
PTfS-CAM

(Short) Introduction to the C programming language

Jan Eitzinger

History and Background
§ Procedural structured programming language
§ Static type system and lexical variable scope
§ ANSI and ISO standard (last stable release C17)
§ Many other programming languages use a C-like syntax

§ Developed in 1972 at Bell labs as part of the UNIX OS
§ Right level of abstraction for low level access to underlying machine

architecture while still providing support for portable complex software
§ Still among the most popular programming languages (TIOBE 1. place)
§ Major implementations: GCC, LLVM Clang, Intel ICC, MS Visual C++

23/04/2024PTfS-CAM: C Basics 2

23/04/2024 3PTfS-CAM: C Basics

Getting from source code to executable
§ Multiple steps required to get from source to executable (usually

wrapped by cc command)

Source
files

Compilation
unit

Assembly
file

Object
code Executable

1 PreProcessor 2 Compiler 3 Assembler 4 Linker

.c .h .s .o
.a
.so

-E -S

Compiler flag
to stop hereFile endings

by convention Libaries including
libc

23/04/2024 4PTfS-CAM: C Basics

C pre-processor
Macro pre-processor directives preceded by #
• File inclusion

#include <stdio.h>
#include "includes/stdio.h"

• Macro expansion
#define PI 3.14159
#define RADTODEG(x) ((x) * 57.29578)

• Conditional compilation
#ifdef __unix__
#include <unistd.h>
#else defined _WIN32
#include <windows.h>
#endif

Search in standard
include paths

Also search in
current directory

Enforce order of
operations:

RADTODEG(r + 1)

23/04/2024 5PTfS-CAM: C Basics

Program structure and basic syntax
§ All source code in C is contained in subroutines
§ By convention subroutines that return a value are called functions
§ The declaration prototype of a subroutine is also called its signature
§ There must be one special subroutine called main() which is the entry point for

the program

§ Higher level program structure as, e.g. modular programming, is based on
symbol naming conventions

§ Source text is free form using a semi-colon as statement terminator
§ Curly braces group blocks of statements

§ Single line comments are beginning with // This is a comment!
§ Multiline comments are enclosed in /* comment */

23/04/2024 6PTfS-CAM: C Basics

Control flow primitives (selection)
§ Conditional execution
if (<condition>) { } else if (<condition>) { } else { }

§ For loops
for (init; condition; increment) { statement(s); }

for(a = 10; a < 20; a = a + 1) {
x = x + 1;

}

§ While loops
while(condition) { statement(s); }

C allows to omit braces.
TIP: Always use braces!

23/04/2024 7PTfS-CAM: C Basics

Basic types and variable declaration/definition
Type Storage size Value range
char 1 byte -128 to 127
int 4 bytes -2,147*106 to 2,147*106

unsigned int 4 bytes 0 to 4,294,967,295
float 4 bytes 1.2E-38 to 3.4E+38
double 8 bytes 2.3E-308 to 1.7E+308

§ All variables have to be defined with a specific type
int i, j, k;
float alpha=0.23, beta= 0.99;
extern int i;

§ Variables defined inside a function or block are local
§ Variables defined outside of functions are global

Variables are initially undefined! Always
initialize ALL variables.

extern enforces a
variable declaration

23/04/2024 8PTfS-CAM: C Basics

C arithmetic and relational and logical operators
Operator Description

+ Adds two operands

- Subtracts second from first
operand

* Multiplies both operands

/ Divides numerator by de-
numerator

% Modulus Operator and remainder
of after an integer division

++ Increment operator increases the
integer value by one

-- Decrement operator decreases
the integer value by one

Operator Description

== Equal

!= Not equal

> Greater than

< Smaller than

>= Greater than or equal

<= Smaller than or equal

&& Logical AND

|| Logical OR

! Logical NOT

23/04/2024 9PTfS-CAM: C Basics

C types pitfalls and operator precendence
§ Statically typed variables but weakly enforced!
§ If the types of two operands do not match the compiler performs implicit

arithmetic type conversion
§ When mixing signed with unsigned integers both get converted to

unsigned type! TIP: Do not use unsigned integers!
§ Floating point literals are of type double. Use f suffix for float literals.

§ Within an expression, higher precedence operators will be evaluated first
Higher Lower
Postfix(()[]->++--) Unary(+-!&) Multiplicative(*/%) Additive(+-)
TIP: Always be explicit and use brackets.

23/04/2024 10PTfS-CAM: C Basics

Arrays in C
type arrayName [arraySize];

double balance[10];

§ Initializing arrays
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

§ Accessing array elements
double salary = balance[9];

§ C arrays are allocated on the stack

Array size must be
an integer constant
greater than zero!

Array indices are
always zero based!

