Friedrich-Alexander-Universitat

FAU Erlangen-Nirnberg

Programming Techniques for Supercomputers:
Modern processors

Architecture of the memory hierarchy

| Ao |
| 2 |

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

N
O

Data access < -2 locality

Cache management

DRAM gap

DP peak performance and peak main memory bandwidth
for a single Intel processor (chip)

- Cascade L. 2.4 .
- | @@ Peak Bandwidth Skylake 2.1 i
1of | @@ Peak Flops _ AppI’OX.
; Haswell 2.3 Broadwell 2.2 é 20 F/B
- Ivy Bridge 2.7 lce Lake 2.6 -
i Sandy Bridge 2.9 7
o 10°F = _ .
m f | E Main memory access speed not sufficient
= i Wesimere 2.93] to keep CPU busy...
0 i I Nehalem 3.2)
8 10°F =
g Ip D36 :
LL : entium . i . . .
S t 54171 - - Fast on-chip caches, holding copies of
, [_ S recently used data items
10°F p3g3z | Multicore E
— I -
C | .
N , §
2 P200 _single core | Caches run at CPU clock - 5x-10x faster
L I N N U R S S NN S R S EE S B than memory

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

https://github.com/RRZE-HPC/TheBandwidthBenchmark/wiki/Memory-Wall

PTfS 2024 May 6, 2024 3

Schematic view of modern memory hierarchy & cache logic

CPU issues a LOAD instruction . . ¢

Requests innermost cache to o

transfer a data item to a register Main memory Application data
\ _ -

Cache logic automatically Che.cks “DRAM gap" 15— 30 GB/s

all cache levels whether data item L

is already in cache.

If data item is in cache (“cache hit”) |
it is loaded to the register. : L1 cache

Regisiers P I

|

Arithmetic units l
\ / : Computation

|

If data item is in no cache level
(“cache miss”) data item is loaded
from main memory and a copy is
held in cache.

PTfS 2024 May 6, 2024

Memory hierarchies: A model for effective bandwidth

Hardware: Quantities to characterize the quality of a memory hierarchy:

Latency (T;) [s]: Set up time for data transfer from source (e.g., main memory or
caches) to destination (e.g., registers)

Bandwidth (b) [B/s]: Maximum amount of data per second which can be transferred
between source (e.g., main memory or caches) and destination (e.g., registers)

Application: Transfer time (T) and effective bandwidth (b.rr) depend on
data volume (V) to be transferred:

. V ' 1
Transfer time: T=T;+ > sHockney's Model

Effective bandwidth: b = 7 = T,+VV/
b

“Low” data volume (V - 0): berr = 0
“Large” data volume (% >> Tl): befr = b

PTfS 2024 May 6, 2024 5

Memory hierarchies: A model for effective bandwidth

I | Illlllllllll I LI IIIIIIIIIIII I | Illlllllllll I LA

double BW

<

berr =

=
|
<<
—
besr
Data transfer rate
|

half latency

| 11 llllllllllll | |- lllllllIlIlI | | - lIIllIIIlIlI

Amount of data V

PTfS 2024 May 6, 2024

Latency and bandwidth in modern computer environments

ns .
2T 10° 11— 10
Inner cache [_ —T7 256
20 —— 10—8 I - —1— 128
— High bandwidth mem.
" - T 64
aRIA —— 10
200 —— 107 —— T\ Outer cache —— 32
\ f
_l Y 1
E \ / 16
HS 5000 | \ o /L
106 —— ain memory | g
cycles - \ HPC networks |7
@23GHz 105 —}—+- |\
7 bytes/cy
1 \ @2.3 GHZ
ot | 10Gbit Ethernet ~\ .
g IIII\\ 1o g'\
|II'
ms | Solid state disk 1 GB/s
103 —— \
}ﬁ\ ‘L{ Gigabit Ethernet *\
10’2 1 \\ C —}— 108
\ s
\ Local hard disk
1007 —— |'
Internet |
| 1 107
Latency Bandwidth
[sec] [bytes/sec]

PTfS 2024 May 6, 2024

Memory hierarchies: The latency problem

Main memory latency and bandwidth for modern multicore CPUs:

T, =64ns & b =64GB/s y o V__ ¥
eff T T, + V/b
64 ns 0.125 ns 64.125 ns 0.13 GB/s
128 B 64 ns 2 NS 66 ns 1.9 GB/s
4096 B 64 ns 64 ns 128 ns 32 GB/s

—> Data access is organized in cache lines (CL) — always full cache line is transferred
(V =64 B orV = 128 B on modern architectures)

— Multiple CLs must be loaded concurrently
- Multiple data requests by application code — “non-blocking loads”
-~ Automatic hardware prefetching

PTfS 2024 May 6, 2024

Memory hierarchies: Cache lines

If one data item is loaded from main memory (“cache miss”), whole cache line it belongs to is loaded

Cache lines are contiguous in main memory, i.e. “neighboring” items can then be used from cache

Iteration do i=1,n

v
=+

s = s + a(i)*a(i)
Use data enddo

W) Cache miss: T

Use data

Use data

LD Use data

‘ Use data

- »

h . LD Use data

oo ~ o O A W N —

LD Use

PTfS 2024 May 6, 2024 9

Memory hierarchies: (Automatic) Prefetching

Prefetching data to hide memory latencies of CL transfers

lteration

oo ~ ™ O A W N -~

M%) Cachemiss:T; [V /b

Use data

LD

Use data

v

PF

LD

Useldata

LD Use data

/

Data transfer is started
before cache miss
- Prefetching (PF)

—

do i=1,n
s = s + a(i)*a(i)
enddo

n

» LD Use data

LD Use

PTfS 2024

May 6, 2024

10

Memory hierarchies: Hiding latency by concurrent PFs/LDs

How many concurrent prefetches (or LDs) are required to
hide the latency (T;) and eploit the full main memory bandwidth (b) ?

Loading (LD) one cache line (VV Bytes) requires total time

T—T+V
=T+ 5

Memory interface: Ve A N Memory interface:
|dle . In use
T, V/b

How many concurrent/outstanding PFs (or LDs) () are required to keep main memory interface

busy for time? T

A
s N
P = VL = 1 + J—L] Tl V/b .

/b /b Tl V/b
T, V/b
T, | v/b
T, v/b |

PTfS 2024 May 6, 2024

Memory hierarchies: Hiding latency by concurrent PFs/LDs

Example: CPU@2 GHz

Cache line size 64 B 2> V = 64B

Cache: T, =8cy&bh=32B/cy > P=14+—2 =5

ot B/32 B/cy
—> To hide latency, 5 PF/load operations must be active concurrently

64 cy — 17

Main memory. T, = 64cy &b =16 B/cy 2 P =1+

64 B
/16 B/cy

—>To hide latency, 17 PF/load operations must be active concurrently

—->This is 17°64 B = 1088 B (approx. 1 kB) of data ,in-flight"

PTfS 2024 May 6, 2024 12

Memory Hierarchies: Prefetching — Hide memory latency

Prefetch (PFT) instructions (limited use on modern architectures):
Transfer one cache line from memory to cache and then issue LD to registers

Most architectures (Intel/AMD x86, IBM Power) use
hardware-based automatic prefetch mechanisms

HW detects regular, consecutive memory access patterns (streams) and prefetches at will

Intel x86: Adjacent cache line prefetch loads 2 (64-byte) cache lines on L3 miss - Effectively
doubles line length on loads (typical. enabled in BIOS)

Intel x86: Hardware prefetcher:
Prefetches complete page (4 KB) if 2 successive CLs in this page are accessed

Regular data access with long loops: Main memory latency is not an issue!
Excessive data transfers for irregular access pattern or short consecutive loops

PTfS 2024 May 6, 2024 13

Memory Hierarchies: How to determine max. bandwidth from specifications

Intel® Xeon® Gold 6148 Processor

(see https://ark.intel.com/content/www/us/en/ark/products/120489/intel-xeon-gold-6148-processor-27-5m-cache-2-40-ghz.html)

Memory Specifications

Max Memory Size (dependent on memory type) ? 768 GB

Memory Types 7 DDR4-2666

Maximum Memory Speed 2666 MHz 4/ fMEM

Max # of Memory Channels ? 6

ECC Memory Supported ¥ 7 Yes \ #Channels

Theoretical bandwidth of DDRx configuration:

bpeax = #Channels X fypyx 8

cycle
For above configuration we get:
Mcycle B MB GB
bpeak = 6 X 2,666 X 8 = 127,968 — = 128 —
S cycle S S

