
Hardware Performance Monitoring

Basics and Case-Study for upper triangular matrix vector multiplication
Thomas Gruber, NHR@FAU

Questions?

§ If you see a code, can you imagine how the hardware behaves during

execution?

§ Are there hidden operations that can harm performance?

§ Where can we get real performance values from?

§ Does my code hit a bottleneck?

PTfS SS2024, Thomas Gruber

3

Agenda
§ Hardware performance monitoring (HPM)

§ What is it?
§ Why is it used?
§ How does it work?
§ What can be measured?

§ HPM Tools
§ LIKWID

§ Use-case analysis using HPM
§ Dense Triangular Matrix-Vector-Multiplication
§ Dense Quadratic Matrix-Vector-Multiplication

PTfS SS2024, Thomas Gruber

4

Hardware performance monitoring (HPM) - What is it?

§ First introduction in DEC Alpha 21064
(1992)

§ In x86 systems since Intel Pentium (1994)
§ Almost all architectures released after

1994

§ Hardware logic with filtering
§ Developed by CPU vendors for validation
§ No extra work done by processing unit

(Source: Intel.com)

(Source:
wikipedia)

PTfS SS2024, Thomas Gruber

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

5PTfS SS2024, Thomas Gruber

Hardware performance monitoring (HPM) - What is it?

(Source: Intel.com)

mov rax, [addr]
Counter0: L1 misses
0

Counter1: L2 hits
0

Counter2: Load instr. issued
0

Counter3: Any miss
0

mov rax, [addr]

LD rax, [addr]

LD rax, [addr]

LD rax, [addr]

LD rax, [addr]

LD

1

1

123

https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html

6

Differentiation: hardware and application performance monitoring

Application Monitoring:
§ Application insight
§ Fine grained
§ In-application measurements

defer work → Overhead
§ May create huge amount of data

Hardware monitoring:
§ Only hardware insight, relation to

executed code almost impossible
§ Coarse measurements (fine

grained only with instrumentation)
§ (Almost) no overhead
§ Limited amount of measurement

facilities restrict data generation

PTfS SS2024, Thomas Gruber

7

Hardware performance monitoring (HPM) - What can be measured?

HPM units are scattered over the complete chip

Intel IvyBridge EP
(Source: Intel.com)

PTfS SS2024, Thomas Gruber

Units may consist of:
§ 0-X fixed purpose counter registers
§ 1-Y general purpose config &

counters registers
§ Global control register
§ Overflow status & reset register(s)
§ Filter register(s)
§ Special feature register(s)

https://cdrdv2-public.intel.com/671360/329468-intel-xeon-processor-e5-e7-v2-uncore.pdf

8

Hardware performance monitoring (HPM) - How does it work?

Bitmap of a control register (Arch version 3)

§ APIC interrupts when counter overflows (unusable in user-space)
§ Pin control for overflow handling: global register or via APIC interrupt

(Source: Intel.com)

PTfS SS2024, Thomas Gruber

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

9

Hardware performance monitoring (HPM) - How does it work?

Bitmap of a unit control register:

§ Global overflow registers (signal & reset) use same bit offsets

PTfS SS2024, Thomas Gruber

(Source: Intel.com)

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

10

Hardware performance monitoring (HPM) - How does it work?

Counter setup (*):
§ Stop counting globally

§ If NA: Stop whole PMU
§ If NA: Stop counter

§ Write event+opts to config register
§ Reset counter register

§ If used: Start counter
§ If used: Start whole PMU

§ Start counting globally

Read counter value (*):
§ If required:

§ Stop globally
§ OR whole PMU
§ OR only specific counter

§ Read counter value
§ If used:

§ Start globally
§ OR whole PMU
§ OR only specific counter

PTfS SS2024, Thomas Gruber

(*) Simplified, there might be intermediate steps required

11

Hardware performance monitoring (HPM) - What can be measured?

§ Intel Pentium provided 42 events, current Icelake SP offers 3032 events
§ Events for:

§ Cache/memory traffic (loads, stores, RFO, …)
§ Special instructions (divide, floating-point ops, …)
§ CISC -> RISC -> CISC translation
§ Branch prediction, resource stalls, …
§ In seperate units: memory traffic, intersocket traffic, PCI traffic, …
§ Energy consumption, temperature (not really HPM)

§ Understand how a code/algorithm uses the hardware
§ Find bottlenecks, real data volume (Loads + Stores + RFOs)

(RFOs/write-allocates not visible from the application‘s perspective)
PTfS SS2024, Thomas Gruber

12

Hardware performance monitoring (HPM) - Tools

§ HPM on x86 accessible through MSRs, PCI and MMIO devices
§ Different on each micro-architecture

§ Low level tools:
§ msr-tools
§ perf_event (>= Linux 2.6.35)

