
Programming Techniques for Supercomputers:
Modern processors: Single Core

Introduction
Basic technology trend / Moore‘s law
Basic concept of single core architecture

Key single core features
Pipelining
Superscalarity
SingleInstructionMultipleData

Maximum In-Core Performance
Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)
(a)Erlangen National Center for High Performance Computing
(b)Department für Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2024

Introduction
 Basic technology trend / Moore’s law
 Basic concept of core architecture
Key single core features:
 Pipelining
 Superscalarity
 SingleInstructionMultipleData
Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

April 17, 2024PTfS 2024

Introduction: Moore’s law continues – or does it not?

1965: G. Moore claimed #transistors on “microchip” doubles every 12-24 months
3

April 17, 2024PTfS 2024

Introduction: Clock speeds have saturated – long ago

Source: Stanford VLSI group

4

6PTfS 2024

Multi-core today: Intel Xeon Sapphire Rapids (2023)

§ Xeon “Sapphire Rapids” (Platinum/Gold/Silver/Bronze):
Up to 60 cores running at 1.7+ GHz
(+ “Turbo Mode” 4.8 GHz),

§ Simultaneous Multithreading
à reports as 120-way chip

§ “Intel 7” process / up to 350 W

§ Multi-die package (4 chips)

§ Clock frequency:
flexible J

April 17, 2024

https://www.techpowerup.com/292204/intel-sapphire-rapids-xeon-4-tile-mcm-annotated

Optional: “Sub-NUMA
Clustering” (SNC) mode
boot option

à One memory domain
per die

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L3

Memory Interface

Memory

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

…

April 17, 2024PTfS 2024

Intel multi-core microarchitecture code names

“Emmy” CPU

Name Introduction
Nehalem (*) Q1 / 2009
Westmere Q1 / 2010
Sandy Bridge (*) Q1 / 2012
Ivy Bridge Q3 / 2013
Haswell (*) Q3 / 2014
Broadwell Q1 / 2016
Skylake (*) Q2 / 2017
Cascade Lake Q2 / 2019
Ice Lake (*) Q2 / 2021
Sapphire Rapids Q1 / 2023

“Meggie” CPU

“Lima” CPU

RRZE / FAU systems

7

“Fritz” CPU

April 17, 2024PTfS 2024

Introduction: Trends
§ Clock speed of multicore chips will not increase

§ Power/energy saving mechanisms in hardware

 àClock speed may vary and depend on execution time parameter, e.g.
§ number of cores used

§ type of application executed

§ environment temperature

§ Increasingly expensive transistor budget is invested in
§ Execution units

§ Width of execution units

§ Cores

§ Caches

§ additional functionalities, e.g. PCIe or GPU on-chip

§ …

8

Introduction
 Basic technology trend / Moore’s law
 Basic concept of core architecture
Key single core features:
 Pipelining
 Superscalarity
 SingleInstructionMultipleData
Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

April 17, 2024PTfS 2024

Basic „stored program computer“ concept – still in use
§ Stored Program Computer”

concept (Turing 1936)

Stored-program computer

Network
CPU

Memory

Input/Output

Storage

HID

P

P P

P

§ Similar designs on all
modern systems

Flexibility!
(Still) multiple potential bottlenecks

11

12Basic Node Architecture

Stored Program Computer

C
PU

Control Unit

Execution Unit

Load-Store Unit

M
em

or
y

Program code Binary data

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58

addss
add
cmp
ja
mulpd
add

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58

1.056
1000
.label
2983
-493.98
true

Primary work Secondary work

1 Instruction execution

2 Data transfers

(c) NHR@FAU 2023

..LABEL:
 movsd xmm2, [rdi+rdx*8]
 addsd xmm1, xmm2
 inc rdx
 cmp rax, rdx
 jb ..LABEL

13Basic Node Architecture

From high level code to actual execution
for(int i=0; i<N; i++){
 sum += a[i];
}

sum in
register xmm1

N in
register rax

C
om

pi
le

r

Conditional jump to label if
loop continues

Counter increment

addsd: Add 2nd argument to 1st argument
and store result in 1st argument

Compare register
content

i in
register rdx

sizeof(double)

