

NHR-Nord@Göttingen

Holistic HPC I/O

Storage Architectures and Storage Tiering

Mohammad Hossein Biniaz, Kevin Lüdemann

12.06.2024

Parallel I/O Workflow

Parallel file systems

Summary O

Table of contents

- 1 Introduction
- 2 Storage Architectures
- 3 Storage Tiering
- 4 Parallel I/O Workflow
- 5 Parallel file systems

6 Summary

Parallel I/O Workflow

Parallel file systems

Summary O

Learning Objectives

- Understanding the storage stack
- Investigate IO access patterns
- Understand storage tiering
- Develop and IO Workflows
- Learn about parallel file systems

0.00

Storage Tiering

Parallel I/O Workflow

Parallel file systems

High-Performance Computing (HPC)

Definitions

- HPC: Field providing massive compute resources for a computational task
 - Task needs too much memory or time on a normal computer
 - Enabler of complex scientific simulations, e.g., weather, astronomy
- Supercomputer: aggregates power of 10,000 compute devices
- Storage system: provides some kind of storage with some API
- File system: provides a hierarchical namespace and "file" interface
- Parallel I/O: multiple processes can access distributed data concurrently

000

Storage Tiering

Parallel I/O Workflow

Parallel file systems

Summary

11

Supercomputers Host Costly Storage

Compute performance growth by 20x each generation (\sim 5 years).

Real Values – 2018

Storage throughput/capacity improves by just 6x.

	2004	2009	2015	2020	2025	Exascale (2020)
Performance	$1.5 \ \mathrm{TF/s}$	$150 \ \mathrm{TF/s}$	$3 \ \mathrm{PF/s}$	$60 \ \mathrm{PF/s}$	$1.2 \ \mathrm{EF/s}$	1 EF/s
Nodes	24	264	2500	12,500	31,250	100k-1M
Node performance	$62.5 \ \mathrm{GF/s}$	$0.6 \ \mathrm{TF/s}$	$1.2 \ \mathrm{TF/s}$	$4.8 \ \mathrm{TF/s}$	$38.4 \ \mathrm{TF/s}$	1-15 TF/s
System memory	1.5 TB	20 TB	170 TB	1.5 PB	12.8 PB	3.6-300 PB
Storage capacity	100 TB	5.6 PB	45 PB	270 PB	1.6 EB	0.15-18 EB
Storage throughput	5 GB/s	30 GB/s	$400~{\rm GB/s}$	$2.5 \ \mathrm{TB/s}$	$15~\mathrm{TB/s}$	20-300 TB/s
Disk drives	4000	7200	8500	10000	12000	100k-1000k
Archive capacity	6 PB	53 PB	335 PB	1.3 EB	5.4 EB	7.2-600 EB
Archive throughput	1 GB/s	$9.6 \ \mathrm{GB/s}$	$21~{\rm GB/s}$	$57 \ \mathrm{GB/s}$	$128~{\rm GB/s}$	-
Power consumption	250 kW	$1.6 \ \mathrm{MW}$	$1.4 \ \mathrm{MW}$	1.4 MW	1.4 MW	20-70 MW
Investment	26 M€	30 M€	30 M€	30 M€	30 M€	$200 M^{4}$

		11
	Mistral	
Characteristics	Value	
Performance	3.1 PF/s	Π
Nodes	2882	
Node performance	1.0 TF/s	
System memory	200 TB	
Storage capacity	52 PB	T
Storage throughput	700 GB/s	
Disk drives	10600	
Archive capacity	500 PB	Г
Archive throughput	18 GB/s	
Compute costs	15.75 M EUR	Γ
Network costs	5.25 M EUR	
Storage costs	7.5 M EUR	
Archive costs	5 M EUR	
Building costs	5 M EUR	1
Investment	38.5 M EUR	
Compute power	1100 kW	Ē
Network power	50 kW	
Storage power	250 kW	1
Archive power	25 kW	
Power consumption	1.20 MW	Γ

Storage Tiering

Parallel I/O Workflow

Parallel file systems

Summary O

Application Data vs. File

Applications work with (semi)structured data

Vectors, matrices, n-Dimensional data

A file is just a sequence of bytes!

