Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hardware Performance Monitoring

Basics and Case-Study for upper triangular matrix vector multiplication
Thomas Gruber, NHR@FAU

Questions?

= |f you see a code, can you imagine how the hardware behaves during

execution?
= Are there hidden operations that can harm performance?
= Where can we get real performance values from?

= Does my code hit a bottleneck?

PTfS SS2024, Thomas Gruber

Agenda

= Hardware performance monitoring (HPM)
= What is it?
= Why is it used?
= How does it work?
= What can be measured?

= HPM Tools
= LIKWID

= Use-case analysis using HPM
= Dense Triangular Matrix-Vector-Multiplication
« Dense Quadratic Matrix-Vector-Multiplication

PTfS SS2024, Thomas Gruber

Hardware performance monitoring (HPM) - What is it?

First introduction in DEC Alpha 21064
(1992)

In x86 systems since Intel Pentium (1994)

Almost all architectures released after
1994

Hardware logic with filtering
Developed by CPU vendors for validation
No extra work done by processing unit

EventSe

Occupancy Counts
and all other Multi

Bit incremean ted
Events
{ Can Inc by >1)
" 7 :D_ And gat
Threshhold :D_ Nand gat
Value M padhi D >— Orgat
Bilf0] Bit[n;1)
J‘L Threshhald D_ Nor gat
Compare i)l :)D_ Xor gat
I
| rt
—\¥_/ (r&\(/;:gt;e)
_\ Event 0 (SOUI’CG:
,]J I wikipedia)
Z \¥-—/

T 3
g 5
o ~

Edge
Detect

Res En

Counter (48b)

(Source: Intel.com)

PTfS SS2024, Thomas Gruber

4

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Hardware performance monitoring (HPM) - What is it?

mov rax, [addr]

L

A

mov rax, [addr]

BPU

— r

LD rax, [addr] ~ uop Cache MSROM
L |
N*
LD rax, [addr]
Allocate / |_D rax, [addr] ' Zero Idiom
¢ LD rax, [addr] on
M‘
P4 + P9 ’ LD I Port 0 Port 1 Port5 || Port6
Store Data STD Load STA
. | | ALU ALU ALU ALU
1 LEA LEA LEA LEA
48KB L Data Cache INT | Shift MUL MULHi Shift
yy l JMP1 IDIV *H JMP2
) A *H
512KB LR Dpta Cache EMA EMA*
ALU ALU* ALU
il VEC | ghift Shift*
socC foDIV | | Shuffle* | | Shuffle

Counter0Q: L1 misses
1

Counter1: L2 hits
0

Counter2: Load instr. issued
1

Counter3: Any miss
3

(Source: Intel.com)

PTfS SS2024, Thomas Gruber

5

https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html

Differentiation: hardware and application performance monitoring

Application Monitoring:
= Application insight
= Fine grained

* |n-application measurements
defer work — Overhead

= May create huge amount of data

Hardware monitoring:

Only hardware insight, relation to
executed code almost impossible

Coarse measurements (fine
grained only with instrumentation)

(Almost) no overhead

Limited amount of measurement
facilities restrict data generation

PTfS SS2024, Thomas Gruber

Hardware performance monitoring (HPM) - What can be measured?

HPM units are scattered over the complete chip
2 4 28§

)
Sk @ pcu []
2 Intol® Link0 | Link 1 HE 2 3 Coniroter) oox @[uinko omtr ok
QP links e e 8 o e . . .
AP (Packerzen 1O (integrated 10) | EILOOX | Conto ' AP Pockenzen U nItS may COﬂSlSt Of
mion 5] (8 B T | |
Block (] H d t : t
= = (O-Xfixed purpose counter registers
Dc«w Et;cnieﬂ (Upcia:%ya (Upci::%)ma UO(;EC' Core 14 a <u%§§::.«a DCL;ES cMsD n 1_Y general purpose Config &
ine) ngi nai
T (B0 it || wifee |0l P |4 wie [0l B | counters registers
ine) ngil i
CBox 2 CBox 1 CBox
T |] wife || e [ol Benn [§ i2e |20 2|l Global control register
CBox 3 CBox 1 CBo:
T |l e || e |l ¢ w5 |2 Xl -8 Overflow status & reset register(s)
9
T [it |[i [Tl e [§ e [8] u Filter register(s)
ine) el ngin|
]
. ial feat Ist
X = Special feature register(s
= HA (Home Agen)D] QFD HA (Home Agent)DI
l— OoR BMC(MmryC me)HDDR @ (}Fp BMC(MemoryC ntrol m«]HDDR g
{Up To) Four DDR Channel Is ' (Up To) Four DDR Channels

Intel lvyBridge EP
(Source: Intel.com)

PTfS SS2024, Thomas Gruber 7

https://cdrdv2-public.intel.com/671360/329468-intel-xeon-processor-e5-e7-v2-uncore.pdf

Hardware performance monitoring (HPM) - How does it work?