Load a[i] to register xmm2

&a[0]

(c) NHR@FAU 2023

April 17, 2024PTfS 2024

General-purpose (cache based) microprocessor core

Network
CPU

Memory

Input/Output

Storage

HID

P

P P

P

Modern CPU core

Instruction Cache

Data Cache “Compute node”

14

April 17, 2024PTfS 2024

Introduction: From application to microprocessor core

§ High Level Programming Language
(e.g. C / C++ / Fortran): Aplication –
portable

§ Compiler translates program to
Instruction set (architecture) (IA32,
Intel 64, AMD64 a.k.a. x86, x86_64)

§ Instruction Set Architecture (ISA):
Hardware specific

Computer

Control Unit

Mem ALU I/O

Instruction Set

Compiler

Application…
sum=0.0
do i=1, N
 sum=sum + A(i)
enddo
…

U
p to 96 x

perform
ance

15

addss xmm1, [rdi+rdx*8]
 inc. rdx
 cmp. rax, rdx

gcc –O3 code.f

April 17, 2024PTfS 2024

Introduction: Instruction Set Paradigms
§ In the beginning (60’s): Complex Instruction Set Computers (CISC) :

§ Powerful & complex instructions
§ Instruction set is close to high-level programming language
§ Variable length of instructions - Save storage!

MULT r0 * [a2] à [a1]

§ Mid 80´s: Reduced Instruction Set Computer (RISC) evolved:
§ Fixed instruction length; enables pipelining and high clock frequencies
§ Uses simple instructions, e.g., above instruction is split into at least 3 instructions:

LOAD [a2]àr1; MULT r0*r1àr2; STORE r2à[a1]

§ Nowadays: RISC processor cores
§ Almost…

Multiply content of address a2 with
register content r0
and write back to address a1

18

April 17, 2024PTfS 2024

x86 CISC/RISC hybrid
§ Current x86_64 processors (Intel, AMD): Compiler still generates CISC instructions;

but processor core is RISC-like
§ Example:

addsd xmm1, [rsi+rax*8]

xmm1: register holding floating point data
rsi, rax: register holding integer data

 à combined address calculation, LD, and ADD instruction

1. Calculate address rsi+rax*8

2. Load double value from that address

3. Add double value into register xmm1 (accumulate)

19

April 17, 2024PTfS 2024

From high level code to machine execution (CISC-style)
double sum=0.0;
for(i=0; i<N; ++i)
 sum += a[i];

&a[0]sum in register xmm1

i in
register rdx

N in
register rax

addsd: Add 2nd argument to 1st

argument and store result in 1st
argument

Co
m

pi
le

r
Jump to label if loop
continues

Register increment

Compare register content

..LABEL:
 addsd xmm1, [rdi+rdx*8]
 inc rdx
 cmp rax, rdx
 jb ..LABEL

20

April 17, 2024PTfS 2024

From high level code to macro-/microcode execution

ADD Execution unit

Instructions are mapped
to execution ports / units

ADDSD Instruction requires

LOAD Execution unit

Instructions
O

perations

Data

..LABEL:
 addsd xmm1, [rdi+rdx*8]
 inc rdx
 cmp rax, rdx
 jb ..LABEL

21

April 17, 2024PTfS 2024

Key single-core features: Pipelining

Pipelining
Most units can complete
one instruction per cycle, e.g.
MULT / ADD / LOAD /STORE

Focus on: Floating Point
Instructions/Operations

22

April 17, 2024PTfS 2024

Key single-core features: Superscalarity

Multiple execution
units/ports
(can run in parallel)

Multiple instructions
issued in parallel

Superscalarity
(“Instruction level parallelism“)

23

April 17, 2024PTfS 2024

Key single-core features: SIMD

SIMD:
Single Instruction Multiple Data
Instruction is applied to
multiple operands in parallel
(„width of execution
units/registers“)

