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Outline of course

= Introduction to shared-memory programming with OpenMP
= OpenMP performance issues
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Environment variables

= OMP_NUM_THREADS

= (int) Number of threads to use in parallel regions if not set from code
= OMP_SCHEDULE

= ([modifier:]type[,chunksize]) Parallel schedule to use for runtime-scheduled
loops

= Modifier: nonotonic|nonmonotonic : are iterations fed to threads in original
order? simd: make chunk size a multiple of SIMD width

= OMP_PLACES

= Unit for placement of threads
= OMP_PROC_BIND

= How threads should be put into places
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Environment variables cont’'d

OMP_STACKSIZE
= (int + B|K|M|G) Per-thread stack limit
OMP_DYNAMIC

= (TRUE|FALSE) Allow/disallow dynamic adjustment of thread count by runtime
OMP_WAIT_POLICY

= (ACTIVE|PASSIVE) What should threads do when waiting?
OMP_DISPLAY_ AFFINITY

= (TRUE|FALSE) Display affinity info
OMP_AFFINITY_ FORMAT

= Specify affinity output format (see standard)
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Some API routines

= omp_set_num_threads(int);
= Set no of threads is subsequent parallel regions without num_threads clause
= Int omp_get num_threads();

- Number of threads in current team " Int omp_get max_threads();

= # threads in next parallel region

= Int omp_get thread num(); = double omp get wtime():
= |ID of calling thread = Get time stamp
= Int Omp_get_num_procs(); = double Omp_get_wtick();
= Seconds between successive

= Number of available processors
= int omp_in_parallel();

= Determine if execution is within parallel region
= omp_display affinity();

= Print affinity info on stdout

time stamps
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Lock synchronization

Shared lock variables allow fine-grained synchronization
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Types of locks: simple and nestable

= C/C++ lock data types: omp lock t,omp _nest lock t
= Fortran: integer(omp_ lock kind), integer(omp_nest_lock kind)
= |nitialize a lock

= omp_init _lock(omp_lock t *), ¢
omp_init _nest lock(omp nest lock t *) / 2}5

= Obiject(s) protected by lock: defined by programmer 8}

= Lock must be initialized
= |nitial state: unlocked

= Nested lock: may be locked/unlocked multiple times by same task/thread

= omp_destroy lock(omp lock t *),
omp_destroy nest lock(omp lock t *)

= Disassociate (initialized) lock variable from lock
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Simple lock routines

= void omp_set lock(omp lock t *)
= Blocks if lock not available
= Sets ownership and continues execution if lock available

= void omp_unset lock(omp lock t *)

= Release ownership of lock
= Ownership must have been established before

= int omp_test lock(omp lock t *)
= |f lock set: return false
= |f lock free: set lock and return true

¥ -8
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Lock example: column updates on a matrix

double m[N][N];
omp_Rlock_t locks[N]; —
#pragma omp parallel Initialize all
{ locks
#pragma omp for
for(int 1=0; I<N; ++i)
omp_init lock(&locks[1]);

#pragma omp for
for(int i=0; i<K; ++i) {
int ¢ = col_calc(i); Protect update
omp_set_lock(&locks[c]); of column ¢
for(int j=0; j<N; ++j)
miclal += (c);
omp_unset_lock(&locks[c]); Is there an even
¥ better solution?

}
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Why SIMD in OpenMP?

= Recurring challenges with SIMD
= How to tell the compiler “it's OK — go ahead!”?
= Interaction of loop chunk size and SIMD width

= Variables whose relationship to the “SIMD
direction” is unclear

= Making SIMD available for function calls
= Reminder: SIMD has nothing to do with
threading

= ... but is has everything to do with data
parallelism

= Special instructions work on vectors of operands
= SIMD support in OpenMP since v. 4.0

SIMD execution:
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SIMD construct

= User-mandated vectorization
= #pragma omp simd enables vectorization of a loop
= Essentially a standardized “go ahead, no dependencies here!”

| I [ I
Do not lie to the compiler here! // a[] and b[] do not

// overlap in a bad way
. o #pragma omp simd
Prerequisites for¢int i=0: i<N: ++i)
= Countable loop a[i] = s * b[i];
= Innermost loop

