
Introduction to OpenMP Tasking and Offloading

Georg Hager, Markus Wittmann

based on work by
R. Bader (LRZ), G. Hager (RRZE), V. Weinberg (LRZ),

and R. v. d. Pas, E. Stotzer, C. Terboven: Using OpenMP – The Next Step. MIT Press, 2017, ISBN 978-0-262-53478-9

Shared-Memory Parallelization With Tasking

Tasks in OpenMP

▪ tasks in OpenMP refer to an instance of

executable code and associated data environment

▪ we already used tasks unknowingly, e.g.:

▪ internally parallel construct creates an implicit task of the associated

structured block for each thread

▪ explicit tasks allow for greater flexibility

▪ parallelize workloads which cannot be mapped to worksharing constructs

▪ allow for dependencies between tasks

2024-07-09PTFS: OpenMP Tasking and Offloading 3

▪ encountering thread creates a task from

associated structured block

▪ task can be executed

▪ undeferred: executed immediately

▪ deferred: possibly executed later

▪ deferred tasks are enqueued to be

processed by (waiting) threads

▪ tasks are executed in unspecified order

▪ barrier is only left iff

▪ all threads have arrived

▪ and all tasks have been processed

Creating Tasks

#pragma omp parallel

{

#pragma omp single

{

for (...) {

#pragma omp task

{ /* work */ }

}

} /* implicit barrier */

}

task [clauses…]

structured-block

Data Sharing (Attributes) with Tasks

▪ specify explicitly with clauses:

▪ default, private, shared, firstprivate

▪ rules (as already known):

▪ static/global variables → shared

▪ automatic (stack) variables inside region →

private

▪ referenced variables become
firstprivate iff:

▪ no default clause present

▪ variable not explicitly listed

▪ variable not determined shared in enclosing

constructs

▪ ensures data is still alive when task is

executed

#pragma omp parallel

#pragma omp single

{

double d[100] = ...;

#pragma omp task

work(d, 100);

}

double d[100] = ...;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

work(d, 100);

}

d shared

d firstprivate

as determined
private inside

single

2024-07-09 5PTFS: OpenMP Tasking and Offloading

Task Clauses

▪ if(true):

▪ deferred task created, possibly

executed later

▪ the default

▪ if(false):

▪ undeferred task is created,

executed immediately

▪ only applies to task at hand

▪ optimization:

▪ stop generating tasks if enough have
been generated, see final

▪ reduce overhead

▪ all other task semantics still apply

if(expression)

2024-07-09 8PTFS: OpenMP Tasking and Offloading

Task Synchronization

▪ waiting for completion of tasks:

▪ explicit barrier

▪ implicit barriers (does not apply for nowait)

▪ with explicit task synchronization constructs
▪ taskwait

▪ taskgroup (see later)

▪ taskwait: wait until all child tasks of current

(implicit) task are completed

▪ NOTE: child tasks include only direct children,

not grandchildren

#pragma omp parallel

#pragma omp single

{

#pragma omp task

work1();

#pragma omp taskwait

#pragma omp task

work2();

} continue
when work1

has finished
wait in impl. barrier

until work2 has

finished

2024-07-09 9PTFS: OpenMP Tasking and Offloading

Task Synchronization with taskgroup

▪ wait for all tasks created within
taskgroup region

▪ not only the direct children as with
taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

work1() /* spawns more tasks */

#pragma omp task

work2() /* spawns more tasks */

}

}
wait here for all tasks in
taskgroup region to finish

work1

work2

tasks created by work1

tasks created by work2

taskgroup

taskwait would only wait

for work1 and work2

2024-07-09 10PTFS: OpenMP Tasking and Offloading

Task Synchronization with taskgroup

▪ allows for dedicated waiting on tasks

#pragma omp parallel

#pragma omp single

{

#pragma omp task

unrelated1();

#pragma omp taskgroup

{

#pragma omp task

work1() /* spawns more tasks */

#pragma omp task

work2() /* spawns more tasks */

} /* wait for tasks */

#pragma omp task

unrelated2();

