Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/)\

Programming Techniques for Supercomputers:
Shared-memory parallel processing with OpenMP

Getting Started
Data Scoping
Worksharing

Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/)\

Data Scoping
Worksharing

Introduction to OpenMP: Basics

= “Easy,” incremental and portable parallel programming of shared-memory
computers: OpenMP

= Original design goal: Data-level shared memory parallelism — many
extensions: Task parallelism, Accelerator offloading, SIMD support,...

= Standardized set of compiler directives & library functions:
http://www.openmp.org/
= FORTRAN, C and C++ interfaces are defined
= Supported by all current compilers
= Free tools are available

= B. Chapman, G. Jost, R. v. d. Pas: Using OpenMP. MIT Press, 2007, ISBN 978-0262533027
= R.v.d. Pas, E. Stotzer, C. Terboven: Using OpenMP — The Next Step. MIT Press, 2017, ISBN 978-0-262-53478-9

PTIS 2024 June 4, 2024

http://www.openmp.org/

Introduction to OpenM

: Software Architecture

Application User
Compiler Environment
Directives Variables

Runtime Library

:

Threads in OS
Cores in hardware

= Programmer’s view:
= Directives/pragmas in application code
= (Afew) library routines

= User’s view (code execution):

= Environment variables determine:
- resource allocation

- scheduling strategies and other
(implementation-dependent) behavior

= Operating system view:
= Parallel work done by OS threads

PTIS 2024

June 4, 2024 4

Introduction to OpenMP: shared-memory model

Central concept of OpenMP programming:

Threads
T T
/ \ N\
private /\ private
Shared
Memory
A private
private N f\' /
T T

= Threads:
= Spawned by a process

= Local register set, instruction
pointer, stack

= Shared global address space

= Data scope: shared or private
= Shared data available to all threads

= private data only available to thread
that owns it

s Data transfer between threads:
= transparent to programmer

PTIS 2024

June 4, 2024 5

Introduction to OpenMP: fork-join execution model

Program start:
one process (master thread) running

master thread

v
fork ™
v l l l l}%ﬂf\ Parallel region: team of threads is generated (“fork”)
< Synchronize when leaving parallel region (“join”)

join"
serial
 / region
— Serial region:
%wam of only master executes
v threads

'\

Thread#0 1 2 3 4

PTIS 2024 June 4, 2024 6

Introduction to OpenMP: General syntax in C/C++

= Compiler directive:
#pragma omp [directive [clause ...]]
structured block
= If OpenMP is not enabled by compiler - treated like comment

= Include file for API calls: #include <omp.h>

= Conditional compilation: Compiler’s OpenMP switch sets preprocessor
macro (acts like -D OPENMP)

#ifdef OPENMP
t = omp get thread num() ;

#endif

PTIS 2024 June 4, 2024

Introduction to OpenMP: General syntax in Fortran

= Each directive starts with sentinel in column 1:
= fixed source: 'SOMP or CSOMP Or *SOMP
= free source: !'SOMP

followed by a directive and, optionally, clauses.

= API calls:
= F77: include file omp 1ib.h, F90+: module omp 1ib

= Conditional compilation of lines starting with '$ or C$ or *$ to ensure
compatibility with sequential execution

myid = 0
= Example: '$ myid = omp get thread num()
numthreads 1

'$ numthreads = omp get num threads()

PTIS 2024 June 4, 2024

Introduction to OpenMP: parallel region

" §pragma omp parallel
structured block

= Makes structured block a parallel region: All code executed between start and
end of this region is executed by all threads

= This includes subroutine calls within the region

#pragma omp parallel
printf (“Hello from %d of %d\n”,
omp get thread num(), omp get num threads()):;

_ ID of calling # of threads
API functions ’ thread 0...n-1 in region

= END PARALLEL required in Fortran

PTIS 2024 June 4, 2024

Introduction to OpenMP: compile and run

= Activate OpenMP directives
= Intel: ~-gopenmp, GCC: -fopenmp
= Number of threads: Shell variable OMP NUM THREADS

$ icc -gopenmp hello.c
$ OMP_NUM THREADS=4 ./a.out

= Ordering of output is not defined
= Avoid extensive output to stdout in parallel regions!

Hello
Hello
Hello
Hello

from
from
from
from

N R WO

of
of
of
of

[R -

PTIS 2024

June 4, 2024

10

Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/)\

Getting Started

Worksharing

Data scoping: Shared vs. private data

Data in a parallel region can be: T T
private/ f\ \;ivate
_ _ Shared
= private to each executing thread Memory
—> each thread has its own local copy of data private
rivate
p < /
= shared between threads T U

—> there is only one instance of data available to all threads
—> this does not mean that the instance is always visible to all threads!

