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Motivation

= + •

Performance Modelling?
Optimal Performance?
Performance Optimizations?
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Our SpMV plan

§ Performance Engineering for SpMV – CPU

§ Data layout considerations – GPUs  

Boundary conditions:
§ Node-level (OpenMP / CUDA)
§ Application problems / matrices: Standard collection / own work
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Roofline Model – Sparse Matrix Vector Multiplication

§ SpMV: 𝑦 = 𝐴 𝑥

Performance engineering of a single SpMV – general structure
§ How to store and traverse SpMV
§ Can we use RLM? What is the intenstiy of SpMV?
§ Is there an maximum code intensity I		for SpMV? 
§ Impact of matrix structure / OpenMP parallelization? 
§ CPU vs. GPU: Data layouts and more



Performance Engineering for
Sparse Matrix-Vector Multiplication
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Sparse Matrix Vector Multiplication (SpMV)

Key ingredient in many sparse matrix solvers / matrix diagonalization algorithms
§ Lanczos, Davidson, Jacobi-Davidson, CG, GMRES,…..

Minimize memory footprint:
§ Store only Nnz nonzero elements of matrix with Nr (number of matrix rows) entries
§ “Sparse”: Nnz ~ Nr (assume square matrices NC=NR)
§ Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case: 
some indirect
addressing
required!

Right Hand Side 
(RHS) Vector

Left Hand Side 
(LHS) Vector
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SpMVM characteristics
§ For large problems, SpMV is inevitably memory-bound

§ Intra-socket saturation effect on modern multicores

§ SpMV is easily parallelizable in shared and distributed memory
§ Load balancing
§ Communication overhead

§ Data storage format is crucial for performance properties
§ Most useful general format on CPUs: 

Compressed Row Storage (CRS)
§ May depend on compute architecture and problem (sparsity pattern)
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CRS matrix storage scheme

…

column index

ro
w

 in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

CRS data structure contains:
§ val[] stores all the nonzeros (length Nnz) à double
§ col_idx[] stores column index of each nonzero (length 

Nnz) à int
§ row_ptr[] stores the starting index of each new row in
val[] (length: Nr) à int
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Case study: Sparse matrix-vector multiply

§ Strongly memory-bound for large data sets
§ Mainly streaming data access (matrix data) mixed 

with partially indirect access (RHS data):

§ Usually many spMVs required to solve a problem
§ Typical dimensions: 𝑁! ≈ 10", … , 10# & 𝑁$%! ≈ 10,… , 100
§ Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j)) 

enddo
enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do
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Performance characteristics

§ Strongly memory-bound for large data sets à saturating performance 
across cores on the chip

§ Performance seems to depend 
on the matrix

§ Can we explain this?

§ Is there a “light speed” for SpMV?

§ Optimization?

???

???

10-core Ivy 
Bridge, static 
scheduling
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SpMV node performance model – CRS (1)
real*8    val(Nnz)
integer*4 col_idx(Nnz)
integer*4 row_ptr(Nr)
real*8    C(Nr)
real*8    B(Nc)

Min. load traffic [B]:  (8 + 4) 𝑁𝑛𝑧 + 4 + 8 𝑁! + 8 𝑁"
Min. store traffic [B]: 8 𝑁!
Total FLOP count [F]:  2 𝑁𝑛𝑧

𝐵&,()* =
12 𝑁*+ + 20 𝑁, + 8 𝑁-

2 𝑁𝑛𝑧

𝐵
𝐹
=

Nonzeros per row (𝑁#$% = 0&!"
&#)  or column (𝑁#$' = 0&!"

&$)

Lower bound for code balance: 𝐵#,%&' ≥ 6 BF à 𝐼()* ≤
1
6
F
B

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1 
C(i) = C(i) + val(j) * B(col_idx(j)) 
enddo
enddo

12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2
𝐵
𝐹



July 1, 2024 12PTfS 2024

SpMV node performance model – CRS (2)

𝐵&,()* =
12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2
𝐵
𝐹

𝐵& (𝛼) =
12 + 20/𝑁𝑛𝑧𝑟 + 𝟖 𝜶

2
𝐵
𝐹

Parameter (𝛼) quantifies
additional traffic for B(:)
(irregular access):

𝛼 ≥ 11 𝑁'+"

𝛼𝑁'+" ≥ 1
Consider square matrices: 𝑁#$' = 𝑁#$% and 𝑁' = 𝑁%
Note: 𝐵( 0) &!"# = 𝐵(,+,#

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1 
C(i) = C(i) + val(j) * B(col_idx(j)) 
enddo
enddo

•
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The “𝜶 effect”

CRS code balance 
§ α quantifies the traffic for loading the Right Hand Side (RHS) vector

§ 𝛼 = 0 à RHS is in cache (RHS << cache size)
§ 𝛼 = 1/𝑁𝑛𝑧𝑟 à RHS loaded once
§ 𝛼 = 1 à no cache
§ 𝛼 > 1 à Houston, we have a problem!

Can we predict 𝛼?
§ Not in general
§ Simple cases (banded, block-structured): Similar to layer condition analysis

à Determine 𝛼 by measuring the actual memory traffic (à measured code balance 𝐵#%,-.)

𝐵& (𝛼) =
12 + 20/𝑁*+,+ 8 𝛼

2
𝐵
𝐹

= 6 + 4 𝛼 +
10
𝑁*+,

𝐵
𝐹
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Determine 𝜶 (RHS traffic quantification)

§ 𝑉(345 is the measured overall memory data traffic (using, e.g., likwid-perfctr)
§ Solve for 𝛼:

Example: kkt_power matrix from the UoF collection (one Intel SNB socket)

§ 𝑁*+ = 14.6 8 106, 𝑁*+, = 7.1
§ 𝑉(345 ≈ 258 MB
à 𝛼 = 0.36, 𝛼𝑁*+, = 2.5
à RHS is loaded 2.5 times from memory

𝐵# 𝛼 = 6+4α+
10
𝑁'+!

B
F
=

𝑉%,-.
𝑁'+ 7 2 F

(= 𝐵#%,-.)

𝛼 =
1
4

𝑉%,-.
𝑁'+ 7 2 bytes

− 6 −
10
𝑁'+!

𝐵# (𝛼)
𝐵#,%&'

= 1.11

11% extra traffic à
optimization potential!
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Three different sparse matrices

Matrix 𝑁 𝑁#$% 𝐵(,+,# [B/F] 𝑃./0 [GF/s]

DLR1 278,502 143 6.1 7.64
scai1 3,405,035 7.0 8.0 5.83
kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scai1 kkt_power

Roofline performance prediction : 𝑃89: = 𝐼 ∗ 𝑏; = B<! =",$%&

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏/ = 46.6 ⁄GB s
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Now back to the start…
§ 𝑏/ = 46.6 ⁄GB s , 𝐵" = 6 ⁄B F
§ Maximum spMVM performance:

𝑃+12 = 7.8 ⁄GF s
§ DLR1 causes (almost) minimum CRS code 

balance (as expected)

§ scai1 measured balance:

𝐵'+314 ≈ 8.5 B/F > 𝐵(,+,# (6% higher than min)
à good BW utilization, slightly non-optimal 𝛼

§ kkt_power measured balance:

𝐵'+314 ≈ 8.8 B/F > 𝐵(,+,# (10% higher than min)
à performance degraded by load imbalance, 

fix by block-cyclic schedule

scai1, kkt_power upper limit
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Investigating the load imbalance with kkt_power

static,2048

static

à Fewer overall instructions, (almost) 
BW saturation, 50% better 
performandce with load balancing

à CPI value unchanged!

Measurements with likwid-perfctr
(MEM_DP group)
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SpMV node performance model – CPU 

Intel Xeon Platinum 9242 
24c@2.8GHz (turbo)

𝑏! = 122 𝐺𝐵/𝑠
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Matrices taken from: C. L. Alappat et al.: ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX. In print. 
Preprint: arXiv:2103.0301

https://arxiv.org/abs/2103.03013


Data layout considerations – GPUs 
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What about GPUs?
§ GPUs need

§ Sufficient work per kernel launch in order to leverage their parallelism
§ Coalesced access to memory (consecutive threads in a warp should access 

consecutive memory addresses)

§ Plain CRS for SpMV on GPUs is not a good idea
1. Short inner loop 
2. Different amount of work per thread
3. Non-coalesced memory access

§ Remedy: Use SIMD/SIMT-friendly storage format
§ ELLPACK, SELL-C-σ, DIA, ESB,…
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What about GPUs?
§ Each GPU thread computes one 

row, iterates over column indices
§ This is the best mapping for CRS:

§ Enough parallelism to saturate 
the GPU (unless matrix is 
small)

§ Consecutive threads use 
similar data, spatial locality is 
used

§ No reduction among threads, 
each thread computes its own 
sum

§ But plain CRS has problems on  
GPUs! 
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CRS SpMV in CUDA (y = Ax)

template <typename VT, typename IT>
__global__ static void
spmv_csr(const ST num_rows,

const IT * RESTRICT row_ptrs, const IT * RESTRICT col_idxs,
const VT * RESTRICT values,   const VT * RESTRICT x,

VT * RESTRICT y)
{

ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row

if (row < num_rows) {
VT sum{};
for (IT j = row_ptrs[row]; j < row_ptrs[row + 1]; ++j) {

sum += values[j] * x[col_idxs[j]];
}
y[row] = sum;

}
} 𝐵- 𝛼 = 6 + 4 𝛼 +

6
𝑁*+,

𝐵
𝐹

No write-allocate on GPUs for consecutive stores
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SpMV CRS performance on a GPU
CRS (1 thread per row) 

NVIDIA  Ampere A100
Memory bandwidth 𝑏/ = 1400 GB/s

§ Strong “𝛼 effect” – large deviation from 
optimal 𝛼 for many matrices
§ Many cache lines touched b/c every thread 

handles one row à bad cache usage

§ Mediocre memory bandwidth usage 
(≪ 1400 GB/s) in many cases
§ Non-coalesced memory access
§ Imbalance across rows/threads of warps
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CRS SpMV on GPUs: scattered loads
§ Loads are executed in lock step on GPUs too
§ GPUs prefer compact “coalescable” addresses for 

each load (i.e. consecutive access across threads)

CRS vs. GPU
§ Row-wise storage format but access pattern 

orthogonal! à Scattered loads within warp
§ Scattered loads need more cycles
§ Scattered values occupy more cache lines
§ Higher latencies and redundant data transfers

in linear
memory
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CRS SPMV on GPUs – Problems: Idle threads

§ Threads are grouped in warps
§ Threads in a warp execute in lockstep, similar 

to SIMD
§ Problem: loop over column indices can have 

different trip count for each vector
§ Threads in a warp that have completed the 

loop are masked off
§ All threads in a warp have to wait for the 

thread with most non-zeros
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SELL-C-𝜎
Idea
§ Sort rows according to length within sorting scope 𝜎
§ Store nonzeros column-major in zero-padded chunks of height 𝐶

zero padding

“Chunk occupancy”:

𝛽 =
𝑁'+

∑&01
2" 𝐶 ⋅ 𝑙&

𝑙&: width of chunk 𝑖

M. Kreutzer et al.: A Unified Sparse Matrix 
Data Format For Efficient General Sparse

Matrix-vector Multiplication On Modern 
Processors With Wide SIMD Units, SIAM 

SISC 2014, DOI: 10.1137/130930352

https://dx.doi.org/10.1137/130930352
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SELL-C-𝜎 SpMV in CUDA (y=Ax)
template <typename VT, typename IT> __global__ static void
spmv_scs(const ST C, const ST n_chunks,     const IT * RESTRICT chunk_ptrs, 

const IT * RESTRICT chunk_lengths, const IT * RESTRICT col_idxs, 
const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y) 

{ 
ST row = threadIdx.x + blockDim.x * blockIdx.x; 
ST c = row / C; // the no. of the chunk
ST idx = row % C; // index inside the chunk

if (row < n_chunks * C) { 
VT tmp{}; 
IT cs = chunk_ptrs[c]; // points to start indices of chunks

for (ST j = 0; j < chunk_lengths[c]; ++j) { 
tmp += values[cs + idx] * x[col_idxs[cs + idx]]; 
cs += C; 

} 
y[row] = tmp; 

} 
} 
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Code balance of SELL-C-σ (y=Ax) 

When measuring 𝐵IJKLM, take care to use the “useful” 
number of flops (excluding zero padding) for work

𝐵;JKK 𝛼, 𝛽, 𝑁*+, =
1
𝛽
8 + 4
2

+
8𝛼 + 𝛽(8 + 4/𝐶)/𝑁*+,

2
bytes
Mlop

=
6
𝛽
+ 4𝛼 +

𝛽(4 + 2/𝐶)
𝑁*+,

bytes
Mlop

LHS update (write only) 

chunk index

Matrix data & 
column index

Optimal 𝛼 = 5
&!"#
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How to choose the parameters 𝐶 and 𝜎 on GPUs?
§ 𝐶

§ 𝑛× warp size to allow good utilization of GPU threads 
and cache lines

§ 𝜎
§ As small as possible, as large as necessary
§ Large 𝜎 reduces zero padding (brings 𝛽 closer to 1)
§ Sorting alters RHS access pattern à 𝛼 depends on 𝜎
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SpMV node performance model – GPU 
CRS (1 thread per row) SELL-32-128

NVIDIA  Ampere A100

𝑏/ = 1400 GB/s
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SELL-C-𝜎 kernel on CPUs
Example 𝑪 = 𝟒 without further unrolling

𝐶 = 4à AVX instructions

Choice of C for CPUs:
• (Multiple of) SIMD length
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SpMV node performance model – CPU 
CRS SELL-32-128

Intel Ice Lake 8360 Y

𝑏/ = 356 GB/s

Different matrices!!!
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Roofline analysis for spMVM
§ Conclusion from the Roofline analysis

§ The roofline model does not “work” for spMVM due to the RHS traffic uncertainties

§ We have “turned the model around” and measured the actual memory traffic to determine the 
RHS overhead

§ Result indicates:
1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

§ Do not forget about load balancing!
§ Sparse matrix times multiple vectors bears the potential of huge savings in data

volume

§ Consequence: Modeling is not always 100% predictive. It‘s all about learning more
about performance properties!



BACKUP



Applying sparse matrix to multiple vectors
(Sparse Matrix Multiple Vectors: SpMMV)



Unchanged matrix applied to multiple RHS (r) vectors to yield multiple LHS (r) vectors
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Multiple RHS vectors (SpMMV)

do s = 1,r
do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
C(i,s) = C(i,s) + val(j) *   

B(col_idx(j),s)
enddo

enddo
enddo

𝐵' unchanged, no
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(i,s) = C(i,s) + val(j) * 

B(col_idx(j),s)
enddo

enddo
enddo

Higher 𝐵' due to max
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) * 

B(s,col_idx(j))
enddo

enddo
enddo

CL-friendly data
structure (row major)



July 1, 2024 39PTfS 2024

SpMMV code balance
One complete inner (s) loop traversal:
§ 2𝑟 flops
§ 12 bytes from matrix data

(value + index)

§
34!
2#$%

bytes from the 𝑟 LHS updates

§
5

2#$%
bytes from the row pointer

§ 8𝑟𝛼 𝑟 bytes from the 𝑟 RHS reads

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) * 

B(s,col_idx(j))
enddo

enddo
enddo

𝐵- 𝑟 =
1
2𝑟

12 + 8𝑟𝛼 𝑟 +
16𝑟 + 4
𝑁*+,

B
F

=
6
𝑟 + 4𝛼 𝑟 +

8 + 2/𝑟
𝑁*+,

B
F OK so what now???
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SpMMV code balance
Let’s check some limits to see if this makes sense!

𝐵" 𝑟 =
6
𝑟
+ 4𝛼 𝑟 +

8 + 2/𝑟
𝑁'+!

B
F

𝑟 = 1 6+4α+
10
𝑁#$%

B
F

𝑟 ≫
1

4𝛼 𝑟 +
8

𝑁#$%
B
F

reassuring J

Can become very small for 
large 𝑁#$% à decoupling from 
memory bandwidth is possible!

M. Kreutzer et al.: Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems. 
Proc. IPDPS15, DOI: 10.1109/IPDPS.2015.76

𝑁 #
$%
≫
1

6
𝑟
B
F

http://www.ipdps.org/
http://dx.doi.org/10.1109/IPDPS.2015.76
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SELL-C-𝜎 kernel on CPUs
Example 𝐶 = 4 without further unrolling

𝐶 = 4