Applications/Programmers must serialize data into a flat namespace

- Uneasy handling of complex data types
- Mapping is performance-critical
- Vertical data access unpractical (e.g., to to pick a slice of multiple files)

Parallel I/O Workflow

The I/O Stack

Parallel application

- Is distributed across many nodes
- Has a specific access pattern for I/O
- May use several interfaces
 File (POSIX, ADIOS, HDF5), SQL, NoSQL
- Middleware provides high-level access
- POSIX: ultimately file system access
- Parallel file system: Lustre, GPFS, PVFS2
- File system: EXT4, XFS, NTFS
- Block device: utilizes storage media to export a block API
 - Operating system: (orthogonal aspect)

Introduction	Storage Architectures	Storage Tiering	Parallel I/O Workflow	Parallel file systems	Summary O

Storage Media

- Many technologies are available with different characteristics
- Block-accessible or byte-addressable (NVRAM)

	Memristor	РСМ	STT- RAM	DRAM	Flash	HD
Chip area per bit (F²)	4	8–16	14-64	6-8	4-8	n/a
Energy per bit (pJ) ²	0.1-3	2-100	0.1-1	2-4	101-104	10 ⁶ 10 ⁷
Read time (ns)	<10	20-70	10-30	10-50	25,000	5-8x10 ⁶
Write time (ns)	2030	50500	13-95	10-50	200,000	5-8x10 ⁶
Retention	>10 years	<10 years	Weeks	<second< td=""><td>~10 years</td><td>~10 years</td></second<>	~10 years	~10 years
Endurance (cycles)	~1012	10 ⁷ -10 ⁸	1015	>1017	10 ³ -10 ⁶	1015?
3D capability	Yes	No	No	No	Yes	n/a

Figure: Source: ZDNet [100]

Introduction	Storage Architectures	Storage Tiering	Parallel I/O Workflow	Parallel file systems	Summary O

Zoo of Interfaces

Multitude of data models

- POSIX File: Array of bytes
- HDF5: Container like a file system
 - Dataset: N-D array of a (derived) datatype
 - Rich metadata, different APIs (tables)
- Database: structured (+arrays)
- NoSQL: document, key-value, graph, tuple

Choosing the right interface is difficult – a workflow may involve several

Properties / qualities

- Namespace: Hierarchical, flat, relational
- Access: Imperative, declarative, implicit (mmap())
- Concurrency: Blocking vs. non-blocking
- Consistency semantics: Visibility and durability of modifications

Introduction

Storage Architectures

Storage Tiering

Parallel I/O Workflow

Parallel file systems

Summary O

Application I/O Types

Serial, multi-file parallel and shared file parallel I/O

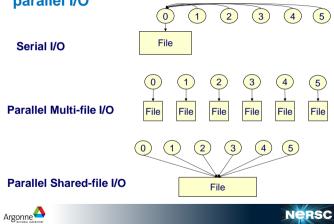
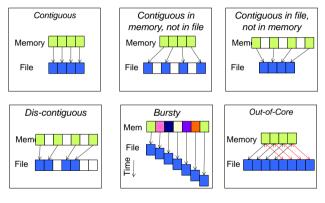


Figure: Source: Lonnie Crosby [101]

Mohammad Hossein Biniaz, Kevin Lüdemann

Storage Tiering


Parallel I/O Workflow

Parallel file systems

Summary O

Application I/O Access Patterns

Access Patterns

Figure: Source: Lonnie Crosby [101]

Mohammad Hossein Biniaz, Kevin Lüdemann

 Introduction
 Storage Architectures
 Storage Tiering
 Parallel I/O Workflow
 Provide

 000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</t

Parallel file systems

Summary O

File Striping: Distributing Data Across Devices

File Striping: Physical and Logical Views

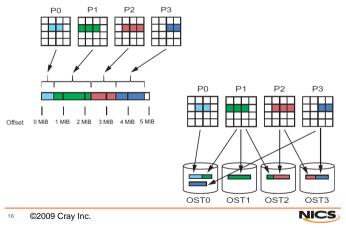


Figure: Source: Lonnie Croshy [101]

