
Programming Techniques for Supercomputers:
Performance Modelling

Motivation

Roofline Model

Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)

(a)HPC Services – Regionales Rechenzentrum Erlangen
(b)Department für Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2024

June 18, 2024PTfS 2024

A performance model brings together
what you need (application requirements) and

what you get (hardware capabilities)

A series of measurements from benchmarks
is NOT a performance model*

*Bill Gropp, PASC2015

2

June 18, 2024PTfS 2024

Scope of the lecture – a typical example
!$OMP PARALLEL DO
do k = 1 , 400
do j = 1 , 400; do i = 1 , 400

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo
!$OMP END PARALLEL DO

Single core performance
optimization

Upper limit from simple
performance model (roofline):

35 GB/s & 24 Byte/update

Parallelize

Parallelize

Intel® Xeon® Prozessor E5-2670

3

June 18, 2024PTfS 2024

How model-building works: Physics
Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕
𝜕𝑡
𝜓 𝑟, 𝑡 = 𝐻𝜓 𝑟, 𝑡

�⃗� = 𝑚�⃗�

Nonrelativistic
quantum
mechanics

Fails @ even smaller scales!

Relativistic
quantum

field theory

𝑈(1)! ⨂ 𝑆𝑈 2 " ⨂ 𝑆𝑈(3)#

If a model fails,

we learn something!

4

June 18, 2024PTfS 2024

Code optimization/parallelization – no black boxes!

simplified description
of system (HW+SW)

modeling predictions validation

model
OK?

N

Y

input data
CODE

insight:
bottleneck

adjust model
à insight

white box

possible optimization

„Performance Engineering“
5

Questions to ask in high performance computing
§ Do I understand the performance behavior of my code?

§ Does the performance match a model I have made?

§ What is the optimal performance for my code on a given machine?
§ High Performance Computing == Computing at the bottleneck

§ Can I change my code so that the “optimal performance” gets higher?
§ Circumventing/ameliorating the impact of the bottleneck

§ My model does not work – what’s wrong?
§ This is the good case, because you learn something
§ Performance monitoring / microbenchmarking may help clear up the situation

§ Use your brain! Tools may help, but you do the thinking.

Loop-based performance modeling:
Execution vs. data transfer

“Simple” performance modeling:
The Roofline Model

PTfS 2024 June 18, 2024 8

A simple performance model for loops

Simplistic view of the hardware

! may be multiple levels
do i = 1,<sufficient>
<complicated stuff doing
N flops causing
V bytes of data transfer>

enddo

Execution units
Peak Performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path, bandwidth
𝒃𝑺

Simplistic view of the software:

Computational intensity
𝑰 = 𝑵

𝑽 à Unit: flop/byte

Unit: flop / s

Unit: byte / s

Performance Bottlenecks:
• Peak Performance: Ppeak (“Compute bound“)
• Data path: flop/s required by incomming data: byte/s * flop/byte [=flop/s] (“Memory bound“)

Naïve Roofline Model
What performance can the software achieve on a given hardware? 𝑷 [flop/s]

The performance bottleneck is either
§ The execution of work (flops): 𝑃peak [flop/s]

§ The data path: 𝐼) 𝑏! [flop/byte x byte/s]
(requested flops by incoming data)

This is the “Naïve Roofline Model”
§ High intensity I: P limited by execution
§ Low intensity I: P limited by data transfer
§ “Knee” at 𝑃"#$ = 𝐼) 𝑏!: Best use of resources

§ Roofline is an “optimistic” model (“light speed”)

𝑃 = min(𝑃!"#$, 𝐼) 𝑏%)

Intensity

Pe
rfo

rm
an

ce

Ppeak

I ∙
b S

Roofline Model (RLM) – Basics
Consider two bottlenecks only

The Roofline Model – Basics

§ Hardware à Peak performance: 𝑃5678 [
9
:
]

§ Hardware à Peak memory bandwidth: 𝑏; [
<
:
]