PTfS 2024 May 6, 2024

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

N
O

Caches — basics

Cache management

Memory Hierarchies: Cache line €< Spatial access locality

Cache line features
Cache line use is optimal for contiguous access (“stride 1”) > STREAMING
Non-consecutive access reduces performance

Access with wrong stride (e.g. cache line size) can lead to disastrous performance breakdown
Typical CL sizes: 64 Byte (AMD/Intel) or 128 Byte (IBM)

“Spatial locality”: Ensure accesses to “neighboring” data items

GOOD (“Streaming”) BAD (“Strided”)
do i=1,n do i=1,n,2

s = s + a(i)*a(i) s = s + a(i)*a(i)
enddo enddo

If a(1:n) is loaded from main memory: ~same runtime!

- Performance of strided loop is half of the continuous one

PTfS 2024 May 6, 2024

16

Memory Hierarchies: Spatial access locality & Data Layout

How to traverse multidimensional arrays?!

Example: Initialize matrix A with A(i,j) = i*]

What is the storage order of multidimensional-data structure?
It depends, e.g. 2-dimensional 3x3 array A of doubles

FORTRAN: column by column (,column major order®)

0B Memory layout /1B
A(1,1) | A(2,1) [A(3,1) | A(1,2) | A(2,2) | A(3,2) | A(1,3) | A(2,3) | A(3,3)
C/C++: row by row (,row major order")
0B Memory layout /1B
A[O][O0] [A[O0][1] [Aa[O][2] | A[1][O0] | A[1][1] | A[1][2] | A[2][0] | A[2][1] | A[2][2]

PTfS 2024

May 6, 2024

17

Memory Hierarchies: Spatial access locality & Data Layout

Default layout for FORTRAN: column by column (column major order)

do i=1,n
do j=1,n
a(j,i)=1*j

enddo
enddo Continuous access!

()

=

()

e

S L

QS do j=1,n

— do i=1,n

a(j,i)=i*j

enddo

enddo Stride n access!

FORTRAN: Inner loop must access innermost/left array index

PTfS 2024 May 6, 2024

18

Memory Hierarchies: Spatial access locality & Data Layout

Default layout for C/C++: row by row (row major order)

1 cache line for (i=0; i<N; ++i) {
HIUJIUIH[U][HHW][ZJ [0] (3] [0] [4] for(3=0; J<N; ++j) {
ali] [J] = 1*3];

}
} Continuous access! @

for (j=0; J<N; ++3) {
for (i=0; i<N; ++i) {
afi]l [j] = 1i*]>;

[1] o]

[3]110]

ol
oo
il
Mo
HeHH

}
[<d1[0] [41[1] [41[2] [413] [41 (4] -
)')‘ } Stride N access!

In C: Inner loop must access outermost/rightmost array index

PTfS 2024 May 6, 2024

19

Memory Hierarchies: Spatial access locality & Data Layout

= 3-dimensional arrays in C/C++

for (i=0; i<N; ++i) { for (k=0; k<N; ++k) {
for (j=0; j<N; ++3j) { for (j=0; j<N; ++3j) {
for (k=0; k<N; ++k) { for (i=0; i<N; ++i) {
ali][J]1[k] = 1*j*k; ali][J]1[k] = 1i*j*k;

} }
} . ' }
} Continuous access! } Stride N*N access!

C/C++: Always start with rightmost index as inner loop
index — if possible!
for (i=0; i<N; ++i) {
| for (j=0; Jj<N; ++3j) {
Sometimes there are problems.... a[il[3j] = b[j]l[i];

(spatial blocking may improve \ }
the situation here)

PTfS 2024 May 6, 2024

20

Memory Hierarchies: Data reuse — Temporal access locality

Efficient reuse of caches requires some “locality of reference”, i.e. a data item
loaded to register/cache needs to be reused several times “soon” before it gets old
-> “temporal locality”

E(1:N)=Z(1:N)+A(1:N)*C(1:N)