Bitmap of a control register (Arch version 3)

63 31 24232221201918171615 87 0

Counter Mask | ! | |&] | y

Plelo -
(CMASK) s N v ¥ clEls g Unit Mask (UMASK) Event Select

INV—Invert counter mask ——
EN—Enable counters
ANY—Any Thread —
INT—APIC interrupt enable
PC—Pin control
E—Edge detect
OS—Operating system mode Reserved
USR—User Mode

= APIC interrupts when counter overflows (unusable in user-space)
= Pin control for overflow handling: global register or via APIC interrupt

(Source: Intel.com)

PTfS SS2024, Thomas Gruber 8

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Hardware performance monitoring (HPM) - How does it work?

Bitmap of a unit control register:

= Global overflow registers (signal & reset) use same bit offsets

Global Enable Controls 1A32_PERF_GLOBAL_CTRL

63

353433 32 31

- 10

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTRO enable

Reserved

IA32_PMC(N-1) enable

.................... enable
IA32_PMC1 enable

IA32_PMCO enable

(Source: Intel.com)

PTfS SS2024, Thomas Gruber

9

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Hardware performance monitoring (HPM) - How does it work?

Counter setup (*): Read counter value (*):
= Stop counting globally = |f required:
= If NA: Stop whole PMU = Stop globally
- If NA: Stop counter = OR whole PMU
= Write event+opts to config register = OR only specific counter
= Reset counter register = Read counter value
- If used: Start counter = |f used:
= If used: Start whole PMU = Start globally
= Start counting globally = OR whole PMU

= OR only specific counter

(*) Simplified, there might be infermediate steps required

PTfS SS2024, Thomas Gruber 10

Hardware performance monitoring (HPM) - What can be measured?

= |ntel Pentium provided 42 events, current Icelake SP offers 3032 events

= Events for:
= Cache/memory traffic (loads, stores, RFO, ...)
= Special instructions (divide, floating-point ops, ...)
CISC -> RISC -> CISC translation
Branch prediction, resource stalls, ...
In seperate units: memory traffic, intersocket traffic, PCI traffic, ...
Energy consumption, temperature (not really HPM)

* Understand how a code/algorithm uses the hardware

* Find bottlenecks, real data volume (Loads + Stores + RFOs)
(RFOs/write-allocates not visible from the application’s perspective)

PTfS SS2024, Thomas Gruber 11

Hardware performance monitoring (HPM) - Tools

= HPM on x86 accessible through MSRs, PCI and MMIO devices
= Different on each micro-architecture

= Low level tools: }
= msr-tools
= perf_event (>= Linux 2.6.35)
= Medium level tools (on top of perf_event):
= PAPI
= Intel VTune -
= High level tools (on top of PAPI):
= Score-P (Collaboration of german universities)

- LIKWID, perf

= TAU (University Oregon), HPCToolkit (Rice University), OpenSpeedshop, ...

PTfS SS2024, Thomas Gruber

12

LIKWID - Overview

= Project started in 2009
= Developed by HPC group at the FAU (me (2)) LIKWID h

I\
= Tool suite for performance analysis: “ TOOLS

= System topology information
= Process/Thread pinning

= Hardware performance monitoring & energy measurements
= Microbenchmarking in assembly

= LIKWID tries to measure anything running on a CPU in user-space!

= LIKWID does not require any special kernel module, only default interfaces

PTfS SS2024, Thomas Gruber 13

LIKWID — Affinity domains

= Topology gathering creates affinity domains
= C*: LLC domain (All hardware threads attached to LLC segment)

= §*: Socket domain (All hardware threads of a socket)

= D*: CPU die domain (All hardware threads of a CPU die)

= M*: NUMA domain (All hardware threads of a NUMA domain)

= N: Node domain (All hardware threads)
= At CPU selection choose one of each domain to be leader
= Why affinity domains”? Used for pinning threads!