§ Application/SW à Computational Intensity: 𝐼 [9
<
]

Roofline Performance Model (RLM) - basics:

P = min P,-./, I ∗ b0 = min 3
GF
s
, 0.05 ∗ 10

GF
s

= 0.5
GF
s

Machine model:

𝑃)*+, = 3
𝐺𝐹
𝑠

𝑏- = 10
𝐺𝐵
𝑠

Application model:

𝐼 = 𝐵./0 = 0.05
𝐹
𝐵

The Roofline Model: A graphical view
§ Plot max. attainable performance P as a function of I (application) for a given hardware 𝑷𝒑𝒆𝒂𝒌, 𝒃𝑺

§ Examples
§ Vector triads (double prec.):
§ 𝐼 = 0.05 𝐹/𝐵

§ Vector norm (single prec.)
s=s+a[i]*a[i]:𝐼 = 0.5 𝐹/𝐵

𝑃 = min(𝑃!"#$, 𝐼) 𝑏%)
𝑃789:

𝐼 "
𝑏 ;

Code feature

Hardware
limitations

𝑃%&#' = 3
𝐺𝐹
𝑠

𝑏! = 10 𝐺𝐵/𝑠

log-scale

log-scale

𝑃 = min(𝑃!"#$, 𝐼) 𝑏%)
Code feature

Hardware
limitations

RLM assumption: Bandwidth saturation à Consider full chip / nodes!

June 18, 2024PTfS 2024

The Roofline Model – Basics
Compare capabilities of different machines

Full node / chip
peak performance

13

bS=
120 GB/sbS=

500-550 GB/s

The Roofline Model – Basics: Summary

Determine machine model for full chip/node/device:
§ Peak performance

§ Peak memory bandwidth: See fact sheet, e.g. 𝑏- = #𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑓121× 8
3

#4#5*

So far the model is very restricted:
§ Machine and application models are completely independent
§ RLM always provides upper bound – but is it realistic?
§ Only two bottlenecks are considered

§ Peak Performance
§ Main memory transfers

§ What if, e.g. there is no MULT and/or no SIMD vectorization?
à 𝑃!"#$ is not a realistic limit! Implementation may have lower „horizontal roof“

double s=0, a[];
for(i=0; i<N; ++i) {

s = s + a[i];}

𝑃 = m𝑖𝑛(𝑃789:, 𝐼 ∗ 𝑏?)

𝑃)*+, = 𝑃#67) = 𝑛#89* S 𝑛:;)*9<= S 𝑛<1> S 𝑛-?1@ S 𝑓

Roofline Model

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Machine model with Ppeak=4.5 TF/s and bS=300 GB/s

P
[G

F/
s]

I [F/B]

Memory b
ound

I *
bS

Compute
bound
Ppeak

Knee-point:
I*bS = Ppeak

Roofline Model: Application information

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Measure application performance P and
calculate / measure application intensity I

P[
G

F/
s]

I [F/B]

Memory
bound code

Compute
bound

LIKWID

TOOLS

Measure I with

Calculate I by
code inspection
§ Loop kernel
§ Data structures

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Memory b
ound

code

Compute
bound

No SIMD: 1/8
AVX512 à scalar

More realistic bounds for „bad“ implementations

P[
G

F/
s]

I [F/B]

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000 No SIMD: 1/8
AVX512 à scalar

No FMA
pipelining: 1/4

More realistic bounds for „bad“ implementations

P[
G

F/
s]

I [F/B]

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000
No SIMD: 1/8
AVX512 à scalar

No FMA
pipelining: 1/4

Only 1 FMA: 1/2

No SIMD, no pipelining, 1 FMA only à 64 x decrease in PPeak

Knee-point:
I=0.23 F/B

P[
G

F/
s]

I [F/B]

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Reality: Lower horizontal roofs (Ppeak) are typically not known

Indications:

• Linear
scaling

• Low Memory
Bandwidth
Utilization LIKWID

TOOLS

How to get realistic lower horizontal roofs?