OpenMP clause specifies scope of variables:
#pragma omp parallel private(varl, tmp) shared(eps)

PTIS 2024 June 4, 2024

14

How Is private data different from shared data?

4

»

Voi:tfa(‘); t | stack pointer \ a % — I\A f}i,
X (0] <free>
float x,y; Y (top of stack) 3 Ao
.« e <free> g local stack
#pragma omp parallel ’g
{ 5
int i; shared stack = [comer NP
float y; // masking shared y <free>
<free>
} local stack
}
. | stack pointer |\\‘ i
= Local variables are kept on a stack (last- L
in first-out memory) o e
OCal stac
= Every thread has a private stack area
= i.e., there is one global stack, plus one [eooner |
local stack for each thread <o
= Private data goes to private stacks local stack
= Stack size is limited!
PTfS 2024 June 4, 2024

Data scoping: Shared vs. private data

= Default: All data in a parallel region is shared
This includes global data (global/static variables, C++ class variables)
= EXxceptions:
1. Loop variables of parallel (“sliced”) loops are private (cf. workshare constructs)

2. Local (stack) variables within parallel region
3. Local data within enclosed function calls are private unless declared static

= Stack size limits = may be necessary to make large arrays static
= If not possible - use heap [i.e., malloc (), new[], allocate ()]
= OMP_STACKSIZE shell variable allows to set per-thread stack size

$ export OMP STACKSIZE=100M

PTIS 2024 June 4, 2024

16

Data scoping: private data example

C: Fortran 90+:

include <omp.h>
co use omp lib
int myid = 0, numthreads = 1; integer myid, numthreads

#pragma omp parallel \ e
private (myid, numthreads) myid = 0

{ numthreads = 1
#ifdef OPENMP !Somp parallel private (myid,numthreads)

myid = omp_get thread num(); 'S myid = omp_get thread num()

numthreads = omp get num threads() ; 'S numthreads = omp get num threads()

#endif print * ,“I am ” ,myid, &

printf (*I am %d of %d\n”, “ of ” ,numthreads

myid, numthreads) ; !Somp end parallel

PTIS 2024 June 4, 2024 17

Data scoping: alternative in C

include <omp.h>

#pragma omp parallel

{ /—\
int myid = 0, numthreads = 1; _ _

#ifdef OPENMP Local variables in structured block are
wyel = @iy GEie R amaee) el g automatically private! - less need for
numthreads = omp get num threads() ; . .

Yend === private clauses in C

endif

printf (*I am %d of %d\n”,
myid, numthreads) ;

\ Caveat: local variables are destroyed

(go out of scope) at end of block!

}

PTIS 2024 June 4, 2024

18

Data scoping: important side effects

= What happens if a variable is unintentionally shared?
= Nothing if it is just read
= Possibly hazardous if at least one thread writes to it

float x = 0.0;

#pragma omp parallel . e
{ Race condition

x += some work(...);

}

= Clause for specifying default scope: default (shared|private|none)
= Recommendation: Use
#pragma omp parallel default (none)
= to not overlook anything
= compiler complains about every variable that has no explicit scoping attribute

PTIS 2024 June 4, 2024

19

Data scoping: private variables and masking

double s;

s = ...;
#pragma omp parallel private(s)
{

S = ...,

Masking privatized
variables defined in scope
outside the parallel region

time
<€

shared <€—— private ——>

fork

initial values
undefined

T0 T1 T2 T3
O OOOD
persists
(inaccessible) v
s SIS

join

shared value
recovered after region

But what happens if the initial value is required
within the parallel region?

PTIS 2024

June 4, 2024 20

The firstprivate clause

double s;

s = ...;
#pragma omp parallel firstprivate(s)
{

s += ...,

Extension of private:

value of master copy is transferred to
private variables

Restrictions: not a pointer, not
assumed shape, not a subobject,
master copy not itself private etc.

time
<€

shared <€—— private ——>

fork

-~ S~

persists
(inaccessible)

zzzz

shared value
recovered after region

Global variable privatization:

threadprivate, copyprivate
clauses

PTIS 2024

June 4, 2024 21

Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/)\

Getting Started
Data Scoping

Worksharing: manual loop scheduling

= Work distribution by
thread 1D

= Only works so easily
for canonical loops

» Load balancing very
hard

= Complex code

- don’t do it.