§ Medium level tools (on top of perf_event):
§ PAPI
§ Intel VTune

§ High level tools (on top of PAPI):
§ Score-P (Collaboration of german universities)
§ TAU (University Oregon), HPCToolkit (Rice University), OpenSpeedshop, …

LIKWID, perf

PTfS SS2024, Thomas Gruber

13

LIKWID - Overview

§ Project started in 2009

§ Developed by HPC group at the FAU (me)

§ Tool suite for performance analysis:
§ System topology information
§ Process/Thread pinning
§ Hardware performance monitoring & energy measurements
§ Microbenchmarking in assembly

§ LIKWID tries to measure anything running on a CPU in user-space!
§ LIKWID does not require any special kernel module, only default interfaces

PTfS SS2024, Thomas Gruber

16

LIKWID – Affinity domains
§ Topology gathering creates affinity domains

§ C*: LLC domain (All hardware threads attached to LLC segment)
§ S*: Socket domain (All hardware threads of a socket)
§ D*: CPU die domain (All hardware threads of a CPU die)
§ M*: NUMA domain (All hardware threads of a NUMA domain)
§ N: Node domain (All hardware threads)

§ At CPU selection choose one of each domain to be leader
§ Why affinity domains? Used for pinning threads!

§ Physical without domain: 0,1,2,3 or 4-8 or 0,2-3
§ Logical in domain: S0:0-3 or M0:0,4,6,2
§ Combine selections with @ (S0:0@S1:0)
Check likwid-pin for more information about the syntax

PTfS SS2024, Thomas Gruber

18

likwid-perfctr
$ likwid-perfctr –g L2 –C S1:0-3 ./a.out
--
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]
--
<<<< PROGRAM OUTPUT >>>>
--
Group 1: L2
+-----------------------+---------+------------+------------+------------+------------+
| Event | Counter | Core 14 | Core 15 | Core 16 | Core 17 |
+-----------------------+---------+------------+------------+------------+------------+
INSTR_RETIRED_ANY	FIXC0	1298031144	1965945005	1854182290	1862521357
CPU_CLK_UNHALTED_CORE	FIXC1	2353698512	2894134935	2894645261	2895023739
CPU_CLK_UNHALTED_REF	FIXC2	2057044629	2534405765	2535218217	2535560434
L1D_REPLACEMENT	PMC0	212900444	200544877	200389272	200387671
L2_TRANS_L1D_WB	PMC1	112464863	99931184	99982371	99976697
ICACHE_MISSES	PMC2	21265	26233	12646	12363
+-----------------------+---------+------------+------------+------------+------------+
[… statistics output omitted …]

Configured metrics
(this group)

Always
measured for
Intel CPUs

PTfS SS2024, Thomas Gruber

19

likwid-perfctr (cont.)
+--------------------------------+------------+------------+------------+------------+
| Metric | Core 14 | Core 15 | Core 16 | Core 17 |
+--------------------------------+------------+------------+------------+------------+
Runtime (RDTSC) [s]	1.1314	1.1314	1.1314	1.1314
Runtime unhalted [s]	1.0234	1.2583	1.2586	1.2587
Clock [MHz]	2631.6699	2626.4367	2626.0579	2626.0468
CPI	1.8133	1.4721	1.5611	1.5544
L2D load bandwidth [MBytes/s]	12042.7388	11343.8446	11335.0428	11334.9523
L2D load data volume [GBytes]	13.6256	12.8349	12.8249	12.8248
L2D evict bandwidth [MBytes/s]	6361.5883	5652.6192	5655.5146	5655.1937
L2D evict data volume [GBytes]	7.1978	6.3956	6.3989	6.3985
L2 bandwidth [MBytes/s]	18405.5299	16997.9477	16991.2728	16990.8453
L2 data volume [GBytes]	20.8247	19.2321	19.2246	19.2241
+--------------------------------+------------+------------+------------+------------+

Preconfigured and extensible metric groups, list with likwid-perfctr –a
§ FLOPS_DP: Double Precision MFlops/s
§ FLOPS_SP: Single Precision MFlops/s
§ MEM: Main memory bandwidth in MBytes/s
§ CLOCK: Clock frequency of cores

PTfS SS2024, Thomas Gruber

20

MarkerAPI
§ The marker API can restrict measurements to code regions
§ The API only reads counters, the setup is done by likwid-perfctr
§ Multiple named regions support, accumulation over multiple calls
§ Inclusive and overlapping regions allowed

#include <likwid-marker.h>
. . .
LIKWID_MARKER_INIT; // must be called from serial region
LIKWID_MARKER_REGISTER(“Compute”); // optional but recommended
. . .
LIKWID_MARKER_START(“Compute”); // call markers for each thread
. . .
LIKWID_MARKER_STOP(“Compute”);
. . .
LIKWID_MARKER_START(“Postprocess”);
. . .
LIKWID_MARKER_STOP(“Postprocess”);
. . .

