
Programming Techniques for Supercomputers Tutorial

Erlangen National High Performance Computing Center

Department of Computer Science

FAU Erlangen-Nürnberg

Sommersemester 2024

2024-05-31 2PTfS 2024 Tutorial

Assignment 3 – Task 1

Schönauer triad:

a[i] = b[i] + c[i] * d[i]

Intel Ice Lake – scalar code: 32/64-Bit instruction

LD ST FMA FMA

MULT MULT

ADD

LD ST

Peak Floating Point (FP) Performance:

𝑃𝑐𝑜𝑟𝑒 = 𝑛𝑠𝑢𝑝𝑒𝑟
𝐹𝑃 ∙ 𝑛𝐹𝑀𝐴 ∙ 𝑛𝑆𝐼𝑀𝐷 ∙ 𝑓

Super-

scalarity
SIMD

factor

FMA

factor

2024-05-31 3PTfS 2024 Tutorial

Task 1

16 flops / 1.5 cy = 10.7 flop/cy x 2.1 Gcy/sec = 22.4 Gflop/s

32 flop/cy x 2.1 Gcy/sec = 67.2 Gflop/s

Code has 3 LOAD + 1 STORE + 1 FMA + loop mechanics

Performance Limits: Bottleneck is LOAD as 3LOADS→1.5cycle

Performance: P

Peak Performance : Pmax

22.4Gflop/sec / 67.2 Gflop/sec = 0.33 Pmax

Performance ratio: P/Pmax

AVX2: 1.5 cy for 4 (scalar) iterations → Pmax=8 flops / 1.5 cy * 2.1

Gcy/s = 11.2 Gflop/s (or 5.33 flop/cy)

Scalar: 2 flops / 1.5 cy (2.8 Gflop/s)

2024-05-31 4PTfS 2024 Tutorial

Assignment 3 – Task 2

(a) (5 credits) Assuming that the compiler applies no unrolling and no SIMD vectorization,
calculate the maximum possible performance of the loop in Flops/cycle if the data comes
from the L1 cache.

Per iteration: 2 LD, 1 ADD, 1 MULT → ADD is the bottleneck with latency 4

Pmax = 2Flop /4 cycle = 0.5 Flop/cycle

(b) (15 credits) Calculate the performance to expect at N=8.

Overall pipeline latency (time to first result):

L = 5+1 cy (LD) + 4 cy (MULT) + 4 cy (ADD) = 14 cy

2024-05-31 5PTfS 2024 Tutorial

Task 2

Performance at loop length N: Startup latency + (N-1) times the cycles in throughput

mode

(c) (10 credits) Now assume that the compiler can SIMD-vectorize the loop with AVX, but
does no unrolling beyond that. Also assume that adding up the four slots ("horizontal
add") of an AVX register takes eight additional cycles. Calculate how this changes
the predictions from (a) and (b). How would the numbers change for 8-wide SIMD units
(64-byte registers)? (Horizontal add takes 12 cycles in this case)

Assuming 4-way SIMD capability, with no unrolling:

Steady-state Pmax achieved with 2 LD, 1 ADD, 1 MULT per SIMD iteration

→ 4 cy per SIMD iteration → speedup of 4x w.r.t. scalar code → 1.52 flop/cy

cyflopcyit
NL

N

NT

N
P /38.0/

42

8

)1(4)(
→=

−+
==

2024-05-31 6PTfS 2024 Tutorial

Task 2

Performance with N=8: Consider modified overall pipeline latency of

L = (14+8) cy = 22 cy

The number of AVX (i.e., assembly) iterations is 4x smaller than N.

8-wide SIMD units → L = (14+12) cy = 26 cy, and that is it because the work is

only 8 iterations → 16 flops / 26 cy = 0.61 flop/cy

Note: We assume that the compiler generates a proper loop with an ADD

instruction. If the compiler knows the loop length, it will probably do the horizontal

add right after the MULT, leading to 22 cy)

cyFlopcyAVX
NL

N

NT

N
/53.0/067.0

)14/(4

4/

)4/(

4/
→=

−+
=

2024-05-31 7PTfS 2024 Tutorial

Task 2

(d) (15 credits) Now assume that compiler performs a 2-way modulo unrolling of the loop, on
top of AVX. Calculate the maximum expected performance with AVX if the data comes from
the L1 cache. Would 4-way unrolling change anything? Why (not)?

2-way MVE on top of 4-way SIMD:

→ ADD limitation at 4 cy per 2 AVX iterations (2 out of 4 ADD stages can be filled)

→ However, 2 iterations need 4 loads → LOAD throughput limit also at 4 cy per 2 AVX

iterations

→ The bottleneck is now ADD and LOAD → P = 16 flops/4 cy = 4 flop/cy

Additional MVE unrolling would change nothing because we are already at the LOAD

limit

2024-05-31 8PTfS 2024 Tutorial

Task 2
(e) Comparing the non-unrolled code from (a) with the AVX + 2-way MVE variant from (d),
how many instructions (as a function of N) must be executed by the core to traverse the whole
loop? Assume that the "loop mechanics" (handling the iteration count) always needs 3
instructions (add, compare, branch).

Variant from (a): 2LOAD + 1ADD + 1MUL + 3 with N iterations

4 + 3 instructions per assembly iteration → 7 N instructions overall

Variant from (d):

4LOAD + 2ADD + 2MUL + 3 instructions per assembly iteration → 11 Nasm

Only N/8 assembly iterations → (2*4+3)*N/8+1 instructions overall, i.e., 1.375 N +1

→ More than a factor of 4 fewer instructions because of less overhead from loop

mechanics

2024-05-31 9PTfS 2024 Tutorial

Assignment 3 – Task 3

Explain the change in performance
with growing M.

Write a benchmark code for the double-precision "vector update" kernel and modify it so
that only each Mth element is used. Fix the clock frequency. What happens if you increase
M even further?

for(i=0; i<N; i+=M) a[i] = s * a[i];

Choose strides of M=8*1.2n, with n a
positive integer and M<=106. Explain why
this behavior is expected.

2024-05-31 10PTfS 2024 Tutorial

Benchmark code

Performance drops by a

factor of about 1/M initially

because only every Mth

element is used but all the

cache lines still have to be

loaded Beyond M=8 there is

no strong change any more

at first.

L3 cache

L2 cache

L1 cache

2024-05-31 11PTfS 2024 Tutorial

Benchmark code

Behavior for larger M (blue

dots): Starting at M=300 there

is a rise in performance. At

M=300, only every 19th CL is

loaded (adjacent CL prefetch!).

This is a working set

of 108 (elements) x 8 bytes /

19 ≈ 42 MB. The L3 cache of

the Ice Lake CPU is 54 MiB,

so the complete working set

fits into the L3 at this point.

L3 cache

L2 cache

L1 cache

2024-05-31 12PTfS 2024 Tutorial

Benchmark code

The second sharp rise is at

about M=4000. Here, only

every 500th CL is loaded.

The working set is 8 x

108 bytes / 500 ≈ 1.6 MB.

The L2 size is 1.25 MiB, so

this is near the point where

the complete working set

fits into the L2 cache

L3 cache

L2 cache

L1 cache

2024-05-31 13PTfS 2024 Tutorial

Benchmark code

Finally, the last sharp rise at

M=100000 indicates a

working set of 64 kB, while

the L1 size is 48 KiB, hence

this is where the working

set fits into the L1 cacheL3 cache

L2 cache

L1 cache

Do let me know if you have Questions.

Thank you.