#include
int tid, numth, bstart, bend, blen, N;
double a[N], b[N], c[N], d[N];

#pragma omp parallel private(tid, numth, bstart, bend, blen)
{

tid=0; numth=1;
#ifdef OPENMP

tid = omp get thread num();

numth omp _get num threads() ;
#endif
blen = N/numth;)
if(tid < N % numth) { One consecutive
++blen; bstart = blen * tid; > chunk of iterations
} else
bstart = blen * tid + N $ numth; perthread
bend=bstart+blen-1; _J

}
\‘ Actual work

PTIS 2024

June 4, 2024 23

Worksharing: parallel loop

* #pragma omp for [clauses] declares that
the following loop iterations are to be distributed among threads
= Active only if encountered within a parallel region

int i, N;
double a[N], b[N], c[N], d[N];

#pragma omp parallel // parallel threads
{
#pragma omp for // parallelize loop
for(i=0; i<N; ++1)

a[i] = b[1] + c[i] * d[1];

barriers here!

A

g of parallel loop is declared
= Implicit thread synchronization (barrier) at end of parallel and at end of for
* Fortran: '$Somp do [clauses]

PTIS 2024 June 4, 2024

24

Worksharing: combined construct

» }pragma omp parallel for
structured block

int i, N;
double a[N], b[N], c[N], d[N];

#pragma omp parallel for
for (i=0; i<N; ++i)
a[i] = b[i] + c[i] * d[i];

= Just easier to type...

* Fortran: '$Somp parallel do / S'omp end parallel do

PTIS 2024 June 4, 2024

Worksharing constructs

#pragma omp for

= Only the loop immediately following the directive is workshared
= Restrictions on parallel loops

= trip count must be computable (no do ... while)

= loop body with single entry and single exit point (no breaking out of loop)
= C++ random access iterator loops are supported:

#pragma omp for

for (auto i=v.begin(); i'=v.end(); ++i) {
(*i) *= 2.0;

}

PTIS 2024 June 4, 2024

26

Worksharing constructs in general

= Distribute the execution of the enclosed code region among the members

of the team
= Must be enclosed dynamically within a parallel region

= No implied barrier on entry
= Implicit barrier at end of worksharing (unless nowait clause is specified)

= Directives
= for directive (C/C++), do directive (Fortran)

= section (s) directives (ignored here)
= workshare directive (Fortran 90 only — ignored here)

= Tasking (advanced)

PTIS 2024 June 4, 2024

27

Worksharing constructs example

Example: matrix processing with nested loop structure

double a[ndim] [ndim], b[ndim] [ndim] ;
; - . ..
= ST T #pragma omp parallel
h hd {
N RE Only these #pragma omp for
- IOOpS are — for (int j=1; j<ndim-1; ++3j) {
arallel! for(%nt'i=1; i<n§im71; ++i2 .
— P aljl[i] = (b[j]1[i+1]+b[]j] [i-1]
j +b[j+1] [i]+b[j-1][i]) *0.25;

}
#pragma omp for
for (int j=1; j<ndim-1; ++j) {
for(int i=1; i<ndim-1; ++i)
b[3]1[i] = (aljll[i+l]+a[j][i-1]
synchronization +ta[j+1][i]+a[j-1]1[i])*0.25;

PTIS 2024 June 4, 2024 28

Some workshare construct clauses

= Examples for workshare construct clauses:
= private, firstprivate, lastprivate

nowait

collapse (n)
schedule (type [, chunk]) [see nextslide]
reduction (operator:list) [seelater]
= There are some more...
= |Implicit barrier at the end of loop unless nowait is specified
(barrier may be costly!)
*» collapse: Fuse nested loops to a single (larger one) and parallelize it

» schedule clause specifies how iterations of the loop are distributed
among the threads of the team.

PTIS 2024 June 4, 2024

29

Loop worksharing: the schedule clause

Within schedule (type [, chunk]), type can be one of the following:

static: Iterations are divided into pieces of a size specified by chunk. The pieces are statically assigned
to threads in the team in a round-robin fashion in the order of the thread number.
Default chunk size: one contiguous piece for each thread.

dynamic: Iterations are broken into pieces of a size specified by chunk. As each thread finishes a piece of
the iteration space, it dynamically obtains the next set of iterations. Default chunk size: 1.

guided: The chunk size is reduced in an exponentially decreasing manner with each dispatched piece of
the iteration space.

chunk specifies the smallest piece (except possibly the last).

Default chunk size: 1. Initial chunk size is implementation dependent.

runtime: The decision regarding scheduling is deferred until run time. The schedule type and chunk size
can be chosen at run time by setting the OMP SCHEDULE environment variable.

auto: Compiler/runtime decides

Default schedule: implementation dependent

PTIS 2024 June 4, 2024 30

Loop worksharing: the schedule clause

lteration

DTD
10 7/
11
12 e
13
14
15
16
17
18
19
20

STATIC STATIC, 3 DYNAMIC[, 1] DYNAMIC, 3 GUIDED[, 1]

—

O 0o~ oo s W N

PTIS 2024 June 4, 2024

31