} /* implicit barrier */

no waiting for
unrelated1

spawn
unrelated1

spawn
unrelated2

execute task group

spawn work1() & work2()

wait for taskgroup tasks to finish

single

impl. barrier

wait for
unrelated1 & unrelated2

2024-07-09 11PTFS: OpenMP Tasking and Offloading

Task Scheduling Points

▪ threads can suspend execution of

tasks and switch to another task (task

switch), and also start new tasks

▪ only at predefined

task scheduling points (TSPs):

▪ task construct

▪ end of task

▪ at taskyield and taskwait

▪ end of taskgroup construct

▪ at implicit/explicit barrier

▪ (target related constructs & API)

▪ taskyield introduces an explicit TSP

#pragma omp parallel

#pragma omp single

{

double d[100] = ...

#pragm omp task

{

work(d, 100);

#pragma omp taskyield

more_work(d, 100)

}

#pragma omp taskwait

}

task construct

taskyield

end of task

taskwait

impl. barrier

u
n

in
te

rr
u

p
te

d
 *

*assuming in work()/more_work() no TSPs occur

task

scheduling

points

2024-07-09 12PTFS: OpenMP Tasking and Offloading

Task Scheduling Points

▪ best:

▪ do not hold locks when crossing task scheduling points

▪ avoid task scheduling points in critical regions

▪ deadlocks can occur

▪ task A holds a lock/is inside a critical region

▪ task A is suspended due to reaching a task scheduling point

▪ task B is resumed by the same thread

▪ task B tries to acquire the lock/enter the critical region

▪ deadlock occurs

task A

2024-07-09 13PTFS: OpenMP Tasking and Offloading

Tied and Untied Tasks

▪ tied tasks (default)

▪ cannot leave thread that first

started execution of task (≠

encountering thread)

▪ untied tasks

▪ can be resumed by any thread in

team

NOTE: tied might be desired if

cache/NUMA locality is needed

task B

task A

suspend task A

thread

task A

task B

thread 1 thread 2

task A

tied tasks

(default)
untied tasks

#pragma omp task untied

task_a();

#pragma omp task untied

task_b();

start task B

suspend task B

resume task A

suspend task A

start task B resume task A

2024-07-09 15PTFS: OpenMP Tasking and Offloading

Reductions with Tasks

▪ requires two components

▪ taskgroup with

task_reduction clause

▪ in_reduction clause of task

≥ v5.0

#pragma omp parallel

#pragma omp single

{

int sum = 0;

#pragma omp taskgroup \

task_reduction(+:sum)

{

#pragma omp task in_reduction(+:sum)

{ /* might spawn tasks that also have

in_reduction(+:sum) */

}

#pragma omp task { }

/* does not take part */

} /* implicit barrier */

/* sum available */

}

2024-07-09 16PTFS: OpenMP Tasking and Offloading

Task Dependencies

▪ introduce dependencies between sibling

tasks

▪ dependency types:

▪ in: “read” from variables

▪ out/inout: “read” from and “write” to variables

▪ not covering: mutexinoutset, inoutset,
depobj

▪ task graph is built by matching dependencies

to dependencies of already submitted tasks

task depend(in:…) \

depend(out:…) \

depend(inout:…)

list of variables,

array elements

and sections

NOTE: tasks do not necessarily have to use the variables specified in dependencies