Mohammad Hossein Biniaz, Kevin Lüdemann

Introduction	Storage Architectures ○○○○○○●	Storage Tiering	Parallel I/O Workflow	Parallel file systems	Summary O

Parallel I/O Efficiency

- I/O intense science requires good I/O performance
- DKRZ file systems offer about 700 GiB/s throughput
 - ▶ I/O operations are typically inefficient: Achieving 10% of peak is good
 - Unfortunately, prediction of performance is barely possible
- Influences on I/O performance
 - Application's access pattern and usage of storage interfaces
 - Communication and slow storage media
 - Concurrent activity shared nature of I/O
 - Tenable optimizations deal with characteristics of storage media
 - Complex interactions of these factors
- The I/O hardware/software stack is very complex even for experts
- Requires tools and methods for
 - diagnosing causes
 - predicting performance, identification of slow performance
 - prescribing tunables/settings

Why Storage Tiering?

Users have different requirements depending on the type of data

- Think of Software as compared to hot data
- The different storage systems differ in many attributes, e.g.
 - Size
 - Speed
 - Data Durability
 - Backups
 - Locality
 - ▶ Lifetime, e.g. only available during job runtime, certain TTL, etc.

Parallel I/O Workflow

Parallel file systems

Summary O

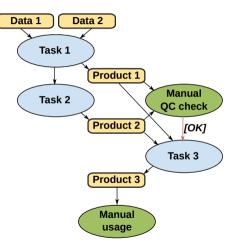
An Example at GWDG

Project Origin	Name	Storage Kind	Storage Type	Clusters	Path	Disk Kind	Filesystem	Backed Up	Description
all	Project Directory	MAP	Filesystem	Emmy, Grete	/projects/PROJECTPATH	SSD	VAST NFS	yes+snapshot	Symlink farm pointing to all the data stores
NHR	NHR Archive	ARCHIVE	Filesystem	Emmy, Grete	/perm/projects/PROJECT	Таре	Stornext	yes	Archival storage (very robust, very slow)
NHR (legacy)	Legacy Project HOME	HOME	Filesystem	Emmy, Grete	/home/projects/PROJECT	HDD	GPFS	yes+snapshot	HOME storage for the project (robust, but slow and small)
NHR	Project HOME	HOME	Filesystem	Emmy, Grete	/mnt/ddn-gpfs/projects/PROJECT	HDD	GPFS	yes+snapshot	HOME storage for the project (robust, but slow and small)
NHR	Lustre Emmy HDD	SCRATCH	Filesystem	Emmy, Grete	/mnt/lustre-emmy- hdd/projects/PROJECT	HDD	Lustre	no	Large and reasonably fast storage optimized for Emmy
NHR	Lustre Emmy SSD	SCRATCH	Filesystem	Emmy, Grete	/mnt/lustre-emmy- ssd/projects/PROJECT	SSD	Lustre	no	Small and fast storage optimized for Emmy
NHR	Lustre Grete	SCRATCH	Filesystem	Grete	/mnt/lustre-grete/projects/PROJECT	SSD	Lustre	no	Small and fast storage optimized for Grete
NHR (legacy)	scratch-emmy	SCRATCH	Filesystem	Emmy, Grete	/scratch-enny/projects/PROJECT	HDD	Lustre	no	Large and reasonably fast storage optimized for Emmy
NHR (legacy)	scratch-grete	SCRATCH	Filesystem	Grete	/scratch-grete/projects/PROJECT	SSD	Lustre	no	Small and fast storage optimized for Grete

Already 9 storge tiers, and the local tmpfs and SSD's are even neglected

Introduction	Storage Architectures	Storage Tiering ○○●	Parallel I/O Workflow	Parallel file systems	Summary O
Decultin	a Drablana		-		