= Must conform to for-loop style of OpenMP worksharing constructs

= Clauses: simdlen, linear, safelen, reduction, (First)private, ...
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SIMD construct clauses

» simdlen(int)
= Preferred SIMD width in iterations (hint to the compiler)

» safelen(int)
= No loop-carried dependencies for vectors of the specified size or below

= Example:

#pragma omp simd safelen(8)
for (int 1 = K; 1 < nj; ++i)
b[1] = s * b[i-K];
- This code is safe to vectorize with SIMD width up to 8 if k28
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SIMD construct clauses

= linear(list] :step])
= Linear relationship of induction variables (in list) to the loop counter

#pragma omp simd reduction(+:s) linear(p:2)
for(int 1=0; i<N; ++1) {

s += a[1] * b[i];

qlel += rlpl;

p += 2;

= Enables the compiler to employ SIMD in presence of induction variables

= After the loop: induction variable has the same value as in serial execution
= Also applicable to workshared for loops
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SIMD clause for workshared loops

= SIMD clause can be combined with OpenMP worksharing

#pragma omp for simd schedule(simd:static,c)

for(aint 1=0; 1I<N; ++1)
afi1] = exp(bli]); \ Extend chunk

size to next
Compiler will use SIMD width
SIMD version of multiple

function if present

= Some compilers will automatically vectorize loops with calls to some
Intrinsic functions (e.g., Intel — SVML library)
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SIMD functions

= Functions and subroutines can be declared as SIMD vectorizable and

called from SIMD loops
#pragma omp declare simd ——— | Makescompiler

generate SIMD

double hyp3d(double k, double I, double m) { version(s) of the
return sgrt(k*k + I*I + m*m); function
}
double a[N], b[N], c[N]1, hyp[N]; SIMD loop calls
#pragma omp parallel for simd &MEvmﬁond
unction

for(int 1=0; i<N; ++1)
hyp[il = hyp3d(ali].blil,c[il);
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SIMD functions

= More flexible SIMD specifications for functions

#pragma omp declare simd linear(s:1) uniform(p,qg,r) simdlen(4)
#pragma omp declare simd linear(s:1) uniform(p,qg,r) simdlen(8)

}

double a[N], b[N], c[N]. hyp[N];
#pragma omp parallel for simd
for(int 1=0; I<N; ++1)
hyp[i] = hyp3d_i(a,b,c,1);

Declares linear
relationship of
variables to
SIMD index

Declares
variables to be
invariant across

SIMD index

Parallel Programming 2020

2020-11-16

19



FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

OpenMP tasking




Tasks vs. threads

= Parallelism is not just about loops General pattern:
= Data is not just about arrays: lists,
i #pragma omp parallel
rees, ... {
= OpenMP tasking constructs: task, #pragma omp single
taskloop / y
Single thread |
generates tasks zfpragma omp task
Task = code withdata — ..
environment }
Threads at task scheduling ¥
points are eligible for task +

execution
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Basic tasking

= #pragma omp task nc ;-
structured-block struct object p[N]:
= Example: Execute function in loop #pragma omp parallel private(r,i)
only with some probability per { _
iteration #pragma omp single
{
/for(i:O; I<N; ++i1) {
1 automatically r = rand()/(double)RAND_MAX;
firstprivate iIT(p[1]-weight > r) {
/ #pragma omp task
+
= private variables in enclosing }
context are automatically +

firstprivate pertask ¥
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Flexibility of tasks

= Tasks do not all have to execute ;fc"ﬁuc':t et W T (il
the same code 3 pI[N1. qIN]:

= Example: Overlapping #pragma omp parallel private(r,1)

communication and computation 1 )
#pragma omp single

{

#pragma omp task
Communication task T”””””ﬁf communicate(q);
for(i=0; i<N; ++i) {

r = rand()/(double)RAND_MAX;
if(p[i]-weight > r) {
#pragma omp task

Computation tasks do_work_with(&p[1]);
1}
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Tasks from loops: taskloops

= Combining parallel loops with tasks is
cumbersome if the task construct is all

you have

» #pragma omp taskloop [clauses]
for-loop

breaks loop into chunks and makes them
tasks
= By default implies a taskgroup construct:
All tasks finish before loop is left
= Disable with nogroup clause

struct object q[N];
double tmp, a[N], b[N], c[N];

