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One thing up front: “cycle gymnastics”

 Two time metrics are used in the lecture: 
 absolute time (seconds; s) 

 relative time on the processor (processor cycle time or cycle)

 1 cycle [cy] = smallest unit of time on a CPU (“heartbeat”)

 1 GHz = 109 cy/s  1 cy = 10-9 s

 Typical clock speeds (CPU):  2.0 Gcy/s,…4.0 Gcy/s  (or  GHz)

 Typical clock speeds (GPU):  1.0 Gcy/s,…2.0 Gcy/s  (or  GHz)
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One thing up front: “cycle gymnastics” – Peak Performance

 Peak performance of 20-core CPU running at 2.4 GHz:  

Ppeak = 1536 Gflop/s = 1.536 Tflop/s

 How many Flops per cycle per core is that?  

1536 � 109 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
20 𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹 � 2.4 � 109 𝑐𝑐𝑐𝑐𝐹𝐹

= 32
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑐𝑐𝑐𝑐 � 𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐

 Typical duration of a double precision multiply instruction: 4 cycles

› How much time is that?   4 𝑐𝑐𝑐𝑐
2.4�109𝑐𝑐𝑐𝑐𝑠𝑠

= 1.67 � 10−9𝐹𝐹 = 1.67 ns
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One thing up front: “cycle gymnastics” – Memory Bandwidth

 Basic unit of traffic: Byte

 Unit of bandwidth: Bytes/s

 Typical memory bandwidth (20 cores): 160 Gbytes/s = 1.6 ∙ 1011 Bytes/s

 How many bytes per cycle is that (20 cores)?     
160�109𝐵𝐵𝑐𝑐𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠
2.4�109𝑐𝑐𝑐𝑐𝑠𝑠

= 67 𝐵𝐵𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵
𝑐𝑐𝑐𝑐

 But: 32 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵
𝑐𝑐𝑐𝑐�𝑐𝑐𝐹𝐹𝑐𝑐𝐵𝐵

∗ 20 𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐 = 640 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵
𝑐𝑐𝑐𝑐



Profiling

Performance



Performance: Why thoroughly measure and report it? 
 Determine which computer is best suited for a given (set of) application(s)?

 Gaming PC or Atom based Laptop?
 Cluster or fat server? Fast CPU?  Intel or AMD or  GPU?
 Which applications? Which input/data sets?

 Validate impact of new optimization / implementation / parallelization strategy and 
present to others 
 Results need to be interpreted and potentially reproduced by other scientists
 Compare with other / previous work
 Justify efficient usage of expensive resources

 Determine “attainable” capabilities of individual parts of the computer
 E.g., data transfer / IO / computational capabilities
 Often required to guide optimization strategies  Performance Modeling
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Performance: What is a good measure/metric?
 Performance = WORK / TIME
 “Pure” metrics – basic choices for “WORK”

 Flop/s: Floating Point Operations per Second

(often cited for technical & scientific applications)

 MIPS: Millions of Instructions per Second

(computer architect’s view)

 How to determine WORK, e.g., “Floating Point Operations”?
 Count them manually (high level code / algorithm)
 Use CPU event counters  tools (e.g., LIKWID)

number of floating-point operations executed  
TIME

Number of Instructions executed  
106 * TIME
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Some WORK metrics may fool the observer
 “My vector update code runs at 2,000 MFlop/s on a 2GHz processor!”
 Great – isn’t it?

 Define WORK carefully – independent of implementation issues

for(i=0; i<n; i++)
{     

a[i]= 3.0*c0+c1*c2 +c3*c4*a[i] -1.d0 *a[i];
}

 #FLOP = 8 * n

d0 = 3.0*c0+c1*c2;
d1 = c3*c4-1.d0;

for(i=0; i<n; i++)
{     

a[i]= d0 + d1*a[i];
}

 #FLOP =  2* n + 5 

If is a[i]loaded/stored 
from/to main memory: 

Same execution time but…

… but my 
MFlop/s rate is 

only ¼! 
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Performance – choices for WORK
 Iterations: Total number of loop iterations performed: WORK = n iterations (see previous 

slide) 
 Performance metric: Iterations / s

 Lattice Site/ Cell / Particle Updates: Often used for stencil codes or Lattice Boltzmann fluid 
solvers: WORK = number of sites/cells/particles to be updated/computed
 Performance metric: Cell updates / s 

 Physical simulation time: Often used in molecular dynamics codes: WORK = Physical time 
(e.g. nanosenconds) a system is propagated
 Performance metric: nanoseconds / day

 Complete problem solution: WORK: “1” well-defined problem
 Performance metric: 1 / s
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Performance – TIME
 Simplest performance metric (“bestseller”):           1 / TIME
 Measures time to solution 
 Carefully specify the “problem” you solved!
 Best metric thinkable, but not intuitive in all situations (see later)

 Problem: Which TIME?