LIKWID_MARKER_CLOSE; // must be called from serial region

Before LIKWID 5
use likwid.h

§ Activate macros with -DLIKWID_PERFMON
§ Run likwid-perfctr with –m switch to

enable marking
§ See https://github.com/RRZE-

HPC/likwid/wiki/TutorialMarkerF90 for
Fortran example

PTfS SS2024, Thomas Gruber

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90
https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

Case-Study for upper triangular matrix vector
multiplication

22

Case-Study dTMVM
§ Triangular matrices often used: LU factorization -> Gauss elemination,

compute inverse matrix or dominant of a matrix
§ Dimension 𝑁:

§ 𝑵 ⋅	 ⁄𝑵"𝟏
𝟐 elements in matrix

§ 𝑵 ⋅	 ⁄𝑵"𝟏
𝟐 multiplications + 𝑵 ⋅	 ⁄𝑵"𝟏

𝟐 additions
→ Computational intensity = 2 FLOPs / 8 Bytes (counting only loads)

= •

PTfS SS2024, Thomas Gruber

23

Case-Study dTMVM (Code + Instrumentation)
#include <likwid-marker.h>

[…] // defines, fillMatrix and init matrix & vectors
LIKWID_MARKER_INIT;

#pragma omp parallel { LIKWID_MARKER_REGISTER(„Compute“); }

#pragma omp parallel
{

for (int k = 0; k < ROUNDS; k++) {
 LIKWID_MARKER_START(“Compute”);

#pragma omp for private(current,j)

for (int i = 0; i < N; i++) {
double current = 0.0;

for (int j = i; j < N; j++)
current += mat[(i*N)+j] * bvec[j];

cvec[i] = current;

}
LIKWID_MARKER_STOP(“Compute”);

while (cvec[N>>1] < 0) {dummy();break;} // to avoid removal of loop
}

}

LIKWID_MARKER_CLOSE;

Include header file, initialize
library and register each

thread

Read
counters

Data often accessed, likely to be kept
in cache

Write results to file for evaluation by likwid-perfctr

Data more likely located in memory.
With N=10000 and ROUNDS=1000

!10000 + 1
2 ⋅ 10000 ⋅ 8	Bytes ⋅ 1000 ≈
400	GBytes

PTfS SS2024, Thomas Gruber

24

Case-Study dTMVM
Measure different metrics using LIKWID:
likwid-perfctr –C S0:0-1 –g <Group> -m ./dtmvm

Group Metric CPU 0 CPU 1
All groups Cycles-per-instruction 2.5 1.2
L2 L2 data volume [GBytes] 602 184
L3 L3 data volume [GBytes] 285 98
MEM Memory data volume [GBytes] 412 -
DATA Load to store ratio 3320.5 : 1 8.5 : 1
FLOPS_DP MFLOP/s 4897 1704
L2CACHE L2 request rate 0.75 0.13
L2CACHE L2 miss ratio 0.30 0.30

Marker API

Run in Socket 0 domain
using CPUs indexed 0 and 1
in ‚phyical cores first‘ sorted list

Loads of matrix
(Memory) and
vector (L2)

Only loads of the matrix.
Streamed through L3 cache.

N=10000, ROUNDS=1000, Intel E5-2687W
PTfS SS2024, Thomas Gruber

25

Case-Study dTMVM
§ Why is CPI lower for HWThread 1? Is it executing better on HWThread 1?

§ Why is the load to store ratio so different?

§ L2 request rate of 75% for HWThread 0 and only 13% for HWThread 1?

PTfS SS2024, Thomas Gruber

OpenMP for pragma performs implicit barrier at end of loop
→ Busy waiting executes many ‚short‘ instructions
→ CPI decreases

HWThread 0 loads long lines 𝐍 →	 ⁄𝑵 𝟐 for single store to rhs
HWThread 1 loads only short lines ⁄𝑵 𝟐 → 𝟏 for single store to rhs

Careful about interpretations of metric names!
Request rate = Requests to L2 / all finished instructions
Value for HWThread 1 skewed by implicit barrier like CPI

26

Case-Study dTMVM
§ Parallelization with OpenMP

§ Calculated work/load ratio Thread 0 : Thread 1 = 3 : 1
§ L2 data volume ratio Thread 0 : Thread 1 = 3.3 : 1
§ L3 data volume ratio Thread 0 : Thread 1 = 2.9 : 1
§ MFLOP/s ratio Thread 0 : Thread 1 = 2.9 : 1

Data volume
no good metric
for work.