Resulting Problem

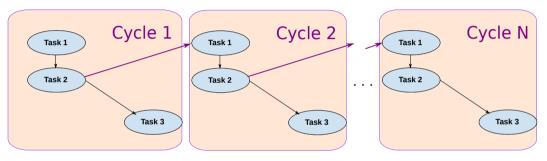

People are overwhelmed and do wrong data placement

- Hot data sits on cold storage
- Standard datasets sit on expensive backed up storages
- Important results are on fragile storage
- The wrong storage system for the wrong cluster island is used
 - GWDG might be an edge case here, but also think of a Dragonfly Topology
- Many storage tiers quickly lead to a loss of oversight
 - Data is not cleaned up
 - > Data is not reproducible, unclear where it belongs to
 - Data loss, hard to find
 - How can I select all data with a certain property?

Introduction	Storage Architectures	Storage Tiering	Parallel I/O Workflow ●○○○
--------------	-----------------------	-----------------	-------------------------------

Workflows

- Insight: What is of interest
- Consider workflow from 0 to insight
 - Needs input
 - Produces output data
 - Uses tasks
 - Parallel applications
 - Big data tools
 - Manual analysis / quality control
 - May need month to complete
 - Manual tasks are unpredictable


Introduction	Storage Archite
000	00000000

ectures Storage Tiering

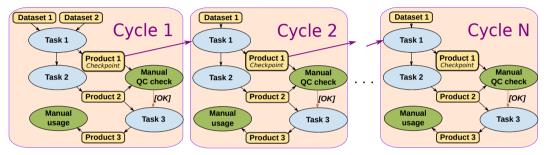
Parallel I/O Workflow ○●○○ Parallel file systems

Summary O

A (Science) Workflow Description

- Current practice (in climate/weather)
- Dependencies between tasks are described
- Assume a calculation that repeats for multiple cycles/iterations

 Introduction
 Storage Architectures
 Storage Tiering

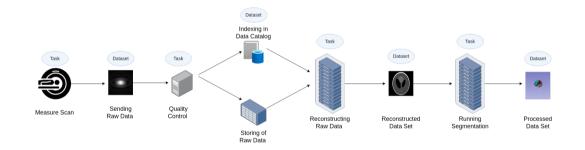

 000
 00000000
 000

Parallel I/O Workflow

Parallel file systems

Summary O

Possible Extended (Science) Workflow Description


Workflow description with IO characteristics

- Input required
- Needed input
- Generated output and its characteristics
- Information Lifecycle (data life)
- \Rightarrow Explicit input/output definition (dependencies) instead of implicit

Mohammad Hossein Biniaz, Kevin Lüdemann

Introduction	Storage Architectures	Storage Tiering	Parallel I/O Workflow ○○○●	Parallel file systems	Summary O

Experimental Planning Example: MRI Workflow Overview

Parallel I/O Workflow

Examples for HPC filesystems

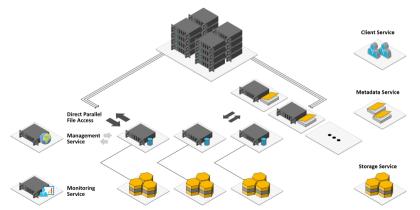
Opensource/free file systems

- Lustre
- BeeGFS (Enterprise is offered)
- DAOS
- Exterprise file systems
 - ▶ IBM Spectrum Scale
 - Ceph
 - VAST Data
 - Weka.io

Introduction	Storage Architectures	Storage Tiering	Parallel I/O Workflow	Parallel file systems ○●○○○○○○	Summary O
Lustre					

- Oldest parallel filesystem for HPC (first concepts in 1999 at CMU)
 - Open Source
 - Separate servers and targets for meta- and objectdata
 - Every server has multiple storage targets
 - Every client talks with every server in parallel
 - Striping across targets/servers on client side
 - User configure striping per directory/file (count, blocksize, storage pools)
 - Integration in MPI-IO, HDF5, NetCDF, etc.
 - Very low CPU requirements
 - Backendstorage is patched Ext4 (Idiskfs) or ZFS