% A(1:N)=B(1l:N)+Z(1:N) DO I =1,N

o2 A(I) = B(I)+Z(I)

L C(1:N)=C(1:N)*Z(1:N) S C(I) = C(I)*z(I)

"E’ E(I) = Z(I)4A(I)*C(I)
%

(7))

<

S

Locality of
reference increased

Instead of reloadin a from main memory (left),
several accesses are served (right) by inner most cache or by register

PTfS 2024 May 6, 2024 21

Memory hierarchies: Temporal access locality

Temporal locality: If data is already in cache - reuse it from there!
Example: Dense matrix vector multiplication (assume that cache is large enough to hold y (1:R))

tmp stays in register in inner loop

x (c) stays
A(r,c) In register
$ doc=1,
v tmp=x (c)
dor=1, R
y(r)=y(r) + A(r,c)* tmp
eriddo
ddo

v (1:R) IS
loaded C times
—> Temporal locality for C-1 accesses

A (,) :continuous access
- Spatial locality

PTfS 2024 May 6, 2024

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

N
-

Caches — basics

Data access <—> locality

Memory Hierarchy: Cache management — Basics

Size of caches (KB, MB) much smaller than main memory size (GB)

If cache is full “data items” need to be replaced when new data comes in
Transfer granularity

Replacement based on “age” of cache line €<—-> Last access time

Cache lines get “old” if they are not accessed for some time

Which “old” cache line to replace? (“Replacement policy”)

Least recently used (LRU) — Not recently used (NRU) — (Random)

Important question: How is the pairing/mapping of memory addresses to cache
locations?

PTfS 2024 May 6, 2024

26

Memory Hierarchies: Cache Mapping

Cache Mapping

Pairing of memory addresses with cache locations (L1103Cg$[§

Where is the CL to given memory addressed

placed in the cache? L2 Cache
(~106 Byte)

Memory address (32 Bit):
011100100000 11110100111110 001111

_ _ Memory
Why (simple) strategies? (~10° Byte)

Hardware needs to search for data in cache, e.g.
is requested data in cache (hit or miss)?
If it is in cache — where is it?
If new data comes in — where is the old data to override

Each CL has a Cache Tag: Holds status information of CL (not visible to programmer)

PTfS 2024 May 6, 2024 27

Memory Hierarchies: Cache Mapping — direct mapping

= Directly Mapped caches =2
each CL can only be mapped to L1 3Cache _
one location in each cache (~10° Byte)

o L2 Cache
= |f cache size is 1 MB choose (~106 Byte)

“lowest” 20 bits of memory address
as cache address

Memory address 32 Bit: Memory

011100100000 |MAMOAOOIAMAN0| 001117 (~10° Byte)

= Remember: Each'data transfer is on CL basis, e.g. 64 B - lowest 6 Bits address bytes within CL,
which is ped to a specific set in cache

= Bit 6-19: This identifies the location (“cache set”) to which the CL is mapped in our 1 MB direct
mapped cache

= Bit 20-31: This is information is stored in “Cache Tag”

PTfS 2024 May 6, 2024

Memory Hierarchies: Cache Mapping — Directly Mapped

0 1 2 N-1
N N+1 N+2 M 2N-1
emory
7 \1
\\ Cache

Example: Directly mapped cache. Each memory location/cache line can be mapped to one cache
location/cache set only.

E.g. Size of main memory= 64 GByte; Cache Size= 64 KB; CL=64 B
= 10° are Cache Lines mapped to the same cache location/set

PTfS 2024 May 6, 2024

Memory Hierarchies: Cache Mapping — direct mapping

Advantages:

Easy to implement
Fast / low latency
No penalty for stride 1 accesses (streaming)

Disadvantages:
No flexibility = High chances of early evicts
Large stride accesses can substantially reduce the available cache size

Rarely seen in real world processors

Provide more flexibility: m-way set associative caches

PTfS 2024 May 6, 2024

30

Memory Hierarchies: Cache Mapping — Associative Caches

Set-associative cache:

m-way associative cache of size m x n: each memory location i can be mapped to the m cache
locations (“ways”) i = j*n + mod(i,n) ; j=0..m-1
E.g.: 2-way set associative cache of size 1 Mbytes = 1024 KB (Addresses: 0,..,20%20-1 - 20 Bit):