= •

Thread 0

Thread 1

PTfS SS2024, Thomas Gruber

27

Case-Study dTMVM
Scaling run with SIMD FLOPs.

N=10000, ROUNDS=1000, Intel E5-2687W

PTfS SS2024, Thomas Gruber

28

Case-Study dTMVM
§ How can we fix the load imbalance between the threads?

§ Use a manual decomposition of the matrix
§ Change OpenMP scheduler (commonly more overhead than static)
§ Default static scheduler splits iteration space by number of threads.
 Can be manually adjusted → schedule (static, 16) : 16 lines per thread

0

1000

2000

3000

4000

5000

6000

Normal Static(16)

MFLOP/s comparison between unbalanced and
balanced workload

HWThread 0 HWThread 1

PTfS SS2024, Thomas Gruber

29

Case-Study dTMVM
Scaling run with SIMD FLOPs compiled with schedule(static, 16)

N=10000, ROUNDS=1000, Intel E5-2687W

PTfS SS2024, Thomas Gruber

30

Case-Study dTMVM
OK, we fixed the load imbalance, what about performance?

PTfS SS2024, Thomas Gruber

Case-Study for quadratic matrix vector
multiplication

31

32

Case-Study dMVM
§ Using a quadratic matrix
§ Calculate on a multi-socket system

§ Where does the data reside on multi-socket systems?
§ Can the operating system distribute the data optimally?
§ Can we initialize the data for optimal locality?
§ How can we measure the inter-socket traffic?

double* ptr = malloc(ARRAY_SIZE * sizeof(double))
if (!ptr)
 return;

for (int i=0; i< ARRAY_SIZE; i++)
 ptr[i] = M_PI;

No real allocation,
just reservation

First touch allocation policy.
The data is allocated at
the nearest memory

PTfS SS2024, Thomas Gruber

33

Case-Study dMVM

No data is
fetched from
socket 1 memory

Kernel tries to
interleave data
between both
sockets but not
optimal

Optimal data
locality!
No traffic
between sockets

PTfS SS2024, Thomas Gruber

34

Case-Study dMVM – Interleaved memory policy
§ Interleaving memory policy

Use numactl --interleave <NUMA node IDs|all>
Round-Robin placement of memory pages

§ For optimal placement, the code has to distribute the data

§ Commonly in OpenMP, the threads get the same slice of iteration space in
equally sized loops

double* ptr = malloc(ARRAY_SIZE * sizeof(double))
if (!ptr)
 return;
#pragma omp for …
for (int i=0; i< ARRAY_SIZE; i++)
 ptr[i] = M_PI;

Each threads triggers
first touch policy to
place the data local
to them
Use same parameters
as hot loop(s)

PTfS SS2024, Thomas Gruber

35

Advanced functionality of hardware counting
§ Vendors implemented more advanced capabilities for sampling

§ Intel: Precise Event-Based Sampling
§ AMD: Instruction-Based Sampling
§ (Open)POWER: Marked instruction sampling
§ ARM does not specify anything in the docs but vendors could add it

§ Event and counter options for restricted counting
§ Only count if above/below threshold
§ Edge detection (event counts active cycles → event counts activations)
§ Special unit filters like cache line status, address filters, request/response types
§ many more…

PTfS SS2024, Thomas Gruber

LIKWID:
https://github.com/RRZE-HPC/likwid

https://github.com/RRZE-HPC/likwid

perf and perf_event
§ Kernel interface and corresponding user-space tool
§ Support commonly added by vendors

§ Focus on events not physically available counter registers
$ perf stat –e cycles ./a.out
<output>
Performance counter stats for a.out':

1.963.023 cycles

0,011491507 seconds time elapsed

0,001712000 seconds user
0,000000000 seconds sys

PTfS SS2024, Thomas Gruber

38PTfS SS2024, Thomas Gruber

perf and perf_event
§ Single system call perf_event_open
§ The perf_event_attr structure contains

§ Which event type (= unit): /sys/devices/<unit>/type
§ How to count? Sampling, only user-space, …
§ What should be counted:

§ Main configuration see /sys/devices/<unit>/format/event and …/umask
§ Additional options, see /sys/devices/<unit>/format/<option>

§ Result storage (FD, mmap, …) and format (with times?)
§ After adding event, IOCTL calls for starting, stopping, resetting, …

39PTfS SS2024, Thomas Gruber

Other devices
§ Many devices and associated libraries provide some counting functionality

§ Nvidia: CUPTI
§ AMD: rocProf
§ Intel GPUs: OneAPI/LevelZero
§ But also network adapters, disks, etc.

§ For many:
§ Unclear how counting works (obfuscated in libraries)
§ Like for CPUs, capabilities depend on exact model
§ Limited configuration space
§ Own tools make most use of the APIs