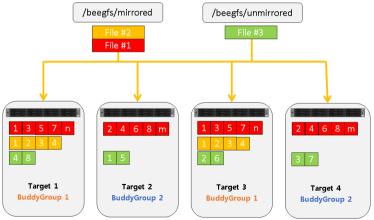
Introduction	Storage Architectures	Storage Tiering	Parallel I/O Workflow	Parallel file systems ○○●○○○○○	Summary O
BeeGFS					


- Developed as FhGFS at Fraunhofer ITWM (from 2005), spin-off ThinkParQ
- Open Source, but closed development
- Lustre IO performance with better metadata performance and easier usage
- Server concept like Lustre, multiple metadata server from the start
- Server processes in userspace
- Client out of tree kernel module,
- Very easy cconfiguration (text with a few lines of code per service)
- Every Linux filesystem can serve as backendstorage (recommendations for XFS, Ext4 and ZFS)

BeeGFS architecture

Source: BeeGFS documentation

https://doc.beegfs.io/latest/architecture/overview.html



BeeGFS filestriping

Source: BeeGFS documentation

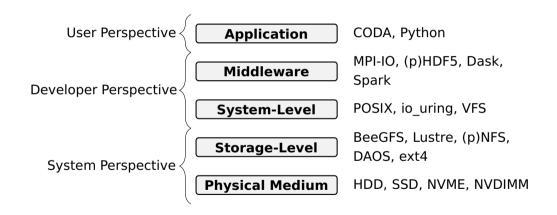
https://doc.beegfs.io/latest/architecture/overview.html

Mohammad Hossein Biniaz, Kevin Lüdemann

Performance comparison storage systems of HLRN-IV Emmy

IME: 10 DDN IME 140 systems with 90 4TB NVME SSDs Lustre SSD: 2 DDN SFA200NV with 4 frontend servers, 46 4TB NVME SSDs Lustre HDD: 2 DDN ES14KX, 1000 12TB HDDs

Home: GPFS via NFS from DDN GS7700X, 2 frontend servers, 120 4TB HDDs


medium40 SSD: local 480GB Intel S-ATA SSD in compute node standard96 SSD: local 1TB Intel NVME SSD in compute node

Benchmarks with 32 processes per client, IME and Lustre with 64 clients, Home with 10 clients and 16 processes per client

Performance comparison storage systems of HLRN-IV Emmy

÷	IME	\$	Lustre SSD	\$	Lustre HDD	ę	Home	ę	medium40 SSD	ę	standard96 SSD	ę
ior-easy-read	157,00	GiB/s	38,17	GiB/s	26,08	GiB/s	9,48	GiB/s	0,33	GiB/s	1,84	GiB/s
ior-easy-write	86,95	GiB/s	23,58	GiB/s	53,36	GiB/s	5,78	GiB/s	0,33	GiB/s	0,92	GiB/s
ior-hard-read	45,94	GiB/s	25,95	GiB/s	4,60	GiB/s	0,96	GiB/s	0,34	GiB/s	1,42	GiB/s
ior-hard-write	62,91	GiB/s	0,70	GiB/s	0,67	GiB/s	0,10	GiB/s	0,27	GiB/s	0,69	GiB/s
ior-rnd1MB-read	102,48	GiB/s	13,19	GiB/s	10,41	GiB/s			0,33	GiB/s	1,61	GiB/s
ior-rnd1MB-write	84,88	GiB/s	7,21	GiB/s	4,95	GiB/s			0,32	GiB/s	0,80	GiB/s
ior-rnd4K-read	2,18	GiB/s	0,03	GiB/s	0,21	GiB/s			0,30	GiB/s	0,95	GiB/s
ior-rnd4K-write	11,84	GiB/s	0,03	GiB/s	0,06	GiB/s			0,07	GiB/s	0,12	GiB/s
mdworkbench-bench	57,55	kiops	92,10	kiops	85,00	kiops	21,27	kiops	5,82	kiops	8,92	kiops

Introduction	Storage Architectures	Storage Tiering

Summary

- Understanding the full storage stack is difficult even for experts
- Accessing files in parallel requires specific applications
- Workflows required a lot of I/O
- Taking care of Storage Tiering is important
- Setting up and understanding parallel I/O is difficult