
Programming Techniques for Supercomputers Tutorial

Erlangen National High Performance Computing Center

Department of Computer Science

FAU Erlangen-Nürnberg

Sommersemester 2024

2024-05-02PTfS 2024 Tutorial - Assignment 0

Assignment 0 – Task 1
§ Number of cycles to execute one loop iteration:

𝑐 = !
"×𝑓

#$
%&. =

(
%&.×

#$
(,

where 𝑓 is the clock speed, 𝑛 is the number of slices, and 𝑇 is the runtime of the whole loop.

§ Compilation:

$ module load intel
$ icx –O3 –xHost div.c timing.c

§ Important: Fix clock speed when running binary:

$ srun --cpu-freq=2400000-2400000 ./a.out

2

2024-05-02PTfS 2024 Tutorial - Assignment 0

Assignment 0 – Task 1
§ Code

§ Run:
$ srun --cpu-freq=2400000-2400000 ./a.out
Pi=3.141592653589493 in 1.255 s -> 3.01 cy/it

3

#include <stdio.h>
#include “timing.h”

int main (int argc, char**argv) {
double f = 2.4e9; // clock frequency in cy/s
int n = 1000000000; // # of slices
double delta_x = 1./n,x,sum=0.,wcs,wce,Pi;
wcs = getTimeStamp();
for (int i=0; i < n; i++) {

x = (i+0.5)*delta_x;
sum += 4.0 * sqrt(1.0 - x * x));

}
wce = getTimeStamp(); // T = wce-wcs
Pi = sum * delta_x;
printf(“Pi=%.15lf in %.3lf s -> %.2lf cy/it\n”,Pi,wce-wcs,(wce-wcs)/n*f);
return 0;

}

2024-05-02PTfS 2024 Tutorial - Assignment 0

Assignment 0 – Task 2
§ Loop body:

à 7 flops (2 ADD, 1 SUB, 3 MULT, 1 SQRT). Or not???

§ Possible performance metrics
§ Flop/s à not portable

§ compiler might transform code

§ intàfloat conversion might count or not

§ SQRT might not even be an instruction but comprise several flops

§ 1/𝑇 à Usually OK but varies with loop length in a trivial way

§ 𝑛/𝑇 à probably best metric overall in this case (it/s, it/cy)

§ Code performance: 𝑃 ≈ 0.33	it/cy

4

x = (i+0.5)*delta_x;
sum += 4.0 * sqrt(1.0 - x * x));

2024-05-02PTfS 2024 Tutorial - Assignment 0

Assignment 0 – Task 3
§ Single precision code:

§ Take care to use “f” qualifier for all float constants
§ Language has strict rules about type conversion
§ Compiler may be forced to generate code with runtime conversions for inconsistent types

5

double f = 2.4e9; // clock frequency in cy/s
int n = 1000000000; // # of slices
float delta_x = 1.f/n,x,sum=0.f,wcs,wce,Pi;
wcs = getTimeStamp();
for (int i=0; i < n; i++) {

x = (i+0.5f)*delta_x;
sum += 4.0f * sqrtf(1.0f - x * x));

}
wce = getTimeStamp(); // T = wce-wcs
Pi = sum * delta_x;
printf(“Pi=%.7f in %.3lf s -> %.2lf cy/it\n”,Pi,wce-wcs,(wce-wcs)/n*f);

2024-05-02PTfS 2024 Tutorial - Assignment 0

Assignment 0 – Task 3
§ Result

$ srun --cpu-freq=2400000-2400000 ./a.out
Pi=2.1474836 in 0.318 s -> 0.76 cy/it

§ 4 times faster than DP code
à SP SQRT appears to be much faster than DP

§ Result is not at all 𝜋
§ Summing 109 numbers, all between 1 and 0
§ Float type has only ~7 mantissa digits

à Massive loss of accuracy as soon as the sum gets > 107

à Sum is much too small

6

2024-05-02PTfS 2024 Tutorial - Assignment 0

Assignment 0 – Task 4
§ Not fixing the clock frequency but using the performance governor:

$ srun --cpu-freq=performance ./a.out
0.860 s instead of 1.255 s

à so the actual clock frequency is

!.#$$
%.&'%

×2.4	GHz ≈ 3.5 GHz

7

