

NHR-Nord@Göttingen

Holistic HPC I/O

Storage API

Mohammad Hossein Biniaz, Kevin Lüdemann

12.06.2024

NHR Summer School 2024

Metadata	POSIX	NetCDF	HDF5	Summary
00	00	00000000	00000000	00

Table of contents

1 Metadata

2 POSIX

5 Summary

Learning Objectives

- Learn about different types of metadata
- Understand self contained data files
- Develop a POSIX/NetCDF/HDF5 data model for a given use case
- Implement a data module with an HDF5 file

Metadata	POSIX	NetCDF	HDF5	Summary
• •	00	00000000	00000000	00

What is Metadata?

Filename

- File owner and group
- Parent file structure/folder
- Creation date, date of last change
- Access permissions
- Characteristic (file description)
- Parameters for the creation of this file
- Hardware architecture

...

Metadata	POSIX	NetCDF	HDF5	Summary
0•	00	00000000	00000000	00

How to store metadata?

File/folder name

- Describing file
- Elaborate folder structure
- Indexed in database
- Self contained data format

Metadata	POSIX	NetCDF	HDF5	Summary
oo	●○	00000000	00000000	00

Folders and files

- Run the list command in CMD to see metadata
- List filename, folder name, change date, permissions
- Create elaborate folder structure
- Create explaining file for additional metadata

Metadata	POSIX	NetCDF	HDF5	Summary
00	0.	00000000	00000000	00

Advantages/Disadvantages

Advantages

- Native to Linux
- Many API for interaction exists
- Human readable without difficult tools
- Easy to understand

Disadvantages

- Stores metadata for all files separate
- Accessing each file has latency
- Additional metadata requires more files
- ▶ Too simple for large data sets with much metadata

00	00	•00000000	oo

NetCDF

- NetCDF is an example for a "high-level" I/O-API and ecosystem
- In a simple view, NetCDF is:
 - A data model
 - A file format
 - A set of APIs and libraries for various programming languages
- Together, the data model, file format, and APIs support
 - creation, access, and **sharing** of scientific data
- Allows to describe multidimensional data and include metadata which further characterizes the data
- APIs are available for most programming languages used in geo-sciences

Metadata	POSIX	NetCDF	HDF5	Summary
○○	OO	○●○○○○○○○	00000000	00
The Classic NetCDF Model		ല		

NetCDF files are containers for Dimensions, Variables, and Global Attributes.

A NetCDF file (dataset) has a path name and possibly some dimensions, variables, global (file-level) attributes, and data values associated with the variables.

Metadata	POSIX	NetCDF	HDF5	Summary
oo	oo	00000000	00000000	00

The Classic NetCDF Model – Dimensions

- Dimensions are used to specify variable shapes, grids, and coordinate systems.
- A dimension has a name and a length.
- A dimension can be used to represent a real physical dimension
 Example: time, latitude, longitude, or height
- A dimension can also be used to index other quantities
 - Example: station or model run number
- The same dimension can be used in multiple variables.

Metadata	POSIX	NetCDF	HDF5	Summary
oo	oo	○○○●○○○○○	00000000	00

The Classic NetCDF Model – Variables

- A variable holds a multidimensional array of values of the same type
- A variable has a name, type, shape (according to dimensions), attributes, and values
- In the classic data model, the type of a variable is the external type of its data as represented on disk, one of: char (text character), byte (8 bits), short (16 bits), int (32 bits), float (32 bits), double (64 bits)

Metadata	POSIX	NetCDF	HDF5	Summary
oo	oo	0000●0000	00000000	00

The Classic NetCDF Model – Data

- The data in a NetCDF file is stored in the form of arrays. For example:
 - Temperature varying over time at a location is stored as a one-dimensional array
 - Temperature over an area for a given time is stored as a two-dimensional array
 - Three-dimensional (3D) data, like temperature over an area varying with time, or four-dimensional (4D) data, like temperature over an area varying with time and altitude, is stored as a series of two-dimensional arrays

Mohammad Hossein Biniaz, Kevin Lüdemann

NHR Summer School 2024

Metadata	POSIX	NetCDF	HDF5	Summary
oo		00000●000	00000000	00

The Classic NetCDF Model – Coordinate Variables

- A 1D variable with the same name as a dimension is a **coordinate variable**
- The coordinate variable is associated with a dimension of one or more data variables and typically defines a physical coordinate corresponding to that dimension
- Many programs that read NetCDF files recognize coordinate values they find

Metadata	POSIX	NetCDF	HDF5	Summary
oo		○○○○○○●○○	00000000	00
The Classic NetCDF Model – Attributes				

- Attributes hold metadata (data about data)
- Attributes contain information/properties of a variable or the whole dataset
- Attributes are scalars or 1-D arrays
- An attribute has a name, type, and values.
- Attributes are used to specify such properties as units, standard names (that identify types of quantity), special values, maximum and minimum valid values, scaling factors, offsets, ...