 LINUX / UNIX command time :

>time ./test.x
>34.650u 0.612s 0:35.28 99.9%

>time ./testwIO.x
>33.802u 0.608s 0:43.64 78.8%

 > xxxu yyys mm:ss CPUratio%

xxx  USER CPU time [s] yyy  SYSTEM CPU time [s]
mm:ss  Elapsed time CPUratio  (xxx+yyy)/mm:ss
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Performance – TIME 

 Stay away from CPU time – it‘s evil!
 Elapsed time (WALLTIME) is the time you wait for your result! 

(Always use dedicated resource, e.g., one node)

 WALLTIME as difference of two timestamps on UNIX(-like) systems

 Replaces gettimeofday()
 Code available in the exercise templates
 Works fine for serial timings – due care for parallel apps is required

#include <stdlib.h>
#include <time.h>

double getTimeStamp() { 
struct timespec ts; 
clock_gettime(CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9; }
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Profiling

Where do I spend my time?



Performance: Where do I spend my time

 How do I know where my code spends most of its time? 
 This is called “Profiling”
 Profiling may impact runtime (i.e., performance)  Qualitative insight
 Two kinds: instrumentation and sampling

 Sampling
 Application is interrupted at regular intervals while running; stack trace is recorded 

and all info is statistical. No recompilation required 

 Instrumentation
 Application code is (automatically) instrumented at compile time such that runtime 

contributions of all subroutines, functions, etc. can be determined

 Many advanced profiling tools exist, e.g., Intel Amplifier, Oprofile, Codeanalyst –
we start with simple one (gprof – instrumentation based)
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Profiling with gprof

 Basic profiling tool under Linux: gprof
 Compiling for a profiling run (use compiler-specific flag)

icc -pg …… -o a.out
./a.out

 After running the binary, a file gmon.out is written to current directory
 Human-readable output via

gprof a.out

 Compiler inlining should be disabled for profiling
 But then the executed code isn’t what it should be…

 Profiling may (substantially) reduce overall code performance
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Profiling with gprof: Example

Test of kernel routine: 
 Initialize

 Run the 2 computational 
kernels 10 times

15
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Profiling with gprof: Example

Butterfly graph

Who calls whom and how often?

16
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Profiling with gprof: Example (C++)
Example with wrapped double class:

class D {
double d;

public:
D(double _d=0) : d(_d) {}
D operator+(const D& o) {
D r;
r.d = d+o.d;
return r;

}
operator double() {
return d;

}
};

const int n=10 000 000;
D a[n],b[n];
D sum;

for(int i=0; i<n; ++i)
a[i] = b[i] = 1.5;

double s = timestamp();
for(int k=0; k<10; ++k) {
for(int i=0; i<n; ++i)
sum = sum + a[i] + b[i];

}

Main program:
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Profiling with gprof: Example (C++) profiler output

 icpc -O3 -pg perf.cc

 icpc -O3 -fno-inline -pg perf.cc

 But where did the time actually go?
 Butterfly (callgraph) profile also available
 Real problem also with libraries
 Sometimes you have to roll your own little profiler (timing functions within the code) 

%   cumulative   self              self total           
time   seconds   seconds calls  Ts/call  Ts/call  name    

101.01      0.41     0.41                             main

%   cumulative   self              self     total           
time   seconds   seconds    calls  ns/call  ns/call  name    
46.44      0.59     0.59 200000000     2.93     4.48  D::operator+(D const&)
29.63      0.96     0.37 240000001     1.56     1.56  D::D(double)
24.82      1.27     0.31                             main
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Probing hardware performance

What does the hardware do?



Probing Performance behavior
 Once a hotspot is identified  determine the hardware utilization

 Performance counters allow to monitor processor events: 
 The number and kind of instructions executed 
 The data transfers executed for each cache/memory level 
 The clock speed at which the processor runs
 The power/energy consumption
 …

 likwid-perfctr (from likwid toolbox) allows easy access to performance 
events and provides useful derived metrics, e.g., main memory bandwidth or 
Flop/s or cycles/instruction 
 https://github.com/RRZE-HPC/likwid

 See separate lecture  Thomas Gruber
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Best Practices for Performance Measurement & 
Reporting
Measuring performance in a reproducible way
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Performance: Impact factors

“My code runs on an Intel Xeon Sandy Bridge processor 12 times 
faster than the results reported for code A in [xyz].”
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Performance: Impact factors
 For a given code/problem, performance may be influenced by many factors 

 For reproducibility of performance results:
 All critical factors need to be reported!
 Sensibility and stability analysis!
 Statistics – fluctuations among several runs (min/max/median)