= Physical without domain: 0,1,2,3 or 4-8 or 0,2-3

= Logical in domain: s0:0-3 0rM0:0,4,6,2

= Combine selections with @ (S0:0@S1:0)

Check 1ikwid-pin for more information about the syntax

PTfS SS2024, Thomas Gruber

16

likwid-perfctr

$ likwid-perfctr —g L2 -C S1:0-3 ./a.out

<<<< PROGRAM OUTPUT >>>>

Group 1: L2

L2 TRANS L1D_WB
ICACHE_MISSES

| STR_RETIRED ANY FIXCO
| (PU_CLK UNHALTED CORE FIXC1
| | FIXC2
| D REPLACEME | PMCO
|
|

[.. statistics output omitted ..]

Always
measured for
Intel CPUs

4/ — — — — — — + — 4+

1298031144
2353698512
2057044629
212900444
112464863
21265

____________ +____________
Core 15 | Core 16
____________ +____________
1965945005 | 1854182290
2894134935 | 2894645261
2534405765 | 2535218217
200544877 | 200389272
99931184 | 99982371
26233 | 12646
____________ +____________

Configured metrics
(this group)

+ —— — - — — + — +

|
|
|
|
I
I
I
I
I
|
|
|
<+

Core 17 |

|
|
|
|
I
I
I
I
I
|
|
|
<+

1862521357 |
2895023739 |
2535560434 |
200387671 |
99976697 |
12363 |

PTfS SS2024, Thomas Gruber

18

likwid-perfctr (cont.

e ettt e il e il o mm il +
| Metric | Core 14 | Core 15 | Core 16 | Core 17 |
e ettt e il e il o mm il +
Runtime (RDTSC) [s]	1.1314	1.1314	1.1314	1.1314
Runtime unhalted [s]	1.0234	1.2583	1.2586	1.2587
Clock [MHz]	2631.6699	2626.4367	2626.0579	2626.0468
CPI	1.8133	1.4721	1.5611	1.5544
L2D load bandwidth [MBytes/s]	12042.7388	11343.8446	11335.0428	11334.9523
L2D load data volume [GBytes]	13.6256	12.8349	12.8249	12.8248
L2D evict bandwidth [MBytes/s]	6361.5883	5652.6192	5655.5146	5655.1937
L2D evict data volume [GBytes]	7.1978	6.3956	6.3989	6.3985
L2 bandwidth [MBytes/s]	18405.5299	16997.9477	16991.2728	16990.8453
L2 data volume [GBytes]	20.8247	19.2321	19.2246	19.2241

R e e L T e e to—m - tomm - to—mmmm - to—mm - T

Preconfigured and extensible metric groups, list with 1ikwid-perfctr -a
= FLOPS DP: Double Precision MFlops/s
= FLOPS SP: Single Precision MFlops/s

= MEM: Main memory bandwidth in MBytes/s
= CLOCK: Clock frequency of cores

PTfS SS2024, Thomas Gruber

19

MarkerAPI|

The marker API can restrict measurements to code regions
The APl only reads counters, the setup is done by 1likwid-perfctr

Multiple named regions support, accumulation over multiple calls
Inclusive and overlapping regions allowed

_ o Before LIKWID 5
#include <likwid-marker.h> use likwid.h

LIKWID MARKER INIT; // must be called from serial region
LIKWID MARKER REGISTER(“Compute”); // optional but recommended

LIKWID MARKER START (“Compute”) ; // call markers for each thread
LIKWID_MARKER_STOP (“Compute”) ; = Activate macros with -DLIKWID PERFMON
S * Run likwid-perfctr with -m switch to
LIKWID MARKER START (“Postprocess”); enable marking

I = See https://github.com/RRZE-
LIKWID_MARKER STOP (“Postprocess”) ; HPC/likwid/wiki/TutorialMarkerF90 for

Fortran example

LIKWID MARKER CLOSE; // must be called from serial region

PTfS SS2024, Thomas Gruber

20

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90
https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

FAU EAY Fw

Case-Study for upper triangular matrix vector
multiplication

Case-Study dTMVM

* Triangular matrices often used: LU factorization -> Gauss elemination,
compute inverse matrix or dominant of a matrix

= Dimension N:
= N - N*1/, elements in matrix
« N - N*+1/, multiplications + N - N*1/, additions
— Computational intensity =2 FLOPs / 8 Bytes (counting only loads)

PTfS SS2024, Thomas Gruber

22

Case-Study dTMVM (Code + Instrumentation)

#include <likwid-marker.h> <«

[..] // defines, fillMatrix and init matrix & vectors Include header file, initialize