2024-07-09 17PTFS: OpenMP Tasking and Offloading

in dependency

▪ depends on last out dependency of the listed variables, if any

▪ can be scheduled parallel to other tasks with the same in dependency

▪ if no previous out dependency to listed variable exists, it is assumed as

fulfilled

#pragma omp task depend(out:x) /*A*/

/*…*/

#pragma omp task depend(in:x) /*B*/

/*…*/

#pragma omp task depend(in:x) /*C*/

/*…*/

A

x

out

B

C

task graph

in

2024-07-09 18PTFS: OpenMP Tasking and Offloading

out/inout dependency

▪ depends on

▪ last out dependency of the listed variables, if any

▪ all in dependencies scheduled directly before

▪ if no previous in/inout/out dependency to listed variable exists, it is

assumed as fulfilled

▪ out and inout are effectively the same

#pragma omp task depend(in:x) /*A*/

/*…*/

#pragma omp task depend(in:x) /*B*/

/*…*/

#pragma omp task depend(inout:x) /*C*/

/*…*/

#pragma omp task depend(inout:x) /*D*/

/*…*/

x

C D

in inout

task graph
B

inout

A

2024-07-09 19PTFS: OpenMP Tasking and Offloading

Oder of Creation Matters

int v = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out:x) /*A*/

v = 1;

#pragma omp task depend(inout:x) /*B*/

v += 2;

#pragma omp task depend(inout:x) /*C*/

v *= 2;

}

A

x
out

B C

inout
inout

x = ((1) + 2) * 2 = 6

int v = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out:x) /*A*/

v = 1;

#pragma omp task depend(inout:x) /*C*/

v *= 2;

#pragma omp task depend(inout:x) /*B*/

v += 2;

}

A

x
out

C B

inout
inout

x = ((1) * 2) + 2 = 4

2024-07-09 20PTFS: OpenMP Tasking and Offloading

Dependencies between Siblings only

int x;

#pragma omp task depend(in: x)

{

#pragma omp task depend(out: x)

{ … }

}

#pragma omp task depend(out: x)

{ … }

unrelated as tasks are

no siblings

related, as tasks

are siblings

taskloop construct

▪ wraps chunks of iterations of assoc.

loops into tasks and executes them

▪ not a worksharing construct

▪ however: created tasks can be

executed by all threads in current team

▪ advantages

▪ can be arbitrarily nested

▪ worksharing loops require nested

parallelism

▪ explicit tasks cannot encounter

worksharing loops

▪ automatic load balancing

taskloop [clauses]

do-/for-loop

#pragma omp parallel num_threads(2)

#pragma omp single

{

int from = omp_get_thread_num();

#pragma omp taskloop

for (int i = 0; i < 5; ++i) {

printf(“%d %d %d\n”,

i, omp_get_thread_num(), from);

}

}

#pragma omp parallel num_threads(2)

{

#pragma omp taskloop

for (int i = 0; i < 5; ++i) {…}

}

one thread encounters it,

all threads execute tasks,

5 lines of output
taskloop is executed 2 times

3 0 0

4 0 0

0 1 0

1 1 0

2 1 0

possible output:

2024-07-09 22PTFS: OpenMP Tasking and Offloading

taskloop clauses

▪ loop related:

▪ collapse, reduction

▪ task related clauses are applied to the created tasks:

▪ final, if, in_reduction, mergeable, priority, untied

▪ chunk size related:

▪ grainsize, num_tasks

▪ data sharing attributes:

▪ firstprivate, private, shared, lastprivate

▪ taskloop is implicitly wrapped into a taskgroup:

▪ nogroup removes impl. taskgroup

2024-07-09 23PTFS: OpenMP Tasking and Offloading

taskloop clauses

▪ grainsize([strict:]n)

▪ task has between n and 2n iterations

▪ with strict each task has n iterations

▪ last chunk can have less than n iterations

▪ num_tasks([strict:]n)

▪ generated no. of tasks will be = min(n, no. of iterations)

Offloading

Introduction

▪ execute code on a device, typically

an accelerator

▪ not necessarily a GPU, can also be an

FPGA, DSP, …

▪ OpenMP tries to abstract from the

targeted device's architecture

▪ target: device where code and data

is offloaded to

▪ execution always starts on the host

device

▪ here only a small fraction of the

standard is covered

host

device
device,

target

2024-07-09PTFS: OpenMP Tasking and Offloading 25

2024-07-09 26PTFS: OpenMP Tasking and Offloading

target construct

▪ execute associated structured

block on the device

▪ on the target:

▪ execution is initially single threaded

▪ on the host:

▪ wait until offloaded code completes

▪ target construct cannot be nested

inside another target construct

int a[1024], b[1024];

/* init a and b */

#pragma omp target

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

target [clauses…]

<structured block>

host device

omp target

for (…)

a[i] += b[i]

2024-07-09 27PTFS: OpenMP Tasking and Offloading

Generating Parallelism

▪ target construct alone does not

generate parallelism

#pragma omp target

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

team

o
n

 t
h

e

d
e

v
ic

e

iterations

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming

Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019

▪ teams construct

▪ generate league of teams

▪ a team has only one initial thread

▪ each team executes the same code

▪ how many teams: impl. defined

▪ num_teams(n) clause

▪ distribute construct

▪ distributes iteration space of

associated loop(s) over teams

2024-07-09 28PTFS: OpenMP Tasking and Offloading

Generating Parallelism
#pragma omp target teams

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

#pragma omp target teams distribute

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

team

o
n

 t
h

e

d
e

v
ic

e

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming

Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019

2024-07-09 29PTFS: OpenMP Tasking and Offloading

Generating Parallelism

▪ parallel construct

▪ gen. parallel region with multiple

threads inside each team

▪ worksharing loop

▪ distribute team's iteration space over

all threads inside a team

#pragma omp target teams distribute \

parallel

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

#pragma omp target teams distribute \

parallel for

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming

Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019

2024-07-09 30PTFS: OpenMP Tasking and Offloading

Generating Parallelism

▪ simd construct

▪ use SIMD lanes in each thread

▪ how each directive maps to a GPU entity depends on the compiler

#pragma omp target teams distribute \

parallel for simd

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

2024-07-09 32PTFS: OpenMP Tasking and Offloading

Generating Parallelism

▪ some possible combinations

omp target <sb>

omp target parallel <sb>

omp target parallel for/do <ln>

omp target parallel for/do simd <ln>

omp target simd <ln>

omp target teams <sb>

omp target teams distribute <ln>

omp target teams distribute parallel for/do <ln>

omp target teams distribute parallel for/do simd <ln>

omp target teams distribute simd <ln>

sb: structured block

ln: loop nest

not covered: section, loop construct

2024-07-09 33PTFS: OpenMP Tasking and Offloading

target teams construct

▪ each team has a new initial thread

▪ teams are loosely coupled

▪ in contrast to the parallel construct

▪ no synchronization across teams

clauses:

▪ num_teams(expr) clause

▪ no. of teams to create

▪ if unspecified gen. no. of teams is

implementation defined

▪ thread_limit(expr) clause

▪ max. no. of active threads in a team

#pragma omp target teams

{ … }

#pragma omp target

#pragma omp teams

{ … }

target teams must be a

compound construct or

directly nested

▪ if(expr) clause

▪ evaluate to true: create teams

▪ evaluate to false: create only 1 team

▪ shared, private, firstprivate, default:

▪ usual meaning

▪ reduction clause: see later

▪ distribute iterations of associated loop over teams

▪ must be strictly nested inside
a teams construct

▪ iteration space must be the same

for all teams

▪ no implicit barrier at the end

▪ dist_schedule(static[,chunk_size]) clause

▪ if unspecified: implementation defined

▪ w/o chunk_size: each team gets one equally sized chunk

▪ collapse(n) clause

▪ same as for for/do construct

▪ associate and collapse iteration space of n nested loops
2024-07-09 34PTFS: OpenMP Tasking and Offloading

distribute construct

#pragma omp target teams distribute

<loop>

#pragma omp target teams

#pragma omp distribute

<loop>

distribute must be a

compound construct or

strictly nested

2024-07-09 36PTFS: OpenMP Tasking and Offloading

Data Mapping

▪ host and device memory can be separate

▪ mapping of variables ensures

▪ a variable is accessible on the target, e.g. by

copy or allocation

▪ a consistent memory view

▪ what can be mapped:

▪ variables, array sections, members of

structures

▪ mapping causes a presence check

▪ copy to device only if not already present

▪ mapping attributes can be

▪ implicit or explicit

int a[1024], b[1024];

