
Programming Techniques for Supercomputers:
Shared-memory parallel processing with OpenMP (II)

OpenMP reductions
OpenMP synchronization
OpenMP basic overheads

OpenMP affinity
Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)

(a) Erlangen National High Performance Computing Center (NHR@FAU)
(b) Department für Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2024

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions
OpenMP synchronization
OpenMP basic overheads
OpenMP affinity

Operations on data across threads
§ Recurring problem: Operations across thread-local instances of a variable

§ Solution: reduction clause

int i,N;
double a[N], b[N];
...
s=0.;
#pragma omp parallel firstprivate(s)
{
#pragma omp for
for(i=0; i<N; ++i)

s = s + a[i] * b[i];
// How to sum up the different s?

}

June 5, 2024PTfS 2024 3

June 5, 2024PTfS 2024

Reduction clause on parallel region or workshared loop

At synchronization point:
§ reduction operation is performed
§ result is transferred to master copy
§ restrictions similar to firstprivate Reduction variable must be

shared in enclosing context!

int i,N;
double a[N], b[N];
...
s=0.;
#pragma omp parallel
{
// s is still shared here
#pragma omp for reduction(+:s)

for(i=0; i<N; ++i)
s = s + a[i] * b[i];

// s is shared again here
}

tim
e

s

 T0 T1 T2 T3
s

s

s0=0 s1=0 s2=0 s3=0

s0 s1 s2 s3s

persists
(inaccessible)

s

shared private

4

June 5, 2024PTfS 2024

Reduction operations: general considerations
Oper-
ation Initial value

+ 0

- 0

* 1

& ~0

| 0

^ 0

&& 1

|| 0

max MINVAL(type)

min MAXVAL(type)

Consistency required!

X = expr – X is not allowed

Don’t lie.

Fo
rtr

an
 h

as
 a

n
an

al
og

ou
s

se
t

float x, y, z;
#pragma omp for reduction(+:x, y, z)

#pragma omp for reduction(+:x, y) \
reduction(*:z)

Multiple reductions:

5

June 5, 2024PTfS 2024

Reduction operations: Example
double s, a[size*size], x[size], y[size];
...
s=0.;
#pragma omp parallel
{
#pragma omp for schedule(???)

for(int m=0; m<size; m++){
for(int n=m; n<size; n++){
y[m] += a[m*size+n] * x[n];

}
}

...
#pragma omp for reduction(+:s)

for(int m=0; m<size;m++) {
s += x[m] * y[m];

}
...
}

6

dense triangular MVM

scalar product

+= *

m

n

*s+=∑

June 5, 2024PTfS 2024

Reductions on arrays
§ Elementwise reductions on arrays (or slices thereof)

!$omp parallel do reduction(+:y)
do c = 1 , C
 do r = 1 , R
 y(r) = y(r) + A(r,c) * x(c)
 enddo
enddo
!$omp end parallel do

7

#pragma omp parallel for reduction(+:y[0:rows])
for(int c=0; c<cols; ++c)
 for(int r=0; r<rows; ++r)
 y[r] += a[r+c*rows] * x[c];

C/C++: Array slice
syntax is mandatory

Fortran: No slice
necessary on full array

reduction

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions
OpenMP synchronization: Ensuring consistency
OpenMP basic overheads
OpenMP affinity

Why synchronization?
Example: variable update (read – modify – write)

private

Shared Memory

a = a + 1;

T

T

T

T

private

private
private

re
ad

write

read

write

modify modify

Multiple threads access shared
variable, and at least one writes
to it
à “race condition”

Synchronization = means to
manage conflicting/uncontrolled
accesses

June 5, 2024PTfS 2024 9

Why synchronization?
Example: variable update (read – modify – write)

private

Shared Memory

a = a + 1;

T0

T3

T1

T2

private

private
private

re
ad

write

read

write

modify modify

Synchronization: All threads
need to wait until last thread
enters synchronization

