
MI300A Architecture and

Programming model
HLRS , Jan 22, 2025

Johanna Potyka, Igor Pasichnyk

2 |

AMD CDNA 2
Coherent Memory Architecture

AMD CDNA 3 Unified Memory APU Architecture

▪ Eliminate Redundant Memory
Copies

▪ No programming distinction
between CPU and GPU memory
spaces

▪ High performance, fine-grained
sharing between CPU and GPU
processing elements

▪ Single process can address all
memory, compute elements on
a socket

▪ Allows incremental porting

AMD Instinct APU

Unified Memory
(HBM)

MI300A

GPUCPU

GPU
Memory

(HBM)

CPU
Memory

(DDR)

DISCRETE GPUS

APU ARCHITECTURE BENEFITS FOR CPU TO GPU PORTING

3 |

AMD Instinct MI300A Accelerator

6 XCDs
228 AMD CDNA 3
compute units

3 CCDs
24 “Zen 4” x86 cores CPU

4 IODs
8 HBM3
stacks

256 MB
AMD Infinity Cache technology

3.5D packaging

4 |

AMD Instinct MI300A Accelerated Processing Unit

• XCD – Accelerator Complex

Die

• 38 CUs per XCD, 228 total

AMD CDNA 3 architecture

XCD XCD XCD XCD XCD XCD
CU CU CU CU

CU CU CU CU

CU CU CU CU

CU CU CU CU

CU CU CU CU

CU CU CU CU

CU CU CU CU

CU CU CU CU

CU CU CU CU

CU CU CU CU

4MB L2 Cache

Global Resources

XCD

5 |

Scheduler Local Data Share L1 Cache
Vector Unit + Matrix Core

Vector Registers

Scheduler

SIMD-16 xDL
(256xMFMA-BF16&F16 / 512xMMAD-lNT8 / 32xMFMA-F32)

Vector ALU
(2xMFMA64 / 1xVFMA64 / /2xFMA16)

Local Data Share
(64 KB)

(128 B/ cycle)

Branch & Message Unit

Scalar Unit

Scalar Registers
(16 KB)

Vector Registers
(4 x 128 KB)

Vector Unit
(SIMD-16)

Load/Store Units
(16 lanes)

L1 Cache
(32 KB)

64 work-items grouped into wavefront executing “in one pass”

Each pair of CUs shares a 64KB, 8-way set associative instruction cache

AMD Instinct MI300A Accelerated Processing Unit

6 |

AMD Instinct MI300A Accelerated Processing Unit

AMD InstinctTM

MI300A

Active CU / XCD 38

CDNATM 3 Accelerated Compute Dies (XCD) 6

Stream Processors 38 * 6 * 64 = 14,592

L1 Cache / CU 32 KB

L2 Cache Shared Between CUs 4 MB

• A multiple of 14,592 threads need to run
concurrently to efficiently use the GPU part of the
MI300A!

• Parallelism needed to use a full node (4 APUs): 4 x
14,592 x “a few”

7 |

• CCD – CPU Complex Die

• 8 “Zen 4” cores per CCD, 24

total

• Leverage CCD from EPYC

CCD

CCD

CCD

XCD XCD XCD XCD XCD XCD
32MB

L3 Cache

“Zen 4”
CPU

“Zen 4”
CPU

“Zen 4”
CPU

“Zen 4”
CPU

“Zen 4”
CPU

“Zen 4”
CPU

“Zen 4”
CPU

“Zen 4”
CPU

CCD

AMD Instinct MI300A Accelerated Processing Unit

8 |

AMD Instinct MI300A Accelerated Processing Unit

• HBM – High Bandwidth Memory

• HBM gen 3, 16GB (128 GB

total)

• 665 GB/s/stack (5.3 TB/s total)

• 128 total memory channels

HBM HBM HBM HBM HBM HBM HBM HBM

CCD

CCD

CCD

XCD XCD XCD XCD XCD XCD

9 |

AMD Instinct MI300A Accelerated Processing Unit

• Memory-side Infinity Cache

• 2MB/channel (256 MB total)

• BW amplification (up to 17 TB/s)

HBM HBM HBM HBM HBM HBM HBM HBM

CCD

CCD

CCD

XCD XCD XCD XCD XCD XCD

$$$$$$$$

10 |

AMD Instinct MI300A Accelerated Processing Unit

• Infinity Fabric (IF)

• Fully-coherent fabric

(CPU+GPU)

• Provides I/O connectivity

• Four x16 links IF to other MI300A

Four x16 links IF or PCIe® gen5

• Each link at 64 GB/s/dir

Infinity Fabric

CCD

CCD

CCD

XCD XCD XCD XCD XCD XCD

HBM

$$$$

HBMHBMHBM

$$$$

HBMHBMHBMHBM

11 |

AMD Instinct MI300A Accelerator

6 XCDs
228 AMD CDNA 3
compute units

3 CCDs
24 “Zen 4” x86 cores CPU

4 IODs
8 HBM3
stacks

256 MB
AMD Infinity Cache technology

3.5D packaging

228 CUs can execute 64 wide wavefronts in parallel → Much parallelism needed to use the full device!

12 |

OpenMP offload for APUs

13 |

Recap: OpenMP® on CPUs

void saxpy(int n, float a, float *x, float *y) {
 double t = 0.0;

double tb, te;
tb = omp_get_wtime();

for (int i = 0; i < n; i++) {
y[i] = a * x[i] + y[i];