P[
G

F/
s]

I [F/B]

June 18, 2024PTfS 2024

The Roofline model: Extending more bottlenecks
Choose time based view:
Hardware bottlenecks impose upper (lower) performance (runtime) limits

time ∝ 𝑃@A

Two independent
bottlenecks &

perfect overlap!

*Williams, Waterman, Patterson (2009), DOI: 10.1145/1498765.1498785

Memory transfers

𝑃 = min(𝑃5678 , 𝐼 " 𝑏;)

Computation

21

http://dx.doi.org/10.1145/1498765.1498785

Roofline Model (RLM) – Refined
Consider multiple independent bottlenecks

June 18, 2024PTfS 2024

The Roofline model: Extending more bottlenecks
Extend towards mutiple (independent) bottlenecks

à Model very successfull if bottleneck can be saturated à full CPU chip

time ∝ 𝑃@A

*Williams, Waterman, Patterson (2009), DOI: 10.1145/1498765.1498785

Computation (SIMD)

Memory transfers

𝑃 = min(𝑃5678 , 𝐼 " 𝑏;)
STORE

Integer arithmetics

L2 transfers

L3 transfers

LOAD

Computation (scalar)

Computation (SIMD)

Computation (scalar)

Choose relevant
data path

Applicable
peak performance:

All data is in L1 cache

23

𝑃 = min(𝑃T7U , 𝐼 " 𝑏;)
Independent
bottlenecks &

perfect overlap!

http://dx.doi.org/10.1145/1498765.1498785

The Roofline Model – refined
1. Pmax = Applicable peak performance of a loop, assuming that data comes from the level 1 cache

(this is not necessarily Ppeak)
à e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the slowest data path utilized (code
balance BC = I -1)
à e.g., I = 0.167 Flop/Byte à BC = 6 Byte/Flop

3. bS = Applicable (saturated) peak bandwidth of the slowest data path utilized
à e.g., bS = 56 GByte/s

Expected performance:

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)
S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

𝑃 = min 𝑃VWX, 𝐼 " 𝑏; = min 𝑃VWX,
𝑏;
𝐵Y

[Byte/s]

[Byte/Flop]

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

The Roofline Model – getting it right
Applicable peak performance: 𝑃B9C = 𝑛DEF8 ∗ 𝑃B9CDEF8

§ 𝑃!"#$%&' : single core maximum performance from L1: determine according to slides 22-
41@03b_04_30-2024_PTfS.pdf

Computational intensity: 𝐼
§ Determine data transfer volume over slowest data path – for main memory: 𝐼 =

1/𝐵(!'! (for 𝐵(see 05_05_08-2024_PTfS.pdf)

Applicable (saturated) peak bandwidth: 𝑏?
§ Determine with appropriate benchmark, e.g. for main memory choose the STREAM

benchmark test that best matches your access pattern
§ See later for STREAM

§ Or write own microbenchmark if relevant access pattern not available, e.g. read-only

Realistic baseline for memory bandwidth: STREAM
§ Assumption: STREAM (or similar, like vector triad) kernel benchmarks achieve an

upper bandwidth limit from main memory
§ i.e., no code can draw more bandwidth
§ Theoretical BW limits are usually not achievable
§ Use STREAM as BW limit rather than the theoretical numbers!

