Programming Techniques for Supercomputers

<u>Prof. Dr. G. Wellein<sup>(a,b)</sup></u>, Dr. G. Hager<sup>(a)</sup> A. Afzal<sup>(a)</sup>, D. Lacey<sup>(a)</sup>, J. Laukemann<sup>(a)</sup>

<sup>(a)</sup> Erlangen National Center for High Performance Computing (NHR@FAU) <sup>(b)</sup> Department für Informatik

FAU Erlangen-Nürnberg Sommersemester 2025

NHR FÂU







#### Audience & Contact

- Audience
  - Computational Engineering
  - Computer Science
  - Computational & Applied Mathematics (CAM)
  - Physics, Engineering, Materials Science, Chemistry,...
- Contact:
  - Gerhard Wellein: gerhard.wellein@fau.de
  - Georg Hager: georg.hager@fau.de

(Lecture&Tutorial) (Lecture&Tutorial)

- A. Afzal (ayesha.afzal@fau.de): Tutorial
- Dane Lacey and Jan Laukemann: Tutorial (CAM)
- For questions first use moodle forum (see next slide)

# How to register for the lecture & tutorials

• Sign up for lecture & tutorials at moodle:

# https://go-nhr.de/PTfS

Enroll in the course and fill the poll: <u>https://moodle.nhr.fau.de/mod/choice/view.php?id=2834</u>

Registration for exam (starts later): campo.fau.de

## Format of lecture / exams

PTfS: Lecture & Exercises:

#### Written exam (90 Minutes)

- Material covered in lecture AND tutorial
- Register in campo for: 278169

#### PTFS-CAM: Lecture & Excercises & Additional programming project: 10 ECTS

- Oral exam (30 minutes)
  - Material covered in lecture AND tutorial AND Programming Project
  - Register in campo for 58751
- Both exams:
  - No additional materials allowed
  - Bonus system based on total credits of returned exercise sheets:
    - 60% 79% an upgrade in the final mark of 1 stage, e.g.  $2.7 \rightarrow 2.3$
    - 80% and higher upgrade in the final mark of 2 stage, e.g.  $2.7 \rightarrow 2.0$
    - You must pass the exam before "boost" is applied! 1.0 is still best marks

**7.5 ECTS** 

## **Organization & Format**

- 4 hrs of lecture (2 x 2 hrs) / week : !!! In person !!!
  - Tuesday (12:15 13:45): H20
  - Thursday (10:15 11:45): H20

GW needs to travel several times during the semester  $\rightarrow$  **backup slot** 

- Friday (8:30 10:00): 02.134