Many things can be better understood if you plot them (gnuplot, xmgrace)

Use statistics to report performance fluctuations
Try to understand and explain the result

Is there a (simple) model which can (qualitatively) explain the performance levels and
variations?

dok =1, Nk; do j =1, Nj
do i =1, Ni

v 0 n

enddo;

enddo
enddo

y(i,j,k) = const¥*

(X(i—l,j,k) + X(i+1,j,k)
+ x(i,j-1,k) + x(1i,j+1,k)
+ x(i,j,k-1) + x(i,3,k+1))

2000

1500

1000

MLUP/s

500

’ ® L4
y ® ® ® L
S
// ® ’,// " B E |
/ / L B
//. // —
/ , n
/ pd
|
/
4
’ |
M
s @ @ Measurement@3.0GHz

—— ECM Model: 3.0GHz; MemBW=48GB/s | |
- W Measurement@ 1.6GHz |
—— ECM Model: 1.6GHz; MemBW=42GB/s

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz |
Memory Bandwidth 48 GB/s |

3 4 5 6 7 8 9 10
cores

PTfS 2024

April 16, 2024

26

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Benchmarks

Benchmarks provide insights beyond the hardware fact sheet

Benchmarks: Classification

1.

Real (full) applications: Solves real world problem but includes everything and may run for hours or days on
thousands of processors!

2. Proxy applications or mini-apps: Small and simplified code which allows to capture relevant performance
features of real (full) scale applications, e.g., Mantevo [1], Exascale proxy applications [2], or SPEC [3]
4 R
3. Kernels: “Small” code pieces representing single steps of (proxy) applications e.g., solvers (= LINPACK,...)
or time-consuming computational steps (- STREAM, (sparse) matrix-vector multiplication,...). Easy to port,
analyze and optimize. Also very popular with vendors, easy to report (everyone knows the popular ones)
_ J
4. Toy benchmarks: Small pieces of code implementing popular algorithms (e.g. quicksort). Typically used for
getting students started with programming.
5. Synthetic benchmarks (microbenchmarks): Simulate operations and data accesses of a variety of applications

without having any relation to the application codes

Kernels are central for structured performance modelling!

[1] https://mantevo.github.io ; [2] https://proxyapps.exascaleproject.org ; [3] www.spec.org

PTfS 2024 April 16, 2024 28

https://mantevo.github.io/
https://proxyapps.exascaleproject.org/
http://www.spec.org/

Benchmarks — HPC standard benchmarks

STREAM

LINPACK

HPCG

SPEC-HPC

—> Attainable main memory bandwidth (microbenchmark)
- Top500 Ranking / Attainable peak performance (solver)
—> Preconditioned conjugate-gradient solver (solver)

- Industry standard (HPC proxy app suite)

PTfS 2024

April 16, 2024

29

Benchmarks: STREAM for memory bandwidth

http//WWWCSVIrC]InIaedU/Stl’eam/ Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

Performs four “streaming” tests:

Copy: A(1:N) = B(1:N) Array size = 33554432
Offset = 1624
Scale: A(1:N) = s*B(1:N) The ?r.ntal memory requirement is

You are running each test 10 times

Add: A (1 IN) = B (1 :N) +C (1 IN) +|'_'IE! *best* time for each test 1s used

¥EXCLUDING* the first and last iterations

Triad: A(1l:N) = B(1:N)+s*C(1:N)

Results are reported in MByte/s (data
transfer rate)

Function
No changes are allowed Scole: 030,340 0.057 0.0517

Tests the attainable
main memory bandwidth

th0o7: /tap> |

Stream & stream-like tests are used throughout the lecture

PTfS 2024 April 16, 2024 30

http://www.cs.virginia.edu/stream/

Benchmarks — LINPACK: Towards Peak Performance

Solve large dense linear system of equations, i.e.,
Ax=0>
with A is a dense (N X N) matrix

Algorithm: LU factorization of A
(+ forward/backward substitution) with

effort % N3+ O(N?)

Highly parallel implementations are available

Achieves high fraction of machine peak performance (see 15t lecture)

(see http://www.netlib.org/benchmark/hpl/algorithm.html)

PTfS 2024 April 16, 2024 31

http://www.netlib.org/benchmark/hpl/algorithm.html

Benchmarks: HPCG — Something more realistic?

HPCG: High Performance Conjugate Gradient benchmark

Basic algorithm: Conjugate Gradient with a local symmetric Gauss-Seidel
preconditioner

Synthetic 3D sparse linear system (stencil-structure)

HPCG GF vs STREAM BW

Strong correlation with o | "
main memory bandwidth and g | o
STREAM benchmark guo e
https://www.top500.org/hpcg/

https://devblogs.nvidia.com/parallelforall/optimizing-high-
performance-conjugate-gradient-benchmark-gpus/

PTfS 2024 April 16, 2024 32

https://www.top500.org/hpcg/

	Programming Techniques for Supercomputers:�Introduction
	One thing up front: “cycle gymnastics”
	One thing up front: “cycle gymnastics” – Peak Performance
	One thing up front: “cycle gymnastics” – Memory Bandwidth
	Profiling
	Performance: Why thoroughly measure and report it?
	Performance: What is a good measure/metric?
	Some WORK metrics may fool the observer
	Performance – choices for WORK
	Performance – TIME
	Performance – TIME
	Profiling
	Performance: Where do I spend my time
	Profiling with gprof
	Profiling with gprof: Example
	Profiling with gprof: Example
	Profiling with gprof: Example (C++)
	Profiling with gprof: Example (C++) profiler output
	Probing hardware performance
	Probing Performance behavior
	Best Practices for Performance Measurement & Reporting
	Performance: Impact factors
	Performance: Impact factors
	Performance Measurement: Best Practices
	Performance Measurement: Best Practices (cont.)
	Benchmarks
	Benchmarks: Classification
	Benchmarks – HPC standard benchmarks
	Benchmarks: STREAM for memory bandwidth
	Benchmarks – LINPACK: Towards Peak Performance
	Benchmarks: HPCG – Something more realistic?