§ STREAM: http://www.cs.virginia.edu/stream/
§ Set of 4 standard benchmarks

COPY: A(:) = C(:)
SCALE: A(:) = s * C(:)
ADD: A(:) = B(:) + C(:)
TRIAD: A(:) = B(:) + s * C(:)

§ In practice, COPY & SCALE (ADD & TRIAD) draw the same bandwidth
§ Advantage of STREAM: Many results published, well-defined benchmark
§ Disadvantage of STREAM: Reported and actual BW numbers may differ

http://www.cs.virginia.edu/stream/

with write-allocate w/o write-allocate

Type reported actual 𝑏!/𝑏"#$ reported 𝑏!/𝑏"#$

COPY 34079 51119 0.75 47281 0.69

SCALE 33758 50637 0.74 48025 0.70

ADD 38174 50899 0.75 51068 0.75

TRIAD 38866 51820 0.76 51107 0.75

June 18, 2024PTfS 2024

STREAM: write-allocate and efficiency
Data transfer (including write-allocate)

State of the art compilers recognize the benchmark and avoid the write-allocate
automatically 70-75% efficiency

STREAM benchmark
does not know about
write-allocate

Type Kernel Bytes/iteration
assumed (with WA) Flops/it.

COPY A(:) = B(:) 16 (24) 0

SCALE A(:) = s*B(:) 16 (24) 1

ADD A(:) = B(:)+C(:) 24 (32) 1

TRIAD A(:) = B(:)+s*C(:) 24 (32) 2

x3/2

x3/2

x4/3

x4/3 2.
3

G
H

z
14

-c
or

e
H

as
w

el
l (

no
n-

C
oD

)

27

Roofline Model (RLM) – Refined
Arithmetic Intensity / Code Balance: Gymnastics

June 18, 2024PTfS 2024

Arithmetic Intensity / Code Balance: Basic Examples
double a[], b[];
for(i=0; i<N; ++i) {

a[i] = a[i] + b[i];}

BC = 24B / 1F = 24 B/F

I = 0.042 F/B

double a[], b[];
for(i=0; i<N; ++i) {

a[i] = a[i]+ s * b[i];}

BC = 24B / 2F = 12 B/F

I = 0.083 F/B

Scalar – can be kept in register
float s=0, a[];
for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

BC = 4B/2F = 2 B/F

I = 0.5 F/B

Scalar – can be kept in register

float s=0, a[], b[];
for(i=0; i<N; ++i) {

s = s + a[i] * b[i];}

BC = 8B / 2F = 4 B/F

I = 0.25 F/B

Scalar – can be kept in register

29

Approaches to determine Computational Intensity
1. Analysis of loop body à determine all load / stores that go to memory

2. Analysis of data structure à Assume each element is touched only once

double a[N], b[N], c[N], d[N];
for(i=0; i<N; ++i)
{

a[i] = b[i] + c[i] * d[i];
}

• 3 LD (b,c,d) + 1 ST (a) + 1 WA (a) per iteration
• Each LD / ST / WA is 8 Byte (double)
• 2 FLOP

• 𝐼 = ()*+,
-∗/ 012&

= 3)*+,
(4 012&

(𝐵5 =
(4 012&
3)*+,

)

• Cache vs. Memory Access??!! à DMVM; stencils, SpMV

double a[N], b[N], c[N], d[N];
for(i=0; i<N; ++i)
{

a[i] = b[i] + c[i] * d[i];
}

• 4 arrays (of size: 𝑁 ∗ 8 𝐵𝑦𝑡𝑒) + WA on a[] à 2x
à 5 ∗ 𝑁 ∗ 8 𝐵𝑦𝑡𝑒 = 𝟒𝟎 ∗ 𝑵 𝑩𝒚𝒕𝒆

• Total FLOP count: 𝟐 ∗ 𝑵 𝑭𝑳𝑶𝑷

• 𝐼 = (∗6)*+,
74 ∗ 6 012&

= 3)*+,
(4 012&

(𝐵5 =
(4 012&
3)*+,

)

• Lower bound for memory traffic à Upper bound for I

Approaches to determine Computational Intensity
double precison A(R,C), x(C), y(R)
…
do c = 1 , C

tmp=x(c)
do r = 1 , R

y(r)= y(r) + A(r,c)* tmp
enddo

enddo

Loop body analysis:

• LD A(r, c) to memory à 8	Byte
• x(c) ßàregister à 0	Byte
• LD/ST y(r) ßà Cache à 0	Byte