T2: read a
T2: a=a+1
T2: write a
SYNCHRONIZATION
T3: read a
T3: a=a+1
T3: write a
SYNCHRONIZATION

June 5, 2024PTfS 2024 10

SYNC SYNC

SYNC SYNC

SYNC SYNC

SYNCSYNC

June 5, 2024 11PTfS 2024

Barrier synchronization
§ #pragma omp barrier

§ Each thread blocks upon reaching the barrier until all threads
have reached the barrier

§ All accessible shared variables are flushed to the memory
hierarchy (similar to volatile attribute in C/C++)

§ barrier may not appear within work-sharing construct (e.g.,
omp for block) à potential of deadlock

§ Implicit barrier:
§ at the beginning and end of parallel regions
§ at the end of worksharing constructs unless a nowait

clause is present
Rem

em
be

r:

Barr
ier

 sy
nc

co
sts

 tim
e!

June 5, 2024 12PTfS 2024

Relaxing synchronization requirements
§ The nowait clause

§ removes the implicit barrier at end of worksharing construct
§ potential performance improvement (especially if load imbalance occurs within

construct)
§ Programmer is responsible for preventing race conditions!

#pragma omp parallel
{

#pragma omp for nowait
for(int i=0; i<N; ++i) {

a[i] = some_stuff(i);
}
// ... More parallel work (don’t reference a[])

#pragma omp barrier
... = a[i]; // after deferred barrier

}

No barrier here

June 5, 2024 13PTfS 2024

Case study: reducing barrier cost for dense MVM
§ General advice: Parallelize as far out as possible!

void dmvm(int n, int m, double *lhs,
double *rhs, double *mat){

...

for(int c=0; c<n; ++c)
int offset = m * c;
for(int r=0; r<m; ++r)

lhs[r] += mat[r + offset] * rhs[c];

}

Only one barrier…

… but race condition
on lhs[]

#pragma omp parallel for

June 5, 2024 14PTfS 2024

Reducing barrier cost: dense MVM
§ Inner loop parallel à correct result

void dmvm(int n, int m, double *lhs,
double *rhs, double *mat){

...
#pragma omp parallel
{

for(int c=0; c<n; ++c)
int offset = m * c;
#pragma omp for
for(int r=0; r<m; ++r)

lhs[r] += mat[r + offset] * rhs[c];
}
}

Only one parallel region

… but n implicit barriers

Result is correct: threads work
on separate parts of lhs[]

June 5, 2024 15PTfS 2024

Reducing barrier cost: dense MVM
§ Inner loop parallel à correct result, and use nowait to avoid barriers

void dmvm(int n, int m, double *lhs,
double *rhs, double *mat){

...
#pragma omp parallel
{

for(int c=0; c<n; ++c)
int offset = m * c;
#pragma omp for schedule(static) nowait
for(int r=0; r<m; ++r)

lhs[r] += mat[r + offset] * rhs[c];
}
}

Only one parallel region

No implicit barriers on
workshared loop

Result is correct: threads work
on separate parts of lhs[]

Ensure same iteration-to-
thread mapping

One implicit barrier

June 5, 2024 16PTfS 2024

Reducing barrier cost: dense MVM
§ Barrier overhead may substantially decrease

performance
§ Performance impact decreases as inner loop

length (work per barrier) increases (see
m=40,000 vs. m=10,000)

§ Use nowait with due care (correctness)!

§ Is the performance as expected? What does
the barrier cost?
§ à homework

Barrier impact

June 5, 2024 17PTfS 2024

The single directive
§ #pragma omp single [clause[[,]clause]…]

structured-block

§ Structured block is executed by exactly one thread, which
one is unspecified
§ Actually a worksharing directive

§ Remaining threads skip the structured block and continue
execution.

§ Implied barrier at the exit of the single section!