“Way” -7 1 512 KB
‘ 512KB+1 €CachelLine> 1024 KB
i S T g Address within cache
Number of sets: Cache size/ CacheLine size / m N . — line
Example: 1024 KB/ 64 Byte / 2 = 8192 sets
Memory address (32 Bit): 011100100000111 10100111110/001111
.. 13 Bits 6 Bits
Modern processors: 4-way to 48-way associative caches o....2%-1 0.... 061

Which way (j) is used within set: Age of data in the ways

PTfS 2024 May 6, 2024

31

Memory hierarchies: Cache Mapping — Associative Caches

0 1 2 . N-1

N N+1 N+2 2N-1

Memory
71

Cache

Example: 2-way associative cache. Each memory location can be mapped to two cache locations
(“ways”) within the same set:

Size of main memory= 64 GByte; Cache Size= 64 KB; CL = 64 B
-2 2*10° Cache Lines are mapped to two cache locations / ways within a set

PTfS 2024 May 6, 2024

Memory hierarchies: Pitfalls & Problems

If many memory locations are used that are mapped to same set, cache reuse can be very limited
even with m-way associative caches

Warning: Using powers of 2 in the leading array dimensions of multi-dimensional arrays should be
avoided! (CaChe ThraShmg) double precision A(16384,16384)

011100100000111 10100111110 001111 A(N, 1) Cache: 256 KB — 2 way assoz.
+ 000000000000001 00000000000000000

16384*8B=2"" " 111100100001000 10100111110 004444 A(1:8,2)

+ (000000000000001 00000000000000000 218 B /2082 Sets = 2" Sets
011100100001001 10100111110 001111 A(1:8,3)

CL=64B > 2B

If cache / m-ways are full and new data comes in from main memory, data in cache (full cache line)
must be invalidated or written back

Ensure spatial and temporal data locality for data access!

PTfS 2024 May 6, 2024 33

Memory hierarchies: Cache thrashing - Example

Example: 2D — square lattice at each lattice point the 4 velocities for each of the 4 directions are stored

0]

q
)

N=16
real*8 vel(1:N , 1:N, 4)

do i=1,N
s=s+vel(i,]j,1l)-vel(i,j,2)+vel(1i,]j,3)-vel(i,],h 4)
enddo
enddo

PTfS 2024 May 6, 2024 34

Memory hierarchies: Cache thrashing - Example

Memory to cache mapping forvel (1:16, 1:16, 4)
Cache: 256 byte (=32 double) / 2-way associative / Cache line size=32 byte

1,1,112,1,1

3,1,1

4,11]....

1 12[z12]a.121012]... (REIERE RIS R

214

3,14

4,14

1,11 Z1Ak&1ﬂ 4,11

Vel(1:16,1:16,1)

Vel(1:16,1:16,2)

Vel (1:16,1:16,3)

Cache:

2 ways

4|31.4]4,1,4 Vel(1:16,1:16,4)

}L1A}Z1A}&1A}41A\

with 16 double each

Each cache line must be loaded 4 times from main memory to cache!

PTfS 2024

May 6, 2024

Memory hierarchies: Cache thrashing - Example

Memory to cache mapping for vel (1:18, 1:18, 4)
Cache: 256 byte (=32 doubles) / 2-way associative / Cache line size=32 byte

EEIEKEIERRICKRINN - - :> 2\ 2)00 o (R
el P el PYPIY PPN P |

Cache:

2 way

1,1,4(2,1,4(3,1,4(4,1,4

1,1,1

211

3,1,114,1,1 1,1,4

2,14

3,1,4

4,14

with 16 doubles

each

Each cache line needs only be loaded once from memory to cache!

PTfS 2024

May 6, 2024

Memory hierarchies: Cache management details — states

Handling of cached data to be replaced depends on the “cache line state”

Basic “states” of cache line in cache:

NOT MODIFIED: Valid copy in lower cache levels/main memory - Cache line
may be overwritten with new data or copied back to lower cache levels (see

later: inclusive vs exclusive)

MODIFIED: Cache line has been modified and other copies in caches/main
memory are invalid - Cache line needs to be evicted to lower cache
levels/main memory before it can be overwritten

Actual states are more diverse on modern multicore processors

State of the cache line is stored cache line tag

PTfS 2024 May 6, 2024 37

Memory hierarchies: Cache management details — ST miss

Assume only one cache level:

LOAD miss: If data item to be loaded to a register is not available in
cache, the corresponding cache line is loaded from main memory

STORE miss: Data item to be modified (e.g. a[2]=0.0) is not in cache?