/* init a and b */

#pragma omp target

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

host device

omp target

for (…)

a[i] += b[i]

a[1024]

b[1024]

a[1024]

b[1024]

here, implicit

mapping attributes

cause variables to

be mapped, note

a[1024], b[1024]

2024-07-09 37PTFS: OpenMP Tasking and Offloading

Device Data Environment (DDE)

▪ exists for each device

▪ exists beyond a single target region

▪ contains all variables accessible by

threads running on the device

▪ mapping ensures a variable is in a

device's DDE

int a[1024], b[1024];

/* init a and b */

#pragma omp target

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

host device

omp target

for (…)

a[i] += b[i]

a[1024]

b[1024]

a[1024]

b[1024]

D
D

Ea[1024]

b[1024]

a[1024]

b[1024]original

variable

corresponding

variable

2024-07-09 40PTFS: OpenMP Tasking and Offloading

map clause

▪ map clause

▪ map-type: how a variable is mapped

▪ mtm: map-type-modifier: always, close, present

map([<mtm>,]<map-type>: <variables>)

tofrom default, copy to device on entry of target region

and back at the end

to copy to device on entry of target region

from allocate on entry of target region,

copy from device to host on exit of target region

alloc on entry, allocate on device, but do not initialize

release counterpart to alloc

delete removes variable from device (independent of

RC)

int a[1024], b[1024];

/* init a and b */

#pragma omp target map(a) map(to:b)

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

host device

omp target

for (…)

a[i] += b[i]

a[1024]

b[1024]

a[1024]

tofrom

(default): a

to: b

"force" update even if

variable is already on

the device

2024-07-09 41PTFS: OpenMP Tasking and Offloading

Allocating on the Device

▪ map-type alloc

▪ allocate variable/array on device

▪ no initialization is performed

▪ no copy back to host

▪ useful, e.g. when an array is only

used on the device

int tmp[1024];

#pragma omp target map(alloc:tmp)

{

for (int i = 0; i < 1024; ++i)

tmp[i] = compute(i);

for (int i = 0; i < 1024; ++i)

work(tmp[i]);

for (int i = 0; i < 1024; ++i)

work2(tmp[i]);

}

tmp allocated on the device

tmp not copied back

2024-07-09 42PTFS: OpenMP Tasking and Offloading

How to map dynamically allocated arrays in C/C++

▪ map dynamically allocated arrays via array section syntax

double * a = malloc(sizeof(double) * n_el);

double * b = malloc(sizeof(double) * n_el);

/* init a */

#pragma omp target map(to:a[:n_el]) \

map(alloc:b[:n_el])

for (int i = 0; i < n_el; ++i) {

b[i] = a[i];

}

array[[lower-bound]:length]

2024-07-09 44PTFS: OpenMP Tasking and Offloading

target data construct

▪ map data for the duration of the

associated block to the DDE

▪ <block> still executed on host

▪ <block> typically includes multiple

target regions

▪ clauses:
▪ map() with to, from, tofrom, alloc

▪ not covered: device, if, use_device_addr,
use_device_ptr

target data [clauses]

<block>

#pragma omp target data map(to:a[:n]) \

map(from:b[:n])

{

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] = 2.0 * a[i]; }

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] += a[i]; }

}

host device

target data

for (…)

b[i] = 2.0 * a[i];

a[:n]

b[:n]

a[n]

b[n]

target

for (…)

b[i] += a[i];

target

end target data

2024-07-09 45PTFS: OpenMP Tasking and Offloading

target update Construct

▪ copy data between host and device

▪ runs on the host

▪ cannot appear inside a target construct

▪ copy is always performed

▪ in contrast to target map(…)

▪ clauses

▪ to(var-list) copy vars. to device

▪ from(var-list) copy vars. to host

▪ not covered: device, if, nowait, depend

#pragma omp target data map(to:a[:n]) \

map(from:b[:n])

{

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] = 2.0 * a[i]; }

#pragma omp target update from(b[:n])