§ Do not use within another worksharing construct (deadlock!)
§ nowait clause suppresses barrier

barrier

June 5, 2024 18PTfS 2024

The master directive

§ #pragma omp master [clause[[,]clause]…]
structured-block

§ Only thread zero executes the structured block
§ Other threads continue without synchronization
§ Not all threads have to reach the construct

§ Essentially equivalent to:

#ifdef _OPENMP
if(omp_get_thread_num()==0)
#endif
structured-block;

T0 T1 Tn-1…

June 5, 2024 19PTfS 2024

Critical region
§ #pragma omp critical

structured-block

§ Only one thread at a time can execute the block
§ … but every thread that encounters it will eventually

execute it

§ Order of execution is undefined!

§ All unnamed critical regions are mutually exclusive
across the whole program
§ Beware of deadlocks!

bl
oc

k

w
ai

t
bl

oc
k

bl
oc

k

w
ai

t
bl

oc
k

w
ai

t
bl

oc
k

bl
oc

k
w

ai
t

June 5, 2024 20PTfS 2024

Named critical regions
§ What if I want several independent

critical regions?
§ Named critical regions to the

rescue!
§ Regions with different names are

mutually independent

§ Name can be chosen freely
§ No association with data to be

“protected”
§ Unnamed critical regions share

the same (invisible) name

double func(double v) {
double x;

#pragma omp critical(prand)
x = v + random_func();

return x;
}
...
#pragma omp parallel for private(x)
for(int i=0; i<N; ii+) {

x = sin(2.*M_PI*i/N);
#pragma omp critical(psum)

sum += func(x);
}

Protect lib-call
(random_func)

June 5, 2024 21PTfS 2024

Atomic updates
§ #pragma omp atomic [clause[[,] clause] ...]

expression-stmt

§ Ensures that a storage location is accessed atomically, i.e., the full access
cannot be interrupted

§ Applies only to the statement immediately following it
§ expression-stmt can be:

§ Variants of atomic for pure read, pure write, and capture are also available

x++;
x--;
++x;
--x;
x binop= expr;
x = x binop expr;
x = expr binop x;

June 5, 2024 22PTfS 2024

Why atomic?
Can’t I just use a critical region?

1. atomic may be more efficient due to hardware support (no guarantee!)
2. atomic allows for protecting updates to individual data elements

#pragma omp parallel for
for (i=0; i<n; i++) {

double t = func(table[i]);
if(t < 0.) {

#pragma omp atomic
x[table[i]]++;

}
y[i] += other(i);

}

Updates of different x[]
entries do not block each other

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions
OpenMP synchronization
OpenMP basic overheads
OpenMP affinity

June 5, 2024 24PTfS 2024

Basic OpenMP overheads

!$OMP PARALLEL PRIVATE(k)
do k=1,NITER

!$OMP DO SCHEDULE(…)
do i=1,N
A(i)=B(i)+C(i)*D(i)

enddo
!$OMP END DO

enddo
!$OMP END PARALLEL

“Wake up” team
of threads

“Retire” team of
threads

Loop
parallelization

Workload
distribution

Implicit barrier /
sychronization

June 5, 2024 25PTfS 2024

OpenMP overheads: loops and barriers
§ Benchmarking OpenMP overhead

§ OpenMP parallel for
§ OpenMP for (w/o parallel)
§ OMP barrier

§ Static scheduling
§ Compact pinning

(physical cores only)

Intel Xeon “Haswell” E5-2695v3 (2.3GHz) CoD

Intel 17.0up4 gcc 6.2.0

O
ve

rh
ea

d
[c

y]

Node topology

June 5, 2024 26PTfS 2024

OpenMP overheads: Barrier implementation (reminder)

𝐓𝐢𝐦𝐞 𝑁 =
𝑐𝑜𝑛𝑠𝑡	×2×𝑙𝑜𝑔!𝑁

Where N is number of
threads/processes

in the barrier

How does a “barrier” scale
(best case)?