Metadata oo	POSIX	NetCDF 0000000●0	HDF5 00000000	Summary
Common Data	form Language	e (CDL)		

- Notation used to describe NetCDF object is called CDL (network Common Data form Language)
 - Provides a convenient way of describing NetCDF datasets
- Utilities allow producing CDL text files from binary NetCDF datasets and vice-versa
- File contains dimensions, variables, and attributes
- Components are used together to capture the meaning of data and relations among data fields

Mohammad Hossein Biniaz, Kevin Lüdemann

NHR Summer School 2024

Metadata	POSIX	NetCDF	HDF5	Summary
oo	00	00000000●	00000000	00

Parallel I/O in NetCDF-4

- NetCDF-4 provides parallel file access to both classic and NetCDF-4/HDF5 files
- The parallel I/O to classic files is achieved through PNetCDF while parallel I/O to NetCDF-4 files is through HDF5 or ESDM, ZARR format support is coming
- NetCDF-4 exposes the parallel I/O features of HDF5
 - HDF5 provides easy-to-use parallel I/O feature

Metadata	POSIX	NetCDF	HDF5	Summary
oo	oo	00000000	•00000000	00

HDF5

- HDF5 == Hierarchical Data Format, v5
- Versatile data model consisting of groups and datatsets with a wide variety of metadata
- Open source software library running on a wide range of computational platforms, from cell phones to massively parallel systems
- Rich set of integrated performance features allowing access time and storage space optimizations
- Tools and applications for managing, manipulating, viewing, and analyzing the data in the collection
- Completely portable file format with no limit on the number or size of data objects stored

Metadata	POSIX	NetCDF	HDF5	Summary
००	oo	00000000	0000000	00
HDF5				

Figure: Dataset in HDF5 (Source: https://docs.hdfgroup.org/hdf5/v1_14/v1_14_4/_intro_h_d_f5.html)

Metadata	POSIX	NetCDF	HDF5	Summary
oo	oo	00000000	00000000	00
				(

HDF5 file drivers

- Memory only driver
- POSIX driver for single file
- Multi file driver
- Parallel driver using MPI-IO

HDF5 file features

- Hierarchical structure like POSIX file tree
- Metadata attached to each part of the tree
- Chunking of data blocks for appending and others
- Compression of data fields
- Probably encryption in future

Metadata oo	POSIX	NetCDF 00000000	HDF5	Summary 00

HDF5 programming API

- C/C++ API, since HDF5 is written in C
- Fortran library
- Julia Lang API
- Python API, h5py

Metadata oo	POSIX	NetCDF 00000000	HDF5	Summary 00

H5PY File example

```
import h5py
f = h5py.File('myfile.hdf5', 'w')
dset = f.create_dataset("mydataset", (100,50), dtype='f')
```

Metadata	POSIX	NetCDF	HDF5	Summary
oo	oo	00000000	000000000	00

H5PY File example

```
import h5py
f import h5py
f = h5py.File('myfile.hdf5', 'w')
f grp = f.create_group("subgroup")
f dset_grp = grp.create_dataset("mydataset", (100,50), dtype='f')
g dset = f['/subgroup/mydataset']
```

Metadata	POSIX	NetCDF	HDF5	Summary
00	00	00000000	000000000	00

H5PY File attributes

```
import h5py
2
3 f
         = h5py.File('myfile.hdf5', 'w')
4 grp = f.create_group("subgroup")
5 dset = grp.create_dataset("mydataset", (100,50), dtype='f')
6
7 grp.attrs['description'] = 'birds on pond'
8 dset.attrs['name'] = 'duck'
9 dset.attrs['size'] = 128
10 dset.attrs['shape'] = (32.4)
11 f.attrs['date']
                = '20240612 1430'
```

Metadata 00	POSIX	NetCDF 00000000	HDF5	Summary 00
H5PY	parallel IO			
1 2 3	from <mark>mpi4py</mark> import MPI import <mark>h5py</mark>			
4 5	<pre>comm = MPI.COMM_WORLD rank = MPI.COMM_WORLD.</pre>	rank		
6 7 8	<pre>f = h5py.File('para</pre>	<pre>llel_test.hdf5','w' r='mpio',</pre>	',	
9 10 11	comm= dset = f.create_datase	comm) t(' <mark>test</mark> ', (4,), dty	/pe='i')	
12 13 14	dset[rank] = rank			
15	f.close()			

Mohammad Hossein Biniaz, Kevin Lüdemann

Summary

- Metadata is highly important in science
- Storing and sharing Metadata can be difficult
- POSIX, NetCDF, and HDF5 store Metadata differently
- Self contained data models are easy to be shared
- Access storage with parallel threads using MPI-IO and HDF5

Metadata	POSIX	NetCDF	HDF5	Summary
oo	oo	00000000	00000000	○●

Exercise