23/04/2024 11PTfS-CAM: C Basics

Pointers
§ Memory in computers is accessed using unsigned integers (called

addresses). An address is the key to a storage cell in memory.

§ A pointer is a variable whose value is the address of another variable

§ Definition: type *var-name; e.g. double *dp_ptr;
§ Get address of a variable: double dpnum = 8.0; dp_ptr = &dpnum;
§ Access value at pointer location: double num = *dp_ptr;

Use meaningful
variable naming

0x6F4

0 1 2 3 4 5 6 7 Real memory is
addressed bytewise!

*dp: undefined
value dpnum

4

dp_ptr: holding
address of dpnum

8.0

num

8.0

23/04/2024 12PTfS-CAM: C Basics

Pointer arithmetic and square bracket notation
Interlude: Addressing modes in the X86-64 ISA
movaps [rdi + rax * 8], xmm3

You can perform computations with pointers: Pointer arithmetic!
double* A; double* B; double x; int i = 2;
B = A + i;
x = *(A + i);

Square bracket shorthand notation:
x = A[i]; is equivalent to x = *(A + i);
For performant code always use square bracket notation!

BASE + INDEX * SCALE

Reflects addressing mode:
B = A + i * 8b

Get value at A + i A void*
pointer type is

a generic
(without type)

pointer

23/04/2024 13PTfS-CAM: C Basics

Memory management
§ Dynamic memory allocation (at runtime) is provided by libc

#include <stdlib.h>

int main() {
double* A;
A = (double*) malloc(200 * sizeof(double));
// Do computations
free(A);

}

Allocate memory on heap.
Takes size in bytes as only

argument and returns void*

Operator to get storage size
of an object or type in bytes

Release memory. A must hold
the address that was returned

on allocation!

23/04/2024 14PTfS-CAM: C Basics

Structures and typedef
§ A structure is a user defined data type that allows to combine data items

of different kinds
struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

};

§ Declare variable of type struct Books
struct Books book1;

§ Access struct items with member access operator .
int id = book1.book_id;

Less clumsy way
typedef struct {
…
} Books;

Books book1;

Pointers to structs:
Books *book_ptr = &book1;

Accessing items of ptr to struct:
int id = book_ptr->book_id;

23/04/2024 15PTfS-CAM: C Basics

Subroutines (aka functions)
return_type function_name(parameter list)
{ body of the function }

Example for function definition:
int max(int num1, int num2) {
int result;
if (num1 > num2) { result = num1; } else { result = num2; }
return result;

}

For call by reference you need to pass pointers as function parameters!

Function parameters
are default passed

call by value

23/04/2024 16PTfS-CAM: C Basics

Pitfalls of call by value
void allocate_mem(double *ptr, int size){

ptr = (double*) malloc(size * sizeof(double));
}

§ Using above function
double *my_ptr = NULL;
allocate_mem(my_ptr, 1000);
double x = my_ptr[899];

§ Solution
void allocate_mem(double **ptr, int size);
allocate_mem(&my_ptr, 1000);

TIP: Always use
special NULL value
to initialize pointers!

Segmentation fault! What happened?

23/04/2024 17PTfS-CAM: C Basics

Strings and programm output
§ There is no string data type in C!
§ Strings are one-dimensional arrays of characters terminated by

a null character '\0’
char greeting[] = "Hello";

libc provides routines for IO in <stdio.h>
#include <stdio.h>
…
printf("Greeting message: %s\n", greeting);

More information on format strings:
https://en.wikipedia.org/wiki/Printf_format_string

String literal enclosed
by "" is always zero

terminated

printf format string

23/04/2024 18PTfS-CAM: C Basics

File IO
§ Opening a file
FILE *fopen(const char * filename, const char * mode);

§ Writing to file
fprintf(FILE *fp,const char *format, ...);

§ Example
#include <stdio.h>
main() {
FILE *fp;
fp = fopen("/tmp/test.txt", "w");
fprintf(fp, "This is testing for fprintf...\n");
fclose(fp);

}

printf format string

23/04/2024 19PTfS-CAM: C Basics

Command line arguments
§ Command line arguments are passed as arguments to the main routine

int main(int argc, char **argv) {
if(argc == 2) {

printf("The argument supplied is %s\n", argv[1]);
} else if(argc > 2) {

printf("Too many arguments supplied.\n");
} else {

printf("One argument expected.\n");
}

}

Number of arguments List of arguments. argv[0]
holds program name!

23/04/2024 20PTfS-CAM: C Basics

Putting it all together
§ A simple but non-trivial C example code:

§ The Bandwidth Benchmark
https://github.com/RRZE-HPC/TheBandwidthBenchmark

§ Further reading
https://www.tutorialspoint.com/cprogramming/