24

Introduction
 Basic technology trend / Moore’s law
 Basic concept of core architecture
Key single core features:
 Pipelining
 Superscalarity
 SingleInstructionMultipleData
Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

April 17, 2024PTfS 2024

Pipelining of arithmetic/functional units
§ Concept:

§ Split complex instruction into several simple / fast steps (stages)
§ Each step takes the same amount of time, e.g. a single cycle
§ Execute different steps on different instructions at the same time (in parallel)

§ Benefit:
§ Pipeline can work on multiple instructions simultaneously (in parallel)
§ If pipeline is full one instruction completes every cycle à Throughput: 1 inst./cy.
§ Enables faster clock speeds (simple steps/stages)

§ Drawback:
§ Pipeline must be filled (“wind-up”) à start-up “latency” = number of stages
§ Independent instructions required à complex instruction scheduling by hardware (“out-of-order”) or compiler

(“software-pipelining”)

§ Pipelining is widely used in modern computer architectures
§ Pipelining addresses Instruction Level Parallelism

26

April 17, 2024PTfS 2024

Interlude: Possible stages for Floating Point Multiply

§ Real numbers can be represented as mantissa and exponent in a “normalized” representation, e.g.:
s*0.m * 10e with

Sign s={-1,1}
Mantissa m which does not contain 0 in leading digit
Exponent e some positive or negative integer

§ Multiply two real numbers r1*r2 = r3
r1=s1*0.m1 * 10e1 , r2=s2*0.m2 * 10e2 :

s1*0.m1 * 10e1 * s2*0.m2 * 10e2

à(s1*s2)* (0.m1*0.m2) * 10(e1+e2)

àNormalize result: s3* 0.m3 * 10e3

27

April 17, 2024PTfS 2024

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N
1

B(1)
C(1)

2

B(2)
C(2)

B(1)
C(1)

3

B(3)
C(3)

B(2)
C(2)

B(1)
C(1)

4

B(4)
C(4)

B(3)
C(3)

B(2)
C(2)

A(1)

5

B(5)
C(5)

B(4)
C(4)

B(3)
C(3)

A(2)

A(1)

6

B(6)
C(6)

B(5)
C(5)

B(4)
C(4)

B(3)
C(3)

A(2)

...

...

...

...

...

...

Cycle:

Separate
Mant. / Exp.

Mult.
Mantissa

Add.
Exponents

Normal.
Result

Insert Sign

Stage

First result is available after 5 cycles (=latency of pipeline)!
After that one instruction is completed in each cycle (N-1 cycles)!

N

B(N)
C(N)

B(N-1)
C(N-1)

B(N-2)
C(N-2)

B(N-3)
C(N-3)

A(N-4)

N+1

B(N)
C(N)

B(N-1)
C(N-1)

B(N-2)
C(N-2)

A(N-3)

N+2

B(N)
C(N)

B(N-1)
C(N-1)

A(N-2)

N+3

B(N)
C(N)

A(N-1)

N+4

B(N)
C(N)

Wind-up

Wind-down

Empty pipeline stages in Wind-up/-down phase!

28

April 17, 2024PTfS 2024

Pipelining: Latency, Throughput and Speed-Up

§ Assume m-stage pipeline (pipeline latency: m cycles), fixed clock speed and N independent
instructions to be executed

§ Speed-up of pipelined (𝑇!"!#) vs. non-pipelined (𝑇$#%) execution time

𝑇$#%
𝑇!"!#

=
𝑚 & 𝑁

𝑚 + 𝑁 − 1

§ Pipeline throughput, i.e. average instructions completed per cycle [inst./cy]:

𝑁
𝑇!"!#

=
𝑁

𝑁 +𝑚 − 1

§ Large N limits:
Speed-Up: !!!"#

!$%$" ≈ 𝑚 for 𝑁 ≫ 𝑚

Throughput: !" !$%$" ≈ 1 #$%&.
()

 for 𝑁 ≫ 𝑚

29

April 17, 2024PTfS 2024

Throughput as function of pipeline stages

m = #pipeline stages

90% pipeline
efficiency

30

April 17, 2024PTfS 2024

Efficient use of Pipelining

§ (Potential) dependencies within loop body may prevent efficient software pipelining or OOO
execution, e.g.:

Dependency:

do i=2,N
a(i) = a(i-1) + s

end do

No dependency:

do i=1,N
a(i) = a(i) + s

end do

a[5]=a[5]+sa[4]=a[4]+sa[3]=a[3]+s

a[1]=a[1]+s

a[2]=a[2]+s a[4]=a[3]+sa[3]=a[2]+s

a[1]=a[0]+s

a[2]=a[1]+s

31

April 17, 2024PTfS 2024

Pipelining: Data dependencies

§ Single core on Intel Xeon E5-2695 v3 (“Haswell”) with clock speed fixed to 2.3 GHz
(Compiler: -O3 –no-vec) – HW limit: 1 MULT instr./cy

Max. MULT
performance w/o

pipelining

Max. MULT
performance w/

pipelining

Performance
measured

32

April 17, 2024PTfS 2024

Pipelining: Data dependencies – performance model

Pipeline utilization / performance improvement by unrelated workload:

Dependency

do i=2,N
A(i) = A(i-1) * s

end do

A(4)*s

M
U

LT
 p

ip
e

Latency (MULT): 5 cy

Throughput: 1 MULT/5 cy

Clock Speed: 2.3 Gcy/s

Performance:
2.3 ∙ 109 cy/s ∙ 1 MULT / 5 cy

= 2300/5 MF/s = 460 MF/s
(with 1 MULT = 1 F)

2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s

end do

A(4)*s

B(3)*s M
U

LT
 p

ip
e

Latency (MULT): 5 cy

Throughput: 2 MULT/5 cy

Clock Speed: 2.3 Gcy/s

Performance:
2.3 ∙ 109 cy/s ∙ 2 MULT / 5 cy

= 2300 ∙ 2/5 MF/s = 920 MF/s
(with 1 MULT = 1 F)

33

April 17, 2024PTfS 2024

Pipelining: Data dependencies

§ Single core on Intel Xeon E5-2695 v3 (“Haswell”) with clock speed fixed to 2.3 GHz
(Compiler: -O3 –no-vec) – HW limit: 1 MULT instr./cy

Increasing number of
„independent dependencies“

(i.e. increasing parallel workload)
improves pipeline throughput

34

April 17, 2024PTfS 2024

Pipelining: Data dependencies

§ Single core on Intel(R) Xeon(R) Platinum 8360Y CPU with clock speed fixed to 2.0 GHz
(Compiler: -O3 –no-vec) – HW limit: 2 MULT instr./cy

35

100 10000 1000000
Data set (kB)

0

500

1000

1500

2000

P
er

fo
rm

an
ce

 [
M

F
/s

]

u=1
u=2
u=3
u=4
u=5
u=6
u=7
u=8

u=2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s

end do

Latency/depth of MULT
pipeline?

April 17, 2024PTfS 2024

Pipelining: Data dependencies

§ Single core on AMD EPYC 7543 CPU with clock speed fixed to 2.1 GHz
(Compiler: -O3 –no-vec) – HW limit: 2 MULT instr./cy

36

u=2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s

end do

Latency/depth of MULT
pipeline?

100 10000
Data set (kB)

0

500

1000

1500

2000

P
er

fo
rm

an
ce

 [
M

F
/s

]

u=1
u=2
u=3
u=4
u=5

April 17, 2024PTfS 2024

Pipelining: Resolving dependencies

§ Sometime the data dependencies are not that obvious..

§ What about “reduction operations”?

