

Programming Techniques for Supercomputers:

Basics - Parallelism, Scalability and parallel efficiency

Basic limitations of parallel computing

Prof. Dr. G. Wellein^(a,b), Dr. G. Hager^(a)

(a) Erlangen National High Performance Computing Center (NHR@FAU)

(b) Department für Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2024

Basics: Motivation

Identify basic limitations of implementations or algorithms for parallel processing

Assumptions:

- Underlying hardware is perfectly scalable (no saturation effects etc.)
- Basic workload may have pure serial and pure parallel contributions
- N "workers" have to perform either
 - Fixed amount of work as fast as possible → Amdahl's law
 - Increasing amount of work (~N) in constant time → Gustfson's law

Metrics:

- Parallel speed-up
- Parallel efficiency

Basics: Motivation

- Absoulte runtime based view: N workers need Time(N)
 - Absolute time to execute the serial (N = 1) workload on one worker: Time (1)
 - Basic assumption: workload consists of pure serial (s) and perfectly parallelizable (p) "timefraction"

$$Time(1) = Time_s(1) + Time_p(1)$$
Can not be parallelized

Can be perfectly parallelized

- Relative runtime ("fraction") based view:
 - All runtimes are measured realtive to $Time(1) \rightarrow T(N) = \frac{Time(N)}{Time(1)} \rightarrow T(1) = 1$
 - Serial fraction $s = \frac{Time_s(1)}{Time(1)}$ parallel fraction: $p = \frac{Time_p(1)}{Time(1)}$

$$T(1) = 1 = s + p$$

| Can be perfectly parallelized

Can not be parallelized

Basic: The ideal world and reality

Ideal world All work is perfectly parallelizable

Reality

Communication / synchronization / load imbalance...

PTfS 2024 July 2, 2024

Limitations of Parallel Computing: Metrics to quantify the efficiency of parallel computing

- Assume T(N) is the time to execute "some workload" with N workers
- How much faster do I execute the given workload on N workers?

→ Parallel Speed-Up:
$$S_P(N) = \frac{T(1)}{T(N)}$$

How efficient do I use the workers in average?

→ Parallel Efficiency:
$$\varepsilon_P(N) = \frac{S_P(N)}{N}$$

■ Warning: These metrics are relative to the time (performance) of a single worker → These metrics are not performance metrics!

Basic limitations of parallel computing

Amdahl's law ("strong scaling")

Gustafson's law ("weak scaling")

Applying Amdahl's law

Limitations beyond Amdahl/Gustafson

Limitations of Parallel Computing: Calculating Speedup in a Simple Model ("strong scaling")

Assumption: Constant workload ("strong scaling")

parallelizable part: p = 1-s

purely serial part s

N workers:
$$T(N) = s + p/N$$

Purely Serial

→ Parallel speedup:

Amdahl's Law

Perfectly Parallelizable

NIA

Limitations of parallel computing: Amdahl's Law ("strong scaling")

PTfS 2024 July 2, 2024

Limitations of Parallel Computing: Amdahl's Law ("strong scaling")

- Benefit of parallelization is strongly limited by serial part (s)
 - Maximum Speed-Up which can be attained: $\lim_{N\to\infty} S_P(N) = \frac{1}{s}$
 - Parallel Efficiency: $\varepsilon_p = \frac{1}{s(N-1)+1}$
 - For large number of workers $\lim_{N\to\infty} \varepsilon_P(N) = 0$
- Reality: No task is perfectly parallelizable
 - Shared resources have to be used serially
 - Task interdependencies must be accounted for
 - Communication overhead (but that can be modeled separately)

• Assume that c(N) is the communication time when using N processors with c(1) = 0

$$\rightarrow T(N) = s + p/N + c(N)$$

- Communication time may depend on many factors:
 - Network topology
 - Communication pattern
 - Message sizes
 - · ...
- Typical scaling of communication times:
 - Global communication, e.g. barrier: $c(N) = k \log N$
 - Every process sending message over bus based network or serialization of communication in application code: c(N) = k N (see next slide)

Limitations of parallel computing:

Amdahl with (simple) communication Model: Extended Amdahl

PTfS 2024

Large N limits

Amdahl's Law predicts (k=0)

$$\lim_{N\to\infty} S_p^0(N) = \frac{1}{s}$$

(independent of N)

At k≠0, our simplified model of communication overhead yields a beaviour of

$$S_p^k(N) \xrightarrow{N>>1} \frac{1}{Nk}$$

Limitations of parallel computing: Amdahl's Law

PTfS 2024 July 2, 2024

Limitations of parallel computing: Amdahl's Law at scale

CPUs

PTfS 2024 July 2, 2024

Limitations of parallel computing: Impact of communication is not always as bad...