}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

| Copyright OpenMP® ARB, used with permission

14 |

Recap: OpenMP® on CPUs

void saxpy(int n, float a, float *x, float *y) {
 double t = 0.0;

double tb, te;
tb = omp_get_wtime();

#pragma omp parallel for private(i) shared(x,y,a,n)
for (int i = 0; i < n; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

| Copyright OpenMP® ARB, used with permission

15 |

Recap: OpenMP® on CPUs

void saxpy(int n, float a, float *x, float *y) {
 double t = 0.0;

double tb, te;
tb = omp_get_wtime();

#pragma omp parallel for private(i) shared(x,y,a,n)
for (int i = 0; i < n; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

| Copyright OpenMP® ARB, used with permission

Start a parallel region

“Use OMP_NUM_THREADS number

of threads to execute the following

code”“this line is OpenMP”

Distribute the for iterations among the

threads

Thread 0 gets a chunk

Thread 1 gets a chunk

…

Distribution depends on schedule

Tell the compiler which

variables are shared among

threads and which have

private copies.

16 |

OpenMP® on APUs

#pragma omp requires unified_shared_memory
void saxpy(int n, float a, float *x, float *y) {
 double t = 0.0;

double tb, te;
tb = omp_get_wtime();

#pragma omp target teams distribute parallel for private(i) shared(x,y,a,n)
for (int i = 0; i < n; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

| Copyright OpenMP® ARB, used with permission

“This needs the unified shared

memory model”

GPU and CPU share the

memory!

Move this to the GPU

Distribute the work

among workgroups

distributed to CUs

Parallelize within workgroups (use full

wavefronts)

17 |

OpenMP® on APUs : some flexibility and kernel tuning possible

18 |

Introspection of Data Movement on MI300A

Discrete GPU (or HSA_ XNACK=0) APU with HSA_XNACK=1

o When XNACK=1, we see the same host and device pointers and UNIFIED_MEM usage

19 |

Performance on AMD discrete GPUs (MI250X) vs. APU (MI300A)

• Distinguish between first call and

mean of the final N-1 calls

• “First touch penalty” with

export HSA_XNACK=1

• Following kernels using the

same data are fast!

• Memory pools help to avoid

first touch penalty!

• For MI300A run with

export HSA_XNACK=1

20 |

CPU CODE GPU CODE APU CODE

!allocation on host
ALLOCATE(var(1:N))

!compute on host
!$omp parallel do &
!$omp private(i), shared(var)
DO i=1,N
 var(i) = …
END DO
!$omp end parallel do
!sync barrier at omp end …
…
!deallocation
DEALLOCATE(var)

!allocation on host
ALLOCATE(var(1:N))

!compute on device, expl. mem movement!
!$omp target teams distribute parallel do &
!$omp map(tofrom:var) private(i),shared(var)
 DO i=1,N
 var(i) = …
 END DO
!$omp end target teams distribute parallel do
!host-device sync barrier at omp end …
…
!deallocation
DEALLOCATE(var)

!$omp requires unified_shared_memory
!allocation of unified memory
ALLOCATE(var(1:N))

!compute on device, no expl. mem movement!
!$omp target teams distribute parallel do &
!$omp private(i),shared(var)
 DO i=1,N
 var(i) = …
 END DO
!$omp end target teams distribute parallel do
!host-device sync barrier at omp end …

!deallocation of unified memory
DEALLOCATE(var)

APU PROGRAMMING MODEL WITH OPENMP

Costly to switch

CPU -> GPU!
Cheap CPU ->

GPU with APU

• Compute kernel
• Special directive to enable unified memory
• Explicit memory management between CPU & GPU -> not needed for APU!
• Synchronization Barrier

21 |

Native or Low-level Languages

Heterogeneous Interface for Portability (HIP)

• A portable layer on top of ROCm and CUDA

Requires a different source on CPU and GPU

• Larger effort for porting

• No equivalent of CUDA Fortran available: Fortran requires

C interfaces

Reccomendation: HIP for hottest loops and complex kernels

only if you start from a CPU code

➢ If already CUDA ported: Converting CUDA to HIP is

straightforward

• Hipify scripts do majority of the work

• Still requires optimization effort to get best performance

• e.g. a wavefront has 64 threads executing the same instruction

(different compared to 32 threads per warp on NVIDIA hardware)

Portable HIP C++ (Host & Device Code)

#include

“hip_runtime.h”

hipcc

AMD GPU

C
U

D
A

 e
q
u
iv

a
le

n
ts

 a
v
a

ila
b
le

 m
a
k
e

th
is

 p
o
rt

a
b
le

 t
o
 N

V
ID

IA
 h

a
rd

w
a
re

22 |

CPU CODE GPU CODE APU CODE

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);

for (int i=0; i<M; i++) // initialize
 in_h[i] = …;

cpu_func(in_h, out_h, M);

for (int i=0; i<M; i++) // CPU-process
 … = out_h[i];