§ Data (register) dependency on sum (xmm1) à 1 F / m cy for above code! (assuming an ADD
latency of m cycles, m=3 for Intel)

§ How to enable pipelining here?

sum=0.d0
do i=1, N
 sum=sum + A(i)
enddo
…

A(i) (incl. LD)
sum in register xmm1

i (loop counter) NADD 2nd argument to 1st
argument and store result
in 1st argument

..LABEL:
 addsd xmm1, [rdi+rdx*8]
 inc rdx
 cmp rax, rdx
 jb ..LABEL

37

April 17, 2024PTfS 2024

Pipelining: Resolving dependencies

§ Increase pipeline utilization by “loop unrolling”

sum=0.d0
do i=1, N
 sum=sum+A(i)
enddo

“2-way Modulo Variable Expansion” (we assume that N is even)

sum1=0.d0
sum2=0.d0
do i=1, N, 2
 sum1=sum1+A(i)
 sum2=sum2+A(i+1)
enddo
sum = sum1 + sum2

sum+=
A(4)

sum2
+=A(4)

sum1
+=A(3)

38

April 17, 2024PTfS 2024

Pipelining: Resolving dependencies

§ m-way Modulo Variable Expansion (MVE) to get best performance!
§ Sum is split up in m independent partial sums
§ Optimal for Intel ADD: 3-way MVE

Nr=3*(N/3)
sum1=0.d0
sum2=0.d0
sum3=0.d0
do i=1, Nr, 3
 sum1=sum1+A(i)
 sum2=sum2+A(i+1)
 sum3=sum3+A(i+2)
enddo
do i=Nr+1, N
 sum1=sum1+A(i)
enddo
sum=sum1+sum2+sum3

R
em

ai
nd

er

lo
op

39

April 17, 2024PTfS 2024

Pipelining: Resolving dependencies

§ Compiler can do that, if it is allowed to do so…
§ High optimization levels
§ Compiler prefers powers of 2 for unrolling

§ Reason: Computer’s floating point arithmetic is not associative!

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒) + 𝑓 ≠ 𝑎 + 𝑏 + 𝑐 + 𝑑 + (𝑒 + 𝑓)

§ If you require binary exact results (-fp-model strict for Intel) the compiler is not allowed to do
this transformation

§ Beware additional latency due to reduction at the end
§ Final sum cannot be pipelined
§ High unrolling factor leads to high overhead
§ High unrolling may lead to register shortage

40

April 17, 2024PTfS 2024

Pipelining: Available resources in modern CPUs
§ Typical number of pipeline stages on modern cores:

§ 2-5 for most (important) hardware pipelines: LoaD; STore; MULT; ADD; FMA
§ >>10 for other floating point pipelines: DIVide/SQuareRooT
§ Many other other piplined ALUs, e.g. integer arithmetic, logical, shift, branch, address generation

§ Most “older” x86 cores (AMD, Intel):
§ 1 MULT & 1 ADD floating point unit per processor core
à Max. 1 MULT & 1 ADD instruction per cycle

§ Latest Intel (Haswell, Broadwell, Skylake) & AMD (Zen+) cores:
1 (AMD) or 2 Floating Point Fused MultiplyAdd (FMA) floating point units
§ FMA3 instruction: s=s+a*b à 1 Input register (s) is overwritten
§ FMA4 instruction: s=r+a*b à No input register is modified
§ Typically 2 (1) FMA instruction per cycle for Intel (AMD) processors
§ On Intel: Per cycle up to 2 MULT or ADD instructions

41

April 17, 2024PTfS 2024

Costs of arithmetic instructions: Intel Skylake processors

§ Consequence: Avoid expensive instructions in hot spots!
§ Other expensive math (transcendental, log,…) is done in libraries

Instruction Latency
[cy/instruction]

Max. throughput
[instructions/cy]

ADD DP (SP) 4 (4) 2 (2)
MULT DP (SP) 4 (4) 2 (2)
FMA DP (SP) 4 (4) 2 (2)
SQRT DP (sqrtsd) 26 1/12 = 0.08
SQRT SP (sqrtss) 20 1/6 = 0.16
DIV DP (divsd) 14 1/4 = 0.25

Pr
oc

es
so

r (
sc

al
ar

)
in

st
ru

ct
io

ns

Latency [cy/instruction]
Depth of pipeline, i.e. cycles to execute
a single instruction (worst case)