/* do something with b */

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] += a[i]; }

}

target update [clauses]

2024-07-09 46PTFS: OpenMP Tasking and Offloading

enter data/exit data directives

▪ unstructured

▪ can be called at any point on host

▪ at exit data: listed variables not present

on the device are ignored

▪ clauses not covered: device, if,
depend, nowait

double * vec_allocate(int n_el)

{

double * a = malloc(…);

#pragma omp target enter data \

map(alloc:a[:n_el])

return a;

}

void vec_free(double * a)

{

#pragma omp target exit data \

map(release:a[:n_el])

free(a);

}

allowed: to, alloc

allowed: from, release, delete

target enter data map(…)[clauses]

target exit data map(…) [clauses]

map data

unmap data

2024-07-09 50PTFS: OpenMP Tasking and Offloading

Selecting a Device

▪ without specification the default device is used

▪ default device:

▪ get: omp_get_default_device()

▪ logical device ids in the range from
0 to omp_get_num_devices() – 1

▪ use specific device with id:

▪ env. var. OMP_DEFAULT_DEVICE

▪ omp_set_default_device(id)

▪ device(id) clause of target … clauses

Useful Runtime API Calls

▪ get default device
▪ int omp_get_default_device()

▪ integer function

omp_get_default_device()

▪ set default device
▪ void omp_set_default_device(int device)

▪ subroutine

omp_set_default_device(device)

integer device

▪ return no. of non-host offload devices
▪ int omp_get_num_devices();

▪ integer function

omp_get_num_devices()

▪ return no. of initial/host device
▪ int omp_get_initial_device()

▪ integer function

omp_get_initial_device()

▪ return calling thread’s device no.
▪ int omp_get_device_num()

▪ integer function

omp_get_device_num()

▪ on host returns the value of
omp_get_initial_device()

▪ return if calling thread runs on host
▪ int omp_is_initial_device()

▪ integer function

omp_is_initial_device()

H

H

H

H/D

H/D

callable from host H, device D

H

2024-07-09 52PTFS: OpenMP Tasking and Offloading

Env. Vars. related to Offloading

▪ OMP_DEFAULT_DEVICE=<n> with n ≥ 0

▪ set the default device used for executing target constructs

▪ OMP_TARGET_OFFLOAD=mandatory | disabled | default

▪ mandatory: usage of unsupported or unavailable device or invalid device

number causes termination

▪ disabled: if supported by the OpenMP RT, the only device available is the host

▪ OMP_TEAMS_THREAD_LIMIT=<n>

▪ maximum no. of threads each team can have

2024-07-09 53PTFS: OpenMP Tasking and Offloading

Performance Aspects

▪ need to know what underlying architecture/RT will do

▪ copy or not copy

▪ avoid unnecessary copies

▪ mapped variables require a presence check on the device

▪ hence: private/firstprivate variables are faster

▪ determine how your compiler maps directives to GPU entities

▪ check how num_teams/thread_limit are interpreted

2024-07-09 54PTFS: OpenMP Tasking and Offloading

Inspecting Transfers

▪ GCC
▪ GOMP_DEBUG=1 ./a.out

▪ prints a lot of information

▪ LLVM/clang

▪ env. var. LIBOMPTARGET_INFO

▪ from https://openmp.llvm.org/design/Runtimes.html#llvm-openmp-target-host-runtime-libomptarget

▪ 0x01: show data args. when entering device kernel

▪ 0x02: show when a mapped address already exists on device

▪ 0x04: Dump the contents of the device pointer map at kernel exit

▪ 0x08: Indicate when an entry is changed in the device mapping table

▪ 0x10: Print OpenMP kernel information from device plugins

▪ 0x20: Indicate when data is copied to and from the device

▪ LIBOMPTARGET_INFO=$((0x01 | 0x02)) ./a.out

▪ NVHPC

▪ env. var. PGI_ACC_DEBUG=1

▪ env. var. NVCOMPILER_ACC_NOTIFY=1