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task
communicate(q);
#pragma omp taskloop \
grain_size(100)
for(int 1=0; I<N; ++1) {

double tmp = func(c[i]);

a[i] = b[i1] + tmp;
+
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Task dependencies

= Many problems require tasks to be executed only after other tasks are
completed

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task depend(out:x)
X = compute();
#pragma omp task depend(in:x)
y += statistics(Xx);
#pragma omp task depend(in:x)
z = crunch(x);
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Task dependencies

= #pragma omp task depend(type:list)

= The clause defines the currently generated task as dependent on a

previously generated sibling task if at least one of the items in the list
has the same storage location on both tasks

Dep. | Creates dep. on
type | types
IN  OUT, INOUT

OUT IN, OUT, INOUT
INOUT IN, OUT, INOUT
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Task dependencies example

Finite-difference time stepping algorithm

double a[N];
#pragma omp parallel
{
#pragma omp single
{
for(int t=0; t<100; ++t) {
for(int 1=1; 1I<N-1; ++1) {
#pragma omp task \
depend(in:a[i+1],a[1-1]) \
depend(out:a[i])

a[i] = func(afi1+1].,.a[1-1]);
F 2 O O
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Conditional parallelism

= Sometimes we want a flexible means to avoid parallelism
= Barrier cost, cost of waking up the team of threads, scheduling cost

= 1T clause takes any valid condition in the base language
= Can be applied to various constructs, including task

Example: suppress nested parallelism

#pragma omp parallel 1T(n>8000) in a library routine
ipragma Siil (e #pragma omp parallel \
if(! i 1lel
for(int i=0; i<n; ++i) ¢ ampL TR S 0)
afi] = b[r] + c[1] * d[1]; ... 1 parallel region
¥ }

= Less extreme option: num_threads(n) clause to reduce # of threads in
region
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Coarse granularity

= Even if there is enough work in a parallel loop, granularity may cause
imbalance

= Example: load imbalance if M is “small,” i.e., comparable to number of
threads

k |-
double a[M][N]; |
#pragma omp parallel for \ TO
schedule(static) reduction(+:res)
for(int 1=0; I<M; ++I) T1
for(int k=0; k<N; ++k)
res += a[l][k]; M T2
T3
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Coarse granularity

= collapse(n) clause coalesces perfect n-way loop nest

»
L

double a[M][N];

#pragma omp parallel for \
schedule(static) reduction(+:res) \
collapse(2)
for(int 1=0; I<M; ++1)

for(int k=0; k<N; ++k)
res += a[l][K];
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False sharing

= |f multiple threads frequently access the same cache line and at least one
thread writes to it = false sharing

int a=0;
int array[omp_get _max_threads()];
#pragma omp parallel array[]

{
int id = omp_get_thread_num();
array[i1d]=0;
#pragma omp for
for(int 1=0; i<N; ++i) {
Int x = compute(i);
array[id] += Xx;

+
#pragma omp critical
a += array[id]; | e ]

Parallel Programming 2020 2020-11-16
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False sharing: two solutions

1. Padding: leave = 1 cache line of room between adjacent entries

Cache line
A

array|[]

HEEEEE

int a=0;

const int CL=8;

int array[omp _get max_ threads()*CL];
#pragma omp parallel

{
int 1d = omp_get_thread num();
array[1d*CL]=0;
#pragma omp for
for(int 1=0; I<N; ++1) {
int x = compute(i);
array[1d*CL] += Xx;
+
#pragma omp critical
a += array[i1d*CL];

Parallel Programming 2020
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False sharing: two solutions

2. Privatization and reduction

int a=0;
#pragma omp parallel
{
#pragma omp for reduction(+:a)
for(int 1=0; 1<N; ++1) {
Int x = compute(i);
a += X;

}

If possible, prefer
privatization over
synchronization!
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Wrap-up: advanced OpenMP and performance

= Locks
= Fine(r)-grained synchronization, many locks possible

= SIMD
= Loops (simd), parallel loops (for simd), functions (declare simd)

= Tasking
= More flexible work distribution, parallelism beyond loops with task
= taskloop for turning loop into a bag of tasks
= Performance issues
= Overhead - 1T, num threads
= Granularity - col lapse
= False sharing - padding, privatization, reduction
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