Throughput [instruction/cy]
Cycles per instruction if pipeline is full
(best case: 2 instruction/cy – 2 HW units)

42

April 17, 2024PTfS 2024

Pipelining: The Instruction pipeline

§ Besides arithmetic & functional units, instruction execution itself is pipelined also, e.g.: one
instruction performs at least 3 steps:

Fetch Instruction
from L1I

Decode
instruction

Execute
Instruction

§ Hardware Pipelining on processor (all units can run concurrently):
Fetch Instruction 1

from L1I
Decode

Instruction 1
Execute

Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

t

…
§ Non-predictable branches can stall this pipeline!

§ Hardware can predict conditional branches w/ high accuracy
§ Each unit is pipelined itself (cf. Execute=Multiply Pipeline)

1

2

3

4

43

April 17, 2024PTfS 2024

Pipelining: The Instruction pipeline
§ Problem: Unpredictable branches to other instructions

Fetch Instruction 1
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

t

…

1

2

3

4

Assume: Result
determines next

instruction!

44

April 17, 2024PTfS 2024

Pipelining summary

§ Pipelining tries to achieve
§ Maximum instruction throughput (1 instr/cy in many cases)
§ Hiding of instruction latency

§ Prerequisites
§ Independent instructions
§ A lot of independent instructions for maximum efficiency (𝑁 ≫ 𝑚)
§ Highest benefit if code & data are close to the core (L1 instr./data cache)
§ Conditional branches must be correctly predicted by hardware

§ Drawbacks
§ Pipeline must be filled à inefficient for N ≲ 𝑚
§ Dependencies between pipelines may increase effective depth (see tutorial)
§ Unresolvable data dependencies are hazardous

45

Introduction
 Basic technology trend / Moore’s law
 Basic concept of core architecture
Key single core features:
 Pipelining
 Superscalarity
 SingleInstructionMultipleData
Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

April 17, 2024PTfS 2024

Superscalar Processors
§ Superscalar processors provide additional hardware (i.e. transistors) to execute multiple instructions

per cycle!
 à Exploit Instrucion Level Parallelism (ILP)

§ Parallel hardware components / pipelines are available to
§ fetch / decode / issues multiple instructions per cycle

(typically 3 – 8 per cycle)
§ perform multiple integer / address calculations per cycle
§ perform multiple load (store) multiple instructions per cycle

(e.g. one LD and one ST per cycle)
§ perform multiple floating point (FP) instructions per cycle

(e.g., 2 floating point instructions/cycle, e.g. 1 MULT + 1 ADD)

§ “Parallelization of instruction stream” required

§ Performance metrics quantifying superscalarity: Instructions Per Cycle: IPC
Cycles Per Instruction: CPI

47

PTfS 2024

Superscalar Processors – Instruction Level Parallelism

§ Issuing m concurrent instructions per cycle:
“m-way superscalar”

§ Modern processors are 3- to 8-way superscalar
& perform 2 or 4 FP instructions per cycles

Fetch Instruction 4
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 3
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 2
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 1
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 5
from L1I

Decode
Instruction 5

Decode
Instruction 9

Execute
Instruction 5

Fetch Instruction 9
from L1I

Fetch Instruction 13
from L1I

4-way
„superscalar“

t

t

April 17, 2024 48

April 17, 2024PTfS 2024

Multiple pipelines at work: Interleaving instructions

§ Example:

Simple Pseudo Code:
loop: load r1, a[i]
 mult r1 = c, r1
 store a[i], r1
 branch.loop

Fortran Code:
do i=1,N

a(i) = a(i) * c
end do

load r1, a[i] Load operand to register (4 cycles)
mult r1 = c,r1 Multiply a(i) with c (2 cycles); a[i],c in registers
store a[i], r1 Store result from register to mem./cache (2 cycles)
branch.loop Increase loop counter as long as i less or equal N (0 cycles)

Assumed
Latencies

§ Dependencies on r1
§ within one iteration
§ across iterations

49

April 17, 2024PTfS 2024

Superscalar & Pipelined Execution

Naive instruction issue
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8
Cycle 9
Cycle 10
Cycle 11
Cycle 12
Cycle 13
Cycle 14
Cycle 15
Cycle 16
Cycle 17
Cycle 18
Cycle 19

load a[1]

mult a[1]=c,a[1]

store a[1]

load a[2]

mult a[2]=c,a[2]

store a[2]

load a[3]

a[i]=a[i]*c; N=12

Instruction executed „in-order“

Total execution time:

T= 12 * (4+2+2) cy = 96 cy

IPC = 3/8 instr./cy
CPI = 8/3 cy/instr.