LIKWID MARKER INIT; library and register each

$pragma omp parallel { LIKWID MARKER REGISTER (,Compute“); } thread

fpragma omp parallel

{ Data often accessed, likely to be kept
for (int k = 0; k < ROUNDS; k++) { in cache

LIKWID MARKER START (“Compute”) ;

fpragma omp for private(current, j)

for (int 1 = 0; 1 < N; i++) {
Read double current = 0.0;
ea L .
counters for (int J =17 3 <7 J++) | Data more likely located in memory.
current += matl[{1*h)*Jl = bvecljls With N=10000 and ROUNDS=1000

cvec[i] = current; 10000 + 1
\} < ()/2 . 10000 - 8 Bytes - 1000 =

400 GBytes
LIKWID MARKER STOP (“Compute”) ;

while (cvec[N>>1] < 0) {dummy();break;} // to avoid removal of loop

}
LIKWID MARKER CLOSE; * Write results to file for evaluation by likwid-perfctr

PTfS SS2024, Thomas Gruber 23

Case-StUdy dTMVM Run in Socket 0 domain

using CPUs indexed 0 and 1

Measure different metrics using LIKWID: Marker AP
likwid-perfctr -C S0:0-1 -g <Group> -m“./dtmvm

m-_ CPU 0

All groups
L2

L3

MEM

DATA
FLOPS DP
L2CACHE
L2CACHE

in ,phyical cores first' sorted list

o

Loads of matrix
(Memory) and
vector (L2)

Cycles-per-instruction .
L2 data volume [GBytes] 602 184

L3 data volume [GBytes] 285 98
Memory data volume [GBytes] 412 -
Load to store ratio 3320.5 : 1 8.5 : 1
MFLOP/s 4897 1704
L2 request rate 0.75 0.13
L2 miss ratio 0.30 0.30
Only loads of the matrix. N=10000, ROUNDS=1000, Intel E5-2687W

PTfS SS2024, Thomas Gruber

Streamed through L3 cache. 04

Case-Study dTMVM

= Why is CPI lower for HWThread 17 Is it executing better on HWThread 17

OpenMP for pragma performs implicit barrier at end of loop
— Busy waiting executes many ,short’ instructions
— CPI decreases

= Why is the load to store ratio so different?

HWThread 0 loads long lines (N — ¥/,) for single store to rhs
HWThread 1 loads only short lines (¥/, — 1) for single store to rhs

= L2 request rate of 75% for HWThread 0 and only 13% for HWThread 17

Careful about interpretations of metric names!
Request rate = Requests to L2 / all finished instructions
Value for HWThread 1 skewed by implicit barrier like CPI

PTfS SS2024, Thomas Gruber 25

Case-Study dTMVM

= Parallelization with OpenMP

Thread O

= (Calculated work/load ratio Thread O : Thread 1 =3 : 1

Thread 1

= L2 data volume ratio Thread O : Thread1=3.3:1 _

Data volume
no good metric
for work.

= | .3 data volume ratio Thread O : Thread 1 =2.9: 1
= MFLOP/s ratio Thread O0: Thread 1 =2.9: 1

PTfS SS2024, Thomas Gruber

26

Case-Study dTMVM

Scaling run with SIMD FLOPs.

SIMD ops

2e+08
1.8e+08
1.6e+08
1.4e+08
1.2e+08
le+08
8e+07
6e+07
4e+07
2e+07
0

Vectorized double precision operations
Event SIMD_FP_256_PACKED_DOUBLE
OMP schedule(static)

T0
Tl

T4
T5
T6

4 6 8

Number of threads

N=10000, ROUNDS=1000, Intel E5-2687W

PTfS SS2024, Thomas Gruber

27

Case-Study dTMVM

= How can we fix the load imbalance between the threads?
= Use a manual decomposition of the matrix
= Change OpenMP scheduler (commonly more overhead than static)
= Default static scheduler splits iteration space by number of threads.
Can be manually adjusted — schedule (static, 16) : 16 lines per thread

MFLOP/s comparison between unbalanced and
balanced workload
6000

5000

4000

3000

2000

1000 -
0

Normal Static(16)
mHWThread 0 mHWThread 1

PTfS SS2024, Thomas Gruber

28

Case-Study dTMVM

Scaling run with SIMD FLOPs compiled with schedule(static, 16)

OMP schedule(static,16)

Vectorized double precision operations
Event SIMD_FP_256_PACKED_DOUBLE

1.4e+08

1.2e+08 |

le+08 |

8e+07 [

SIMD ops

6e+07 [

4e+07 [

2e+07 [

0

6

Number of threads

T0
Tl

T4
T5
T6

N=10000, ROUNDS=1000, Intel E5-2687W

PTfS SS2024, Thomas Gruber

29

Case-Study dTMVM

OK, we fixed the load imbalance, what about performance?