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);
hipMalloc(&in_d, Msize);
hipMalloc(&out_d, Msize);

for (int i=0; i<M; i++) // initialize
 in_h[i] = …;

hipMemcpy(in_d,in_h,Msize);
gpu_func<< >>(in_d, out_d, M);
hipDeviceSynchronize();
hipMemcpy(out_h,out_d,Msize);

for (int i=0; i<M; i++) // CPU-process
 … = out_h[i];

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);

for (int i=0; i<M; i++) // initialize
 in_h[i] = …;

gpu_func<< >>(in_h, out_h, M);
hipDeviceSynchronize();

for (int i=0; i<M; i++) // CPU-process
 … = out_h[i];

• Compute kernel
• GPU memory allocation on Device -> no copies for host and device on APU!
• Explicit memory management between CPU & GPU -> not needed for APU!
• Synchronization Barrier

APU PROGRAMMING MODEL WITH HIP

C++ example,

Fortran only possible

with C bindings and

Interface to C for GPU

kernels

23 |

Most common decisions how to port to Hunter

CPU only code?

OpenMP parallelized? CUDA? OpenACC?

OpenMP offload*
(+ HIP for loops where performance

with OpenMP is identified as not

satisfactory later on,

Note: C bindings required for Fortran)

Fortran?

OpenMP offload* or

do concurrent*
(+ HIP (C bindings) for loops where

performance with OpenMP is identified as not

satisfactory later on,

Note: for HIP C bindings required for Fortran)

OpenMP offload*
(+ HIP for loops where performance with

OpenMP is identified as not satisfactory

later on)

Stdpar in C++ option for

experienced C++ developers

yes

yes no

yes no
OpenACC

with cray

compiler

no

C/C++ ?

no yes

Good knowledge of C++?

yes no

Start with Hipify tools
and tune later for best performance

Both HIP with C

bindings or OpenMP

offload are options

OpenMP offload
(+ HIP for loops where performance with OpenMP

is identified as not satisfactory later on,

Note: for HIP C bindings required for Fortran)

*Note that OpenMP target and do

concurrent can be compiled for the host

-> allows initial porting preparation on CPU

Fortran?

yes no

Convert to

OpenMP

offload

24 |

Summary

• AMD Instinct MI300A

• Unified memory

• 228 CUs (wavefront: 64)

• 128 GB HBM

• Last level cache shared between CPU and GPU

• Programming the APU:

• Unified shared memory / APU programming model

• No data movement needed with HSA_XNACK=1

• Most common: OpenMP offload, HIP, stdpar / do concurrent

25 |

Further Resources
GPU / APU Training:

• AMD GPU programming course: https://fs.hlrs.de/projects/par/events/2024/GPU-AMD/

• AMD GPU OpenMP programming course: https://fs.hlrs.de/projects/par/events/2024/GPU-AMD2/

• Training examples: https://github.com/AMD/HPCTrainingExamples

MI300 White Paper:

• https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf

AMD Blog:

https://rocm.blogs.amd.com/

ROCm Documentation:

https://rocm.docs.amd.com/

OpenMP ported example code:

• OpenFoam on APU Code: https://github.com/ROCm/OpenFOAM_HMM

• OpenFoam on APU Paper: https://ieeexplore.ieee.org/abstract/document/10528925

https://fs.hlrs.de/projects/par/events/2024/GPU-AMD/
https://fs.hlrs.de/projects/par/events/2024/GPU-AMD2/
https://github.com/AMD/HPCTrainingExamples
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://rocm.blogs.amd.com/
https://rocm.docs.amd.com/
https://github.com/ROCm/OpenFOAM_HMM
https://ieeexplore.ieee.org/abstract/document/10528925

26 |

DISCLAIMERS AND ATTRIBUTIONS
The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and
assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of
AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms
and Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon , Instinct , EPYC, Infinity Fabric, ROCm , and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

The OpenMP ® name and the OpenMP ® logo are registered trademarks of the OpenMP Architecture Review Board

July 17, 2024HLRS Hunter Code Preparation Workshop

	Slide 1: MI300A Architecture and Programming model HLRS , Jan 22, 2025
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: AMD Instinct™ MI300A Accelerated Processing Unit
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: OpenMP offload for APUs
	Slide 13: Recap: OpenMP® on CPUs
	Slide 14: Recap: OpenMP® on CPUs
	Slide 15: Recap: OpenMP® on CPUs
	Slide 16: OpenMP® on APUs
	Slide 17: OpenMP® on APUs : some flexibility and kernel tuning possible
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Native or Low-level Languages
	Slide 22
	Slide 23: Most common decisions how to port to Hunter
	Slide 24: Summary
	Slide 25: Further Resources
	Slide 26: DISCLAIMERS AND ATTRIBUTIONS
	Slide 27