No pipelining and superscalarity!

tim
e

Simple Pseudo Code:
loop: load a[i]
 mult a[i] = c, a[i]
 store a[i]
 branch.loop

50

April 17, 2024PTfS 2024

Superscalar & Pipelined Execution
a[i]=a[i]*c; N=12

T= 19 cycles

load a[1]
load a[2]
load a[3]
load a[4]
load a[5] mult a[1]=c,a[1]
load a[6] mult a[2]=c,a[2]
load a[7] mult a[3]=c,a[3] store a[1]
load a[8] mult a[4]=c,a[4] store a[2]
load a[9] mult a[5]=c,a[5] store a[3]
load a[10] mult a[6]=c,a[6] store a[4]
load a[11] mult a[7]=c,a[7] store a[5]
load a[12] mult a[8]=c,a[8] store a[6]

mult a[9]=c,a[9] store a[7]
mult a[10]=c,a[10] store a[8]
mult a[11]=c,a[11] store a[9]
mult a[12]=c,a[12] store a[10]

store a[11]
store a[12]

Optimized instruction issue

tim
e

pr
ol

og
ue

ep
ilo

gu
e

ke
rn
el

IPC=3 instr./cy
CPI=0.33 cy/instr.

Simple Pseudo Code:
loop: load a[i]
 mult a[i] = c, a[i]
 store a[i]
 branch.loop

Assumptions:
§ LD/MULT/ST can be executed in

parallel!
§ Instructions are perfectly reordered

but dependecies (within loop
iteration) are maintained!

§ Register renaming required

Kernel:
Full pipelining and high superscalarity!

LD latency

MULT latency

51

§ Dynamic reordering of instructions at runtime
§ Done by the hardware
§ Out-of-order (OOO) execution
§ Instructions are executed when operands are

available

§ All modern general-purpose CPUs do this

April 17, 2024PTfS 2024

Reordering the instruction stream: Two options

§ Software pipelining
§ Done by the compiler
§ Compiler reorders instructions
§ Requires deep insight into application (data

dependencies) and processor (latencies of
functional units)

§ Required on “in-order” architectures
§ Rarely used today (see right)

<… prologue …>
kernel: load a[i+6]
 mult a[i+2] = c, a[i+2]
 store a[i]
 branch à kernel
<… epilogue …>

52

April 17, 2024PTfS 2024

Register renaming

§ Prerequisite for good OoO execution: “Bogus” register dependencies can be resolved
§ Hardware has “shadow registers” it can use to store intermediate values that are already “officially”

overwritten

§ Solution: Hardware assigns a new register with the same name as soon as the old value gets
overwritten

§ “Shadow copy” lives as long as necessary
§ Until no instructions in flight reference the register any more

for(int i=1; i<n; ++i)
 a[i] = a[i] + s;

LOOP:
 LOAD r1 = a[i]
 ADD r1 = r1+r2
 STORE a[i] = r1
 i++
 i<n ? BRANCH : EXIT

This looks like a
dependency: How can
iterations overlap if they
need the same register r1?

53

April 17, 2024PTfS 2024

Superscalar processors
Intel processors – qualitative view (“Intel Sandy Bridge”)

Max. of 4 instr./cycle can
be decoded à CPI ≥ 0.25

FP MULT & FP ADD
can run in parallel

3 LD/ST units

2 memory instr.
Concurrently

(AGU)

Execution ports map
decoded instruction
to execution units

54