Cache line is the minimum data transfer unit between main memory and cache
(e.g. a[0:7]).

Load cache line from main memory to cache (“WRITE ALLOCATE")

Modify data item in cache

Later evict/write back modified cache line to main memory

do i=1,n
do j=1,n n2 words are loaded from main memory to
a(j,i)= 0.0 — cache (WRITE ALLOCATE) and n2 words
enddo are evicted/written back to main memory!

enddo

- Overall data transfer volume may increases up to 2x! (NT stores: no increase)

PTfS 2024 May 6, 2024

Memory hierarchies: Cache management details

How does data travel from memory to the CPU and back?

Example: Array copy A (:)=C(:)

LD C(1)
MISS

ST A(1)
MISS
LD C(2..Ny)

ST A(2..Nc|)} HIT

" Cache '

write| |evict
allocate| |(delayed)

3CL
transfers

Standard stores (WRITE ALLOCATE)

Special store instruction to avoid WA!

LD C(1)

MI
S8 NTST A(1)

LD C(2.Ny) HIT
NTST A(2..N,)

he

2CL

transfers

50%
Nontemporal |:> E(e)(r)f;)tr?;?nce
(NT) stores COPY

PTfS 2024

May 6, 2024 39

Memory management: Caches management details

Inclusive: Exclusive / Non-inclusive:
1. Cache line copy in all levels 1. Only one cache line copy in
2. Reduced effective size in cache hierarchy
outer cache levels 2. Full aggregate effective
3. Cheap eviction for cache size
unmodified cache lines 3. Eviction is expensive (copy
4. Higher latency: cache lines back)
have to load through 4. Lower latency: Data can be
hierarchy directly loaded in L1/L2
cache
—=> All caches in Intel processors up - AMD processors: L3 cache Intel
to Broadwell Skylake (and later procs) L3 cache

“Write back”. A modified cache line is evicted to the next (lower) cache/memory level before it is overwritten by
new data

“Write through”: When a cache line is modified then the cache line copy in the next (lower) cache/memory level is
updated as well

PTfS 2024 May 6, 2024 40

Memory Hierarchies: Typical cache configuration

SIMD

Intel Xeon E5-2680
Sandy Bridge

FP registers 16
GP registers 16
Size 32 KB Same for
11D Associativity 3-way Intel
architectur
local per core es until
Size 256 KB Broadwell
LD Associativity 3-way
local per core
Size t#cores™ 2 MB Depends on
L3 Associativity #cores* 16-way core count,
CPU variant,
shared across all cores CoD mode

: L3

Register

L]

L1

I

L2

I

L3

I

Memory

PTfS 2024

May 6, 2024

41

Memory Hierarchies: Typical cache configuration

SIMD e e
Intel Xeon Skylake SP / registers LPIEPIFPIFPAPYFPYIPYP
FP registers 32 {with AVX-512) i i i i :
GP registers 16 [Memory J
Size 32 KB
Associativit : 3
L1D ssociativity 8-way 5 Register
local per core % |1
Size 1 MB S L1
L2 Associativity 16-way % I
) L2
local per core $ H
Size #cores™ 1.375 MB >I'L'l '
L3 Associativi * 19- — 2
ssociativity #cores™ 11-way Lo 5 /
< Memory
shared across all cores &
PTfS 2024 May 6, 2024 42

Intel Xeon ES multicore processors

———————————————————————————————

Microarchitecture SandyBridge-EP IvyBridge-EP Haswell-EP 4 72

Shorthand SNB IVB HSW : P

Xeon Model E5-2680 E5-2690 v2 E5-2695 v3 E Lo

Year 0372012 09/2013 09/2014 : -

Clock speed (fixed) 2.7GHz 2.2GHz 2.3GHz EL_________E‘th"!'_'“f{f‘f __________ |

Cores/Threads 8/16 10/20 14/28

Load/Store throughput per cycle
AVX(2) 1LD & 1/2ST 1LD & 1/2ST 2LD & 1ST ——]
SSE/scalar 2ID||1LD & 1ST 2LD|[1LD&1ST 2LD&1ST

L1 port width 2x16+1x16B 2x16+1x16B 2x32+1x32B

ADD throughput 1/cy 1/cy 1/cy : .