June 5, 2024 27PTfS 2024

OpenMP overheads: Barrier cost on Intel Xeon Phi (KNL)

Intel Xeon Phi
(“Knights Landing”):

64 cores@1.3GHz

1,2,4 SMT per core

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions
OpenMP synchronization
OpenMP basic overheads
OpenMP affinity

June 5, 2024 29PTfS 2024

OpenMP affinity: it matters!
§ Remember all the

hardware bottlenecks!

§ It does matter where the
threads are running

§ Yes, it’s up to you

§ No, the system will not
magically guess what’s
best

≠

June 5, 2024 30PTfS 2024

STREAM benchmark on 2x24-core AMD “Naples”: Anarchy vs. thread pinning

No pinning

“Compact” pinning (physical
cores first, first socket first)

There are several reasons for caring
about affinity:

§ Eliminating performance variation

§ Making use of architectural features

§ Avoiding resource contention

OpenMP-parallel
A(:)=B(:)+s*C(:)

June 5, 2024 31PTfS 2024

OMP_PLACES and Thread Affinity
§ Processor: smallest entity able to run a thread or task (SMT/hyper-thread)
§ Place: one or more processors à thread pinning is done place by place
§ Free migration of the threads on a place between the processors of that place.

Or use explicit numbering, e.g. 8 places, each consisting of 4 processors:
• OMP_PLACES="{0,1,2,3},{4,5,6,7},{8,9,10,11}, … {28,29,30,31}"
• OMP_PLACES="{0:4},{4:4},{8:4}, … {28:4}"
• OMP_PLACES="{0:4}:8:4"

OMP_PLACES Place ==
threads Hardware thread (hyper-thread)
cores All HW threads of a single core
sockets All HW threads of a socket

abstract_name(num_places) Restrict # of places available

abstract name

<lower-bound>:<number of entries>[:<stride>]

Caveat: Actual behavior is implementation defined!

June 5, 2024 32PTfS 2024

OMP_PROC_BIND variable / proc_bind() clause

Determines how places are used for pinning:

If there are more threads than places, consecutive threads are put into
individual places (“balanced”)
Example:

OMP_PROC_BIND Meaning
FALSE Affinity disabled

TRUE Affinity enabled, implementation defined strategy

CLOSE Threads bind to consecutive places
SPREAD Threads are evenly scattered among places

MASTER Threads bind to the same place as the master thread
that was running before the parallel region was entered

$ OMP_NUM_THREADS=4 OMP_PROC_BIND=close OMP_PLACES=cores ./a.out

June 5, 2024 33PTfS 2024

Some simple OMP_PLACES examples

Intel Xeon w/ SMT, 2x10 cores, 1 thread per physical core, fill 1 socket
OMP_NUM_THREADS=10
OMP_PLACES=cores
OMP_PROC_BIND=close

Intel Xeon Phi with 72 cores, 4-way SMT
32 cores to be used, 2 threads per physical core
OMP_NUM_THREADS=64
OMP_PLACES=cores(32)
OMP_PROC_BIND=close # spread will also do

Intel Xeon, 2 sockets, 4 threads per socket (no binding within socket!)
OMP_NUM_THREADS=8
OMP_PLACES=sockets
OMP_PROC_BIND=close # spread will also do

Intel Xeon, 2 sockets, 4 threads per socket, binding to cores
OMP_NUM_THREADS=8
OMP_PLACES=cores
OMP_PROC_BIND=spread

Always prefer abstract places
instead of hardware thread
IDs!

Wrap-up: beginner’s OpenMP toolbox
§ Parallel region
§ Workshared loop construct
§ Data scoping (shared, private, firstprivate)
§ Basic reductions with standard operators
§ Simple synchronization constructs

§ barrier, nowait
§ (named) critical, atomic
§ single (actually worksharing), master

§ OpenMP affinity as defined in the standard

§ But wait, there’s more…

June 5, 2024PTfS 2024 34