- Communication is not necessarily purely serial
 - Non-blocking networks can transfer many messages concurrently factor Nk in denominator becomes k, which can be added to s
 (technical measure)
 - Sometimes, communication can be overlapped with useful work ("asynchronous communication"):

But never forget

$$\lim_{N\to\infty} S_p^0(N) = \frac{1}{s}$$

Basic limitations of parallel computing

Amdahl's law ("strong scaling")

Gustafson's law ("weak scaling")

Applying Amdahl's law

Limitations beyond Amdahl/Gustafson

Limitations of parallel computing: The "weak scaling" scenario

- Increasing problem size often mainly enlarges "parallel" workload p
 - Then Speed-up increases with problem size

- For some application fields: Solve problems as big as possible
- → Increase (parallel) workload with available workers / processors
- → This is called "weak scaling"

Limitation of parallel computing: Increasing Parallel Efficiency ("weak scaling")

- Assume simple and optimistic scenario: Parallel Workload increases linearly with N, i.e. $p \rightarrow N p$
 - $\rightarrow T(N) = s + \frac{Np}{N} = s + p$
 - → Runtime stays constant if workload is increased linearly with N
 - → Performance increases linearly with N
- How long does it take to solve the workload of N processors on 1 processor

$$\rightarrow T_N(1) = s + N p$$

$$\Rightarrow S(N) = \frac{T_N(1)}{T(N)} = \frac{s+Np}{s+p} = \frac{s+Np}{T_S(1)} = s + (1-s)N$$

Speed-Up increases linearly with N

Gustafson's Law ("weak scaling" – performance scaling)

Basic limitations of parallel computing

Amdahl's law ("strong scaling")

Gustafson's law ("weak scaling")

Applying Amdahl's law

Limitations beyond Amdahl/Gustafson

Limitations of parallel computing: Applying Amdahl: Serial & Parallel fraction

Always remember model assumptions:

- Workload consists of
 - purely serial (s) and
 - perfectly parallelizable $(p \to \frac{p}{N})$ parts
- Scalability is limited by
 - serial fraction or
 - communication overhead (extended Amdahl).
- Impact of shared/saturating hardware resources is not modeled
- How to determine model parameters (s, p)?
 - First principles: Complete knowledge of application and hardware parameters required too complex for most applications/kernels
 - Fit model parameters to speedup measurements

Limitations of parallel computing: Applying Amdahl: Serial & Parallel fraction

Naïve approach: Measure performance as a function of cores and fit (extended)
 Amdahl's law (cf. slide 6/9)

Hypothetical study on Emmy (i.e. 2-sockets 10 core each per node) – extended

Limitations of parallel computing: Applying Amdahl: Serial & Parallel fraction

- Better approach: Separation of concerns! Use well-defined basic building blocks as "workers", which
 - are perfectly scalable (no shared resource in between)
 - restrict measured effects to model assumptions, e.g. use full nodes only (one communication path, serial fraction still visible)

Limitations on parallel computing: Applying Amdahl: A more general view

- Amdahl's law can also be interpreted as follows
 - A fraction p of a given code/workload can be "accelerated" by a factor N through some "acceleration technique"
 - The remainder part s cannot be accelerated, i.e. s + p = 1
 - "Normalized" runtime of baseline code $T_{base} = 1$ (slide 6: T(1))
 - "Normalized" runtime of accelerated code $T_{acc}(N,s) = s + p/N$ (slide 6: T(N))
- The speed-up of the acceleration technique is

$$S_p(N) = \frac{T_{base}}{T_{acc}(N,s)} = \frac{1}{s + \frac{1-s}{N}}$$

- Potential "Acceleration factors"
 - Parallel processing with N processes assuming perfect speed-up on fraction p
 - Using an accelerator (e.g. GPGPU) which executes the fraction p of a code N times faster
 - Implementing a code transformation which speeds up a fraction p of a code by N times

Limitations on parallel computing: <u>Applying Amdahl: A more general view</u>

Application: GPGPU accelerated code

- Execution time of original code on host: T_{base}
- "Accelerated execution" (offload)
 - A fraction p of the original code can be executed on GPGPU N times faster than CPU
 - The remaining part *s* is executed on host

$$\Rightarrow S_p(N) = \frac{1}{s + \frac{1-s}{N}}$$

 Consider data transfer between host and accelerator: Extended Amdahl's law

$$\Rightarrow S_p(N,k) = \frac{1}{s + \frac{1-s}{N} + k}$$

Data exchange (e.g. via PCle)

Example:

- $T_{base} = 150 \, s$
- 75% of that is put on GPGPU $\rightarrow p = 0.75$
- GPGPU runs 15x faster than host $\rightarrow N = 15$

$$\rightarrow S_{0.75}(15) = 3.33$$

$$\rightarrow S_{0.75}(15,0.1) = 2,5$$

Basic limitations of parallel computing

Amdahl's law ("strong scaling")

Gustafson's law ("weak scaling")

Applying Amdahl's law

Limitations beyond Amdahl/Gustafson

Limitations of parallel computing – beyond Amdahl/G. Shared/saturated hardware resources

 Saturations of shared hardware resources set limits to scalability not covered by Amdahl's / Gustafson's law

do
$$i=1$$
 , 10 000 000
 $a(i) = b(i) + s * c(i)$
enddo

- Technical limit imposed by hardware (40 GB/s)
- Parallel performance assuming perfect scalability (p/N)
 - → Parallel scalability limited by saturated hardware resource

Other potential HW bottlenecks: QPI, PCIe, networks (see next lecture)

Limitations of parallel computing – beyond Amdahl/G. Synchronization points and load imbalance

- Load imbalance between "workers"
 - $\rightarrow p/N$ assumption no longer valid (in general)

- Hard to model in a general way, but there are important special cases:
 - A few "laggers" waste lots of resources
 - A single (consistent) lagger could be modeled by increased serial fraction

- A few "speeders" may be harmless
- → turning some "laggers" into "speeders" may boost performance a lot!

