_ UNIVERSITAT GREIFSWALD FRIEDRIGH-ALEXANDER
Wissen lockt. Seit 1456 W ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 6: Advanced OpenMP and performance issues

Outline of course

= Introduction to shared-memory programming with OpenMP
= OpenMP performance issues

Parallel Programming 2020 2020-11-16

UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Miscellaneous
Environment variables and API calls

Environment variables

= OMP_NUM_THREADS

= (int) Number of threads to use in parallel regions if not set from code
= OMP_SCHEDULE

= ([modifier:]type[,chunksize]) Parallel schedule to use for runtime-scheduled
loops

= Modifier: nonotonic|nonmonotonic : are iterations fed to threads in original
order? simd: make chunk size a multiple of SIMD width

= OMP_PLACES

= Unit for placement of threads
= OMP_PROC_BIND

= How threads should be put into places

Parallel Programming 2020 2020-11-16

Environment variables cont’'d

OMP_STACKSIZE
= (int + B|K|M|G) Per-thread stack limit
OMP_DYNAMIC

= (TRUE|FALSE) Allow/disallow dynamic adjustment of thread count by runtime
OMP_WAIT_POLICY

= (ACTIVE|PASSIVE) What should threads do when waiting?
OMP_DISPLAY_ AFFINITY

= (TRUE|FALSE) Display affinity info
OMP_AFFINITY_ FORMAT

= Specify affinity output format (see standard)

Parallel Programming 2020 2020-11-16

Some API routines

= omp_set_num_threads(int);
= Set no of threads is subsequent parallel regions without num_threads clause
= Int omp_get num_threads();

- Number of threads in current team " Int omp_get max_threads();

= # threads in next parallel region

= Int omp_get thread num(); = double omp get wtime():
= |ID of calling thread = Get time stamp
= Int Omp_get_num_procs(); = double Omp_get_wtick();
= Seconds between successive

= Number of available processors
= int omp_in_parallel();

= Determine if execution is within parallel region
= omp_display affinity();

= Print affinity info on stdout

time stamps

Parallel Programming 2020 2020-11-16

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

More OpenMP synchronization
OpenMP locks

Lock synchronization

Shared lock variables allow fine-grained synchronization

ijwkj @ 'sS

N\ } v,
YX @ [nonblodking > S(

Parallel Programming 2020 2020-11-16

Types of locks: simple and nestable

= C/C++ lock data types: omp lock t,omp _nest lock t
= Fortran: integer(omp_ lock kind), integer(omp_nest_lock kind)
= |nitialize a lock

= omp_init _lock(omp_lock t *), ¢
omp_init _nest lock(omp nest lock t *) / 2}5

= Obiject(s) protected by lock: defined by programmer 8}

= Lock must be initialized
= |nitial state: unlocked

= Nested lock: may be locked/unlocked multiple times by same task/thread

= omp_destroy lock(omp lock t *),
omp_destroy nest lock(omp lock t *)

= Disassociate (initialized) lock variable from lock

Parallel Programming 2020 2020-11-16

Simple lock routines

= void omp_set lock(omp lock t *)
= Blocks if lock not available
= Sets ownership and continues execution if lock available

= void omp_unset lock(omp lock t *)

= Release ownership of lock
= Ownership must have been established before

= int omp_test lock(omp lock t *)
= |f lock set: return false
= |f lock free: set lock and return true

¥ -8
B-%

Parallel Programming 2020

2020-11-16 10

Lock example: column updates on a matrix

double m[N][N];
omp_Rlock_t locks[N]; —
#pragma omp parallel Initialize all
{ locks
#pragma omp for
for(int 1=0; I<N; ++i)
omp_init lock(&locks[1]);

#pragma omp for
for(int i=0; i<K; ++i) {
int ¢ = col_calc(i); Protect update
omp_set_lock(&locks[c]); of column ¢
for(int j=0; j<N; ++j)
miclal += (c);
omp_unset_lock(&locks[c]); Is there an even
¥ better solution?