Performance

CPU
Clock speed, SMT, 
#cores, cache size

Memory
Interface, Size, Speed

Vendor / Board

IO subsystem

Compiler
Version, Flags

OS
Parameters, 

Version, Libraries
BIOS

Settings

Libraries

gnu, Intel, pgi, 
pathscale

Atlas, mkl, 
fftw,…

SuSe, 
RedHat, 
Ubuntu,…
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Performance Measurement: Best Practices
 Preparation

 Consider to automate runs with a script (shell, python, perl)
 Reliable timing/timer granularity (minimum time which can be measured?)
 Document code generation (flags, compiler version)
 Document system state (clock frequency, turbo mode, memory, caches,…)

 Doing
 Get exclusive system
 Fix clock speed 
 Control Affinity / Topology– where does my code/threads/processes run exactly? 
 Working set size – code input parameters?!
 Is result deterministic and reproducible  Statistics: Mean, Median, Best ?? 
 Basic variations: Thread count, affinity, working set size  runtime
 Check: Are the results reasonable?
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Performance Measurement: Best Practices (cont.)
 Postprocessing

 Documentation
 Plan variations to gain more information
 Many things can be better understood if you plot them (gnuplot, xmgrace)
 Use statistics to report performance fluctuations
 Try to understand and explain the result
 Is there a (simple) model which can (qualitatively) explain the performance levels and 

variations?

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz
Memory Bandwidth 48 GB/s

do k = 1 , Nk; do j = 1, Nj
do i = 1, Ni

y(i,j,k) = const*
$               ( x(i-1,j,k) + x(i+1,j,k)
$               + x(i,j-1,k) + x(i,j+1,k)
$               + x(i,j,k-1) + x(i,j,k+1) )

enddo
enddo; enddo
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Benchmarks

Benchmarks provide insights beyond the hardware fact sheet



Benchmarks: Classification
1. Real (full) applications: Solves real world problem but includes everything and may run for hours or days on 

thousands of processors! 

2. Proxy applications or mini-apps: Small and simplified code which allows to capture relevant performance 
features of real (full) scale applications, e.g., Mantevo [1], Exascale proxy applications [2], or SPEC [3]

3. Kernels: “Small” code pieces representing single steps of (proxy) applications e.g., solvers ( LINPACK,…) 
or time-consuming computational steps ( STREAM, (sparse) matrix-vector multiplication,…). Easy to port, 
analyze and optimize. Also very popular with vendors, easy to report (everyone knows the popular ones)

4. Toy benchmarks: Small pieces of code implementing popular algorithms (e.g. quicksort). Typically used for 
getting students started with programming.

5. Synthetic benchmarks (microbenchmarks): Simulate operations and data accesses of a variety of applications 
without having any relation to the application codes 

Kernels are central for structured performance modelling!

[1] https://mantevo.github.io ; [2] https://proxyapps.exascaleproject.org ; [3] www.spec.org
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Benchmarks – HPC standard benchmarks

 STREAM  Attainable main memory bandwidth (microbenchmark)

 LINPACK  Top500 Ranking / Attainable peak performance (solver)

 HPCG  Preconditioned conjugate-gradient solver (solver)

 SPEC-HPC  Industry standard (HPC proxy app suite)
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Benchmarks: STREAM for memory bandwidth
 http://www.cs.virginia.edu/stream/
 Performs four “streaming” tests:

 Copy: A(1:N) = B(1:N)

 Scale: A(1:N) = s*B(1:N)

 Add: A(1:N) = B(1:N)+C(1:N)

 Triad: A(1:N) = B(1:N)+s*C(1:N)

 Results are reported in MByte/s (data
transfer rate)

 No changes are allowed
 Tests the attainable 

main memory bandwidth
 Stream & stream-like tests are used throughout the lecture
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Benchmarks – LINPACK: Towards Peak Performance

 Solve large dense linear system of equations, i.e.,
𝐴𝐴 𝑥𝑥 = 𝑏𝑏

 with 𝐴𝐴 is a dense 𝑁𝑁 × 𝑁𝑁 matrix

 Algorithm: LU factorization of 𝐴𝐴
(+ forward/backward substitution) with 
effort 2

3
𝑁𝑁3 + 𝛰𝛰(𝑁𝑁2)

 Highly parallel implementations are available

 Achieves high fraction of machine peak performance (see 1st lecture)

(see http://www.netlib.org/benchmark/hpl/algorithm.html)
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Benchmarks: HPCG – Something more realistic?

 HPCG: High Performance Conjugate Gradient benchmark

 Basic algorithm: Conjugate Gradient with a local symmetric Gauss-Seidel 
preconditioner

 Synthetic 3D sparse linear system (stencil-structure)

 Strong correlation with
main memory bandwidth and 
STREAM benchmark

 https://www.top500.org/hpcg/ Figure from: 
https://devblogs.nvidia.com/parallelforall/optimizing-high-

performance-conjugate-gradient-benchmark-gpus/
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