à 2	FLOP

à 𝑰 = 𝟐 𝑭𝑳𝑶𝑷
𝟖 𝑩𝒚𝒕𝒆

Data structure analysis:

• A(R,C) à 8	*	R	*	C	 Byte
• X(C) à 8	*	C	 Byte	
• Y(R): LD/ST à 2*8	*	R	 Byte

à 2*	R	*	C	 FLOP

à 𝑰 = 𝟐 ∗𝑹 ∗𝑪 𝑭𝑳𝑶𝑷
𝑹∗𝑪D𝑪D𝟐∗𝑹 ∗ 𝟖 𝑩𝒚𝒕𝒆

= 𝟐 𝑭𝑳𝑶𝑷

𝟏D𝟏𝑹D
𝟐
𝑪 ∗ 𝟖 𝑩𝒚𝒕𝒆

≈ 𝟐 𝑭𝑳𝑶𝑷
𝟖 𝑩𝒚𝒕𝒆

R,C	>>	1

Roofline Model (RLM) – Refined
Vector triads

The Roofline Model – refined: Vector triads: 𝑷𝒎𝒂𝒙
§ Machine: 7 cores of Haswell@2.3GHz (𝑛DEF8 = 7; 𝑓 = 2.3 hDi

j)

do i = 1,N
A(i)=B(i)+C(i)*D(i)

enddo

AVX performance on 1 core Haswell / Broadwell

AVX LD AVX ST AVX FMA AVX FMA

Execution Units / Ports

AVX MULT AVX MULT

AVX ADD

AVX LD

AVX LD AVX LD
2 AVX
iterationsAVX FMAAVX LD AVX LD

AVX ST

AVX FMAAVX LD AVX LD AVX ST

For 1 AVX iteration (i:i+3)
3 AVX LDs + 1 AVX ST + 1 AVX FMA

• Bottleneck: LD

• 2 AVX iteration: 𝑇"#$FGH2 = 3𝑐𝑦

• 2 AVX iteration à 8 loop
iterations à 16 F

• 𝑃"#$IJK& = m3L)
MI1 = 5.33 ⁄) I1

§ Machine: 7 cores of Haswell @2.3 (CoD)
§ STREAM triads BW: 𝑏- = 29 A3

:

§ Computational Intensity (incl. WA; double precision): 𝐼 = B<
C∗E3

= 0.05 <
3

Putting it together

𝑃F+G = 7 ∗ 2.3
𝐺𝑐𝑦
𝑠

∗ 5.33
𝐹
𝑐𝑦

= 85.8
𝐺𝐹
𝑠

𝑃 = min 85.8
𝐺𝐹
𝑠 , 0.05

𝐹
𝐵 ∗ 29

𝐺𝐵
𝑠 = min 85.8

𝐺𝐹
𝑠 , 1.45

𝐺𝐹
𝑠 = 𝟏. 𝟒𝟓

𝑮𝑭
𝒔

The Roofline Model – refined: Vector triads: 𝐼) 𝑏% & 𝑷

do i = 1,N
A(i)=B(i)+C(i)*D(i)

enddo

See
previous slide

June 18, 2024PTfS 2024

The Roofline Model – refined: Validate RLM

Roofline limit

7 cores of Haswell @2.3 GHz (CoD)

Violates saturation
assumption

35

Roofline Model (RLM) – Refined
Dense Matrix Vector Multiplication

The Roofline Model – refined: Dense MVM : 𝑷𝒎𝒂𝒙
§ Machine: 7 cores of Haswell @2.3GHz (𝑛#89* = 7; 𝑓 = 2.3 A#4

:
)

AVX performance on 1 core Haswell / Broadwell

AVX LD AVX ST AVX FMA AVX FMA

Execution Units / Ports

AVX MULT AVX MULT

AVX ADD

AVX LD

AVX LD AVX LD
1 AVX
iteration

AVX FMAAVX ST

For 1 AVX iteration (r:r+3)
2 AVX LDs + 1 AVX ST + 1 AVX FMA

• Bottleneck: LD

• 1 AVX iteration: 𝑇"#$FGH2 = 1𝑐𝑦

• 1 AVX iteration à 4 loop
iterations à 8 F

• 𝑃"#$IJK& = m/)
3I1 = 8 ⁄) I1

do c = 1 , C
tmp=x(c)
do r = 1 , R

y(r)=y(r) + A(r,c)* tmp
enddo

enddo

The Roofline Model – refined: Dense MVM: 𝐼) 𝑏% & 𝑷

See
previous slide

§ Machine: 7 cores of Haswell@2.3 GHz

§ Read-OnlyBW: 𝑏- = 32 A3
:

§ Computational Intensity (double precision): 𝐼 = 1/𝐵.F*F = 0
!"
#$

= 0.25 <
3

Putting it together
𝑃F+G = 7 ∗ 2.3

𝐺𝑐𝑦
𝑠 ∗ 8

𝐹
𝑐𝑦 = 128.8

𝐺𝐹
𝑠

𝑃 = min 128.8
𝐺𝐹
𝑠 , 0.25

𝐹
𝐵 ∗ 32

𝐺𝐵
𝑠 = min 128.8

𝐺𝐹
𝑠 , 8

𝐺𝐹
𝑠 = 𝟖

𝑮𝑭
𝒔

June 18, 2024PTfS 2024

The Roofline Model – refined: Dense MVM: Validate

Roofline limit

What if the code is
even worse than this???

39

Roofline Model (RLM) – Refined
Bad Code Implementation & Lower roofs

June 18, 2024PTfS 2024

A not so simple Roofline example
Example: do i=1,N; s=s+a(i); enddo
in single precision on a 2.2 GHz Sandy Bridge (3-stage FP add pipeline) socket @ “large” N

ADD peak
(best possible
code)

no SIMD

3-cycle latency
per ADD if not
unrolled

b s
= 40 GB/s

P (worst loop code)

𝑃 = min(𝑃*#+, 𝐼) 𝑏%)

See next slides
on how to get
these numbers

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak
(ADD+MULT)
Out of reach for this
code

P
(better loop code)

41

June 18, 2024PTfS 2024

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0 ß 0
i ß 1
loop:
LOAD r2.0 ß a(i)
ADD r1.0 ß r1.0+r2.0
++i à? loop

result ß r1.0

ADD pipes utilization:

à 1/24 of ADD peak

SI
M

D
 la

ne
s

42

June 18, 2024PTfS 2024

Applicable peak for the summation loop
Scalar code, 3-way unrolling

LOAD r1.0 ß 0
LOAD r2.0 ß 0
LOAD r3.0 ß 0
i ß 1

loop:
LOAD r4.0 ß a(i)
LOAD r5.0 ß a(i+1)
LOAD r6.0 ß a(i+2)

ADD r1.0 ß r1.0 + r4.0
ADD r2.0 ß r2.0 + r5.0
ADD r3.0 ß r3.0 + r6.0

i+=3 à? loop
result ß r1.0+r2.0+r3.0

ADD pipes utilization:

à 1/8 of ADD peak

43

June 18, 2024PTfS 2024

Applicable peak for the summation loop
SIMD-vectorized, 3-way unrolled

LOAD [r1.0,…,r1.7] ß [0,…,0]
LOAD [r2.0,…,r2.7] ß [0,…,0]
LOAD [r3.0,…,r3.7] ß [0,…,0]
i ß 1

loop:
LOAD [r4.0,…,r4.7] ß [a(i),…,a(i+7)]
LOAD [r5.0,…,r5.7] ß [a(i+8),…,a(i+15)]
LOAD [r6.0,…,r6.7] ß [a(i+16),…,a(i+23)]

ADD r1 ß r1 + r4
ADD r2 ß r2 + r5
ADD r3 ß r3 + r6

i+=24 à? loop
result ß r1.0+r1.1+...+r3.6+r3.7

ADD pipes utilization:

à ADD peak

44

June 18, 2024PTfS 2024

Input to the roofline model
… on the example of do i=1,N; s=s+a(i); enddo in single precision

analysis

Code analysis:
1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy
Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory
bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)
Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

45

Roofline Model (RLM) – Refined
Summary

§ Data transfer and core execution overlap perfectly!
§ Either the limit is core execution or it is data transfer

§ Slowest limiting factor “wins”; all others are assumed
to have no impact
§ If two bottlenecks are “close”, no interaction is assumed

§ Data access latency is ignored, i.e. perfect streaming mode
§ Achievable bandwidth is the limit

§ Chip must be able to saturate the bandwidth bottleneck(s)
§ Always model for full chip

Prerequisites for the Roofline Model

June 18, 2024PTfS 2024

Factors to consider in the roofline model

Bandwidth-bound (simple case)
§ Accurate traffic calculation (write-allocate, strided

access, …) à Intensity calculation
§ Attainable ≠ theoretical BW
§ Erratic access patterns may violate model assumptions

Core-bound (may be complex)
§ Multiple bottlenecks: LD/ST, arithmetic, pipelines,

SIMD, execution ports
§ Limit is linear in # of cores (or clock speed)

48

June 18, 2024 49PTfS 2024

Tracking code optimizations in the Roofline Model

1. Hit the BW bottleneck by
good serial code
(e.g., Ninja C++ à Fortran)

2. Increase intensity to make
better use of BW bottleneck
(e.g., spatial loop blocking)

3. Increase intensity and go from
memory bound to core bound
(e.g., temporal blocking)

4. Hit the core bottleneck by
good serial code
(e.g., -fno-alias, SIMD intrinsics)

Core bound

June 18, 2024PTfS 2024

Monitoring jobs running on Fritz in the Roofline diagram

Which is the “good”
and the “bad” job?

50

Two cluster jobs…

https://github.com/ClusterCockpit

Rooflines: P	=	min	(Ppeak ,	I	*	bS)

LIKWID

TOOLS

• LIKWID determines P and I regularly on each node
• ClusterCockpit collects data and presents is

JOB1 JOB2

Shortcomings of the roofline model
§ Saturation effects in multicore chips are not explained

§ Reason: Intra-Cache and memory transfers do (frequently) not overlap on a single core
à Overlapp only between cores

§ Increase “pressure” on memory interface until it saturates à bottleneck: 𝑏!
§ It is not sufficient to measure single-core

STREAM to make it work

§ In-cache performance is not correctly
predicted

§ The ECM performance model gives more
insight:

A(:)=B(:)+C(:)*D(:)

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power properties of modern multicore
chips via simple machine models. Concurrency and Computation: Practice and Experience (2013).
DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

Roofline Model (RLM) – Refined
Code Balance and Machine Balance

Machine balance for hardware characterization
§ For quick comparisons the concept of machine balance is useful

§ Machine Balance = How much input data can be delivered for each FP operation?
(“Memory Gap characterization”)
§ Assuming balanced MULT/ADD

§ Rough estimate: 𝐵B ≪ 𝐵D à strongly memory-bound code
§ Typical values (main memory):

Intel Haswell 14-core 2.3 GHz
Bm = 60 GB/s / (14 x 2.3 x 16) GF/s ≈ 0.12 B/F

Intel Sandy Bridge 8-core 2.7 GHz ≈ 0.23 B/F
Nvidia P100 ≈ 0.10 B/F
Intel Xeon Phi Knights Landing (HBM) ≈ 0.16 B/F

𝐵T =
𝑏;

𝑃hiWj

June 18, 2024PTfS 2024

Machine balance over time

Higher is better!
à more balanced

NEC
Tsubasa

54

Tall & Skinny Matrix-Transpose Times
Tall & Skinny Matrix (TSMTTSM)
Multiplication

RLM Case Study

TSMTTSM Multiplication

§ Block of vectors à Tall & Skinny Matrix (e.g. 107 x 101 dense matrix)

§ Row-major storage format

§ Block vector subspace orthogonalization procedure requires, e.g. computation of
scalar product between vectors of two blocks

§ TSMTTSM Mutliplication 𝐾 ≫ 𝑁,𝑀

Assume: 𝛼 = 1; 𝛽 = 0

M

N K

TSMTTSM Multiplication

§ General rule for dense matrix-matrix multiply: Use vendor-optimized
GEMM, e.g. from Intel MKL1:

𝐶"G = v
'N3

O

𝐴"'𝐵'G , 𝑚 = 1. .𝑀, 𝑛 = 1. . 𝑁

System Ppeak [GF/s] bS [GB/s] Size Perf. Efficiency
Intel Xeon E5 2660 v2

10c@2.2 GHz 176 GF/s 52 GB/s
SQ 160 GF/s 91%
TS 16.6 GF/s 6%

Intel Xeon E5 2697 v3
14c@2.6GHz 582 GF/s 65 GB/s

SQ 550 GF/s 95%
TS 22.8 GF/s 4%

complex double

double

TS@MKL:
Good or bad?

Matrix sizes:
Square (SQ): M=N= K=15,000
Tall&Skinny (TS): M=N=16 ; K=10,000,000
1Intel Math Kernel Library (MKL) 11.3

TSMTTSM Roofline model

Computational intensity

𝐼 =
#Wlops

#bytes (slowest data path)

Optimistic model (minimum data transfer) assuming 𝑴 = 𝑵 ≪ 𝑲 and
double precision:

𝐼H =
2𝐾𝑀𝑁

8 (2𝑀𝑁 + 𝐾𝑀 + 𝐾𝑁)
F
B
≈

2 𝑀𝑁
8 𝑀 + 𝑁

F
B
=
𝑀
8
F
B

complex double:

𝐼I =
8𝐾𝑀𝑁

16 (2𝑀𝑁 + 𝐾𝑀 + 𝐾𝑁)
F
B
≈

8𝑀𝑁
16 𝑀 + 𝑁

F
B
=
𝑀
4
F
B

M

N K

N = M

Assume: 𝛼 = 1; 𝛽 = 0

TSMTTSM Roofline performance prediction

Now choose 𝑀 = 𝑁 = 16à 𝐼~ ≈
A�
�
�
� and 𝐼� ≈

A�
�
�
�, i.e. 𝐵~ ≈ 0.5 ��, 𝐵� ≈ 0.25 ��

Intel Xeon E5 2660 v2 (𝑏? = 52 ���) à P = 𝐼~ × 𝑏? = 104GFs (double)

Measured (MKL): 16.6 ��
�

Intel Xeon E5 2697 v3 (𝑏? = 65 ��
�

) à P = 𝐼� × 𝑏? = 240GFs (double complex)

Measured (MKL): 22.8 ��
�

à Potential speedup: 6–10x vs. MKL

Can we implement a better TSMTTSM kernel than Intel?

Not shown: Inner Loop boundaries (n,m) known at compile time (kernel generation)
k assumed to be even

Long Loop (k): Parallel

Outer Loop Unrolling

Compiler directives

Most operations
in cache

Reduction on
small result matrix

Thread local copy of small (results) matrix

TSMTTSM MKL vs. “hand crafted” (OPT)

System Ppeak / bS Version Performance RLM Efficiency
Intel Xeon E5 2660 v2

10c@2.2 GHz
176 GF/s
52 GB/s

TS OPT 98 GF/s 94 %
TS MKL 16.6 GF/s 16 %

Intel Xeon E5 2697 v3
14c@2.6GHz

582 GF/s
65 GB/s

TS OPT 159 GF/s 66 %
TS MKL 22.8 GF/s 9.5 %

TS: M=N=16 ; K=10,000,000