MUL tlu‘ou;hl:)ut 1/ c;«' 1/ cz' 2/ cy FP instructions

FMA throughput n/a n/a 2/cy th roughput per core

L2-L1 data bus 32B 32B 64 B Max. data transfer per

L3-L2 data bus 32B 32B 32B Cyc|e between caches

LLC size 20MiB 25MiB 35MiB

Main memory 4xDDR3-1600 4xDDR3-1866 4xDDR4-2133 Peak main memory

Peak memory BW 51.2GB/s 51.2GB/s 68.3GB/s bandwidth

Load-only BW 43.6 GB/s (85%) 46.1GB/s (90%) 60.6 GB/s (89%) .

Ti 3Mem per CL 3.96 ¢y 3.05cy 243cy \ Max. attainable

bandwidth

PTfS 2024 May 6, 2024

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Matrix transpose & cache thrashing: A real-world
example

Memory hierarchies: Cache traffic/thrashing — Example

Matrix transpose single precision A(N,N) , B(N,N)

Minimum data traffic: do i=1, N Non-consecutive

do =1, N /access

A(]J,1) = B(1,])

Min. Load from main memory enndo
2 * N2 * 4 Byte enddo
\ [L B

Single precision
Matrix B and J 40001 £ o b

. OOWMOMGQOWODDQWOWQGJI: ;MQGGO'DOOWO-OO Q-GGQOGWQOWO-OO‘)
A (write-allocate!!!) ¢ . *

I I . 3000
Min. Store to malrl memory:] LIKWID
N2 * 4 Byte LIKWID © § i measurement:
/ IEEEUIEME. s } Load: 3720 MB
Load: 565 MB 20001 A Store: 285 MB
Matrix A Store: 281 MB !
:
1000 [Plain] -
For N= 8192 we expect
Load: 536 MB Intel Haswell E5-2695 v3 CoD
| ! | ! | ! | ! | ! | ! | ! | ! |
Store: 268 MB 8160 8168 8176 8184 8192 8200 8208 8216 8224

M=N

PTfS 2024 May 6, 2024 45

Memory hierarchies: Cache traffic/thrashing

Problem:
L3 cache can hold 8192 cache lines (0.5 MB) of B to allow for spatial locality in next outer (i-) iteration

But at N=8192 these cache lines are mapped to the same set in L3 cache (which has associativity of
7*32=224, i.e. only 224 CL can be stored)

Thus in every j-iteration a full cache line is loaded from main memory (and only one entry is used)

Solution: Padding I

Chose leading dimension such A po l
that it is not power of 2, e.g.

R0400029000990:22900099000905. . 20000000900000,000009009000000,
Np is next number of N which is ol l
odd multiple of 16

single precision A (Np,N) , B(Np,N) 20 g i

doi=1, N

do J = 1 ; N o 1000F 0-0 Plain —
A(j,1) = B(i,]) o « Plain+Padding
enndo i
enddo Lo]
8160 8168 8176 8184 8192 8200 8208 8216 8224
M=N
PTfS 2024 May 6, 2024 46

Architecture of memory hierarchy - Summary

= Deep cache hierarchies (typically 3 levels)
between main memory and registers

» Granularity of data transfer below L1 cache:

Cache lines (64 B or 128 B)
= Prefetchers to hide latencies
= STORE misses may trigger cache write allocate traffic
= m-way associative mapping in caches TR

may reduce “usable” cache size ol
= Cache thrashing

= Can we quantify / understand the single core Z

5001~
data access performance?

erformance [MF/s]

P

1 11 1 1 IIIIllI 1 1 Illllll 1 1 lIlIIIl 1 1111l 1 1 1 111nl
10 10 10° 10* 10° 10° 107
Array length [elements]

PTfS 2024 May 6, 2024 47