}

Parallel Programming 2020 2020-11-16

11

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

SIMD support in OpenMP

Why SIMD in OpenMP?

= Recurring challenges with SIMD
= How to tell the compiler “it's OK — go ahead!”?
= Interaction of loop chunk size and SIMD width

= Variables whose relationship to the “SIMD
direction” is unclear

= Making SIMD available for function calls
= Reminder: SIMD has nothing to do with
threading

= ... but is has everything to do with data
parallelism

= Special instructions work on vectors of operands
= SIMD support in OpenMP since v. 4.0

SIMD execution:
V64ADD [RO,R1] DR2

S

A[0] A[1] Al2] el Z

B[O] B[1] B[2] B[3]

/4

Clo] Cl1] Cl2] C3]

Parallel Programming 2020

2020-11-16 13

SIMD construct

= User-mandated vectorization
= #pragma omp simd enables vectorization of a loop
= Essentially a standardized “go ahead, no dependencies here!”

| I [I
Do not lie to the compiler here! // a[] and b[] do not

// overlap in a bad way
. o #pragma omp simd
Prerequisites for¢int i=0: i<N: ++i)
= Countable loop a[i] = s * b[i];
= Innermost loop

= Must conform to for-loop style of OpenMP worksharing constructs

= Clauses: simdlen, linear, safelen, reduction, (First)private, ...

Parallel Programming 2020 2020-11-16 14

SIMD construct clauses

» simdlen(int)
= Preferred SIMD width in iterations (hint to the compiler)

» safelen(int)
= No loop-carried dependencies for vectors of the specified size or below

= Example:

#pragma omp simd safelen(8)
for (int 1 = K; 1 < nj; ++i)
b[1] = s * b[i-K];
- This code is safe to vectorize with SIMD width up to 8 if k28

Parallel Programming 2020 2020-11-16

15

SIMD construct clauses

= linear(list] :step])
= Linear relationship of induction variables (in list) to the loop counter

#pragma omp simd reduction(+:s) linear(p:2)
for(int 1=0; i<N; ++1) {

s += a[1] * b[i];

qlel += rlpl;

p += 2;

= Enables the compiler to employ SIMD in presence of induction variables

= After the loop: induction variable has the same value as in serial execution
= Also applicable to workshared for loops

Parallel Programming 2020 2020-11-16

16

SIMD clause for workshared loops

= SIMD clause can be combined with OpenMP worksharing

#pragma omp for simd schedule(simd:static,c)

for(aint 1=0; 1I<N; ++1)
afi1] = exp(bli]); \ Extend chunk

size to next
Compiler will use SIMD width
SIMD version of multiple

function if present

= Some compilers will automatically vectorize loops with calls to some
Intrinsic functions (e.g., Intel — SVML library)

Parallel Programming 2020 2020-11-16

17

SIMD functions

= Functions and subroutines can be declared as SIMD vectorizable and

called from SIMD loops
#pragma omp declare simd ——— | Makescompiler

generate SIMD

double hyp3d(double k, double I, double m) { version(s) of the
return sgrt(k*k + I*I + m*m); function
}
double a[N], b[N], c[N]1, hyp[N]; SIMD loop calls
#pragma omp parallel for simd &MEvmﬁond
unction

for(int 1=0; i<N; ++1)
hyp[il = hyp3d(ali].blil,c[il);

Parallel Programming 2020 2020-11-16

18

SIMD functions

= More flexible SIMD specifications for functions

#pragma omp declare simd linear(s:1) uniform(p,qg,r) simdlen(4)
#pragma omp declare simd linear(s:1) uniform(p,qg,r) simdlen(8)

}

double a[N], b[N], c[N]. hyp[N];
#pragma omp parallel for simd
for(int 1=0; I<N; ++1)
hyp[i] = hyp3d_i(a,b,c,1);

Declares linear
relationship of
variables to
SIMD index

Declares
variables to be
invariant across

SIMD index

Parallel Programming 2020

2020-11-16

19

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

OpenMP tasking

Tasks vs. threads

= Parallelism is not just about loops General pattern:
= Data is not just about arrays: lists,
i #pragma omp parallel
rees, ... {
= OpenMP tasking constructs: task, #pragma omp single
taskloop / y
Single thread |
generates tasks zfpragma omp task
Task = code withdata — ..
environment }
Threads at task scheduling ¥
points are eligible for task +

execution

Parallel Programming 2020 2020-11-16

21

Basic tasking

= #pragma omp task nc ;-
structured-block struct object p[N]:
= Example: Execute function in loop #pragma omp parallel private(r,i)
only with some probability per { _
iteration #pragma omp single
{
/for(i:O; I<N; ++i1) {
1 automatically r = rand()/(double)RAND_MAX;
firstprivate iIT(p[1]-weight > r) {
/ #pragma omp task
+
= private variables in enclosing }
context are automatically +

firstprivate pertask ¥

Parallel Programming 2020 2020-11-16

22

Flexibility of tasks

= Tasks do not all have to execute ;fc"ﬁuc':t et W T (il
the same code 3 pI[N1. qIN]:

= Example: Overlapping #pragma omp parallel private(r,1)

communication and computation 1)
#pragma omp single

{

#pragma omp task
Communication task T”””””ﬁf communicate(q);
for(i=0; i<N; ++i) {

r = rand()/(double)RAND_MAX;
if(p[i]-weight > r) {
#pragma omp task

Computation tasks do_work_with(&p[1]);
1}

Parallel Programming 2020 2020-11-16

23

Tasks from loops: taskloops

= Combining parallel loops with tasks is
cumbersome if the task construct is all

you have

» #pragma omp taskloop [clauses]
for-loop

breaks loop into chunks and makes them
tasks
= By default implies a taskgroup construct:
All tasks finish before loop is left
= Disable with nogroup clause

struct object q[N];
double tmp, a[N], b[N], c[N];

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task
communicate(q);
#pragma omp taskloop \
grain_size(100)
for(int 1=0; I<N; ++1) {

double tmp = func(c[i]);

a[i] = b[i1] + tmp;
+

Parallel Programming 2020

2020-11-16

24

Task dependencies

= Many problems require tasks to be executed only after other tasks are
completed

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task depend(out:x)
X = compute();
#pragma omp task depend(in:x)
y += statistics(Xx);
#pragma omp task depend(in:x)
z = crunch(x);

Parallel Programming 2020 2020-11-16 25

Task dependencies

= #pragma omp task depend(type:list)

= The clause defines the currently generated task as dependent on a

previously generated sibling task if at least one of the items in the list
has the same storage location on both tasks

Dep. | Creates dep. on
type | types
IN OUT, INOUT

OUT IN, OUT, INOUT
INOUT IN, OUT, INOUT

Parallel Programming 2020 2020-11-16 26

Task dependencies example

Finite-difference time stepping algorithm

double a[N];
#pragma omp parallel
{
#pragma omp single
{
for(int t=0; t<100; ++t) {
for(int 1=1; 1I<N-1; ++1) {
#pragma omp task \
depend(in:a[i+1],a[1-1]) \
depend(out:a[i])

a[i] = func(afi1+1].,.a[1-1]);
F 2 O O

Parallel Programming 2020

2020-11-16

27

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

OpenMP performance issues and remedies

Conditional parallelism

= Sometimes we want a flexible means to avoid parallelism
= Barrier cost, cost of waking up the team of threads, scheduling cost

= 1T clause takes any valid condition in the base language
= Can be applied to various constructs, including task

Example: suppress nested parallelism

#pragma omp parallel 1T(n>8000) in a library routine
ipragma Siil (e #pragma omp parallel \
if(! i 1lel
for(int i=0; i<n; ++i) ¢ ampL TR S 0)
afi] = b[r] + c[1] * d[1]; ... 1 parallel region
¥ }

= Less extreme option: num_threads(n) clause to reduce # of threads in
region

Parallel Programming 2020 2020-11-16 29

Coarse granularity

= Even if there is enough work in a parallel loop, granularity may cause
imbalance

= Example: load imbalance if M is “small,” i.e., comparable to number of
threads

k |-
double a[M][N]; |
#pragma omp parallel for \ TO
schedule(static) reduction(+:res)
for(int 1=0; I<M; ++I) T1
for(int k=0; k<N; ++k)
res += a[l][k]; M T2
T3

Parallel Programming 2020 2020-11-16

Coarse granularity

= collapse(n) clause coalesces perfect n-way loop nest

»
L

double a[M][N];

#pragma omp parallel for \
schedule(static) reduction(+:res) \
collapse(2)
for(int 1=0; I<M; ++1)

for(int k=0; k<N; ++k)
res += a[l][K];

Parallel Programming 2020 2020-11-16 31

False sharing

= |f multiple threads frequently access the same cache line and at least one
thread writes to it = false sharing

int a=0;
int array[omp_get _max_threads()];
#pragma omp parallel array[]

{
int id = omp_get_thread_num();
array[i1d]=0;
#pragma omp for
for(int 1=0; i<N; ++i) {
Int x = compute(i);
array[id] += Xx;

+
#pragma omp critical
a += array[id]; | e]

Parallel Programming 2020 2020-11-16

32

False sharing: two solutions

1. Padding: leave = 1 cache line of room between adjacent entries

Cache line
A

array|[]

HEEEEE

int a=0;

const int CL=8;

int array[omp _get max_ threads()*CL];
#pragma omp parallel

{
int 1d = omp_get_thread num();
array[1d*CL]=0;
#pragma omp for
for(int 1=0; I<N; ++1) {
int x = compute(i);
array[1d*CL] += Xx;
+
#pragma omp critical
a += array[i1d*CL];

Parallel Programming 2020

2020-11-16 33

False sharing: two solutions

2. Privatization and reduction

int a=0;
#pragma omp parallel
{
#pragma omp for reduction(+:a)
for(int 1=0; 1<N; ++1) {
Int x = compute(i);
a += X;

}

If possible, prefer
privatization over
synchronization!

Parallel Programming 2020

2020-11-16

34

Wrap-up: advanced OpenMP and performance

= Locks
= Fine(r)-grained synchronization, many locks possible

= SIMD
= Loops (simd), parallel loops (for simd), functions (declare simd)

= Tasking
= More flexible work distribution, parallelism beyond loops with task
= taskloop for turning loop into a bag of tasks
= Performance issues
= Overhead - 1T, num threads
= Granularity - col lapse
= False sharing - padding, privatization, reduction

Parallel Programming 2020 2020-11-16

35

	Winter term 2020/2021�Parallel Programming with OpenMP and MPI
	Outline of course
	Miscellaneous
	Environment variables
	Environment variables cont’d
	Some API routines
	More OpenMP synchronization
	Lock synchronization
	Types of locks: simple and nestable
	Simple lock routines
	Lock example: column updates on a matrix
	SIMD support in OpenMP
	Why SIMD in OpenMP?
	SIMD construct
	SIMD construct clauses
	SIMD construct clauses
	SIMD clause for workshared loops
	SIMD functions
	SIMD functions
	OpenMP tasking
	Tasks vs. threads
	Basic tasking
	Flexibility of tasks
	Tasks from loops: taskloops
	Task dependencies
	Task dependencies
	Task dependencies example
	OpenMP performance issues and remedies
	Conditional parallelism
	Coarse granularity
	Coarse granularity
	False sharing
	False sharing: two solutions
	False sharing: two solutions
	Wrap-up: advanced OpenMP and performance