FLOP/s

9e+09 n

8e+09 |

7e+09

6e+09 |

5e+09 |

4e+09

3e+09

2e+09 b

Floating point operations

OMP schedule(static) —+—
pMP schedule(static,16) ——

2 4 6 8
Number of threads

PTfS SS2024, Thomas Gruber

30

FAU F/szldghﬁl bng

Case-Study for quadratic matrix vector
multiplication

Case-Study dMVM

= Using a quadratic matrix
= Calculate on a multi-socket system

= Where does the data reside on multi-socket systems?
= Can the operating system distribute the data optimally?

= Can we initialize the data for optimal locality?

No real allocation,

= How can we measure the inter-socket traffic? just reservation
double* ptr = malloZ}ARRAX_SIZE * sizeof (double))
if (!ptr)
return;

for (int i=0; i< ARRAY SIZE; i++)
ptr[i] = M PI; «—

First touch allocation policy.
The data is allocated at
the nearest memory

PTfS SS2024, Thomas Gruber

32

Case-Study d

MVM

Transfered memory data volume for different initialization strategies

Intel SandyBridge EP, 32 HWthreads @ 3.1GHz
Threads pinned to 50:0,1,2,3 and $1:8,9,10,11

4 t

GByte

-~

No data is
fetched from
socket 1 memory

Socket 0 volume
Socket 1 volume
S0<->S1 transfers

| Kernel tries to
| interleave data

between both

| sockets but not
| optimal

\

1 Optimal data

1 between sockets

locality!
No traffic

Local init Interleaved mempolicy Parallel init
socket O on sockets 0,1 on sockets 0,1

PTfS SS2024, Thomas Gruber

33

Case-Study dMVM — Interleaved memory policy

= Interleaving memory policy

Use numactl --interleave <NUMA node IDs|all>

Round-Robin placement of memory pages

= For optimal placement, the code has to distribute the data

double* ptr = malloc (ARRAY SIZE * sizeof (double))
if (!'ptr)
return;

#pragma omp for .. «
for (int i=0; i< ARRAY SIZE; i++)
ptr[i] = M PI;

Each threads triggers
first touch policy to
place the data local

to them

Use same parameters
as hot loop(s)

= Commonly in OpenMP, the threads get the same slice of iteration space in

equally sized loops

PTfS SS2024, Thomas Gruber

34

Advanced functionality of hardware counting

= Vendors implemented more advanced capabilities for sampling
= Intel: Precise Event-Based Sampling
= AMD: Instruction-Based Sampling
= (Open)POWER: Marked instruction sampling
= ARM does not specify anything in the docs but vendors could add it

= Event and counter options for restricted counting
= Only count if above/below threshold
= Edge detection (event counts active cycles — event counts activations)
= Special unit filters like cache line status, address filters, request/response types
= many more...

PTfS SS2024, Thomas Gruber 35

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

LIKWID:

https://github.com/RRZE-HPC/likwid

perf and perf event

= Kernel interface and corresponding user-space tool
= Support commonly added by vendors

= Focus on events not physically available counter registers

$ perf stat —-e cycles ./a.out
<output>
Performance counter stats for a.out':

1.963.023 cycles
0,011491507 seconds time elapsed

0,001712000 seconds user
0,000000000 seconds sys

PTfS SS2024, Thomas Gruber

perf and perf event

= Single system call perf event open

= The perf event attr structure contains
= Which event type (= unit): /sys/devices/<unit>/type
= How to count? Sampling, only user-space, ...

= What should be counted:
- Main configuration see /sys/devices/<unit>/format/event and ../umask

- Additional options, see /sys/devices/<unit>/format/<option>
= Result storage (FD, mmap, ...) and format (with times?)
= After adding event, IOCTL calls for starting, stopping, resetting, ...

PTfS SS2024, Thomas Gruber

38

Other devices

= Many devices and associated libraries provide some counting functionality
= Nvidia: CUPTI
= AMD: rocProf
= Intel GPUs: OneAPl/LevelZero
= But also network adapters, disks, etc.

= For many:
= Unclear how counting works (obfuscated in libraries)
= Like for CPUs, capabilities depend on exact model
= Limited configuration space
= Own tools make most use of the APls

PTfS SS2024, Thomas Gruber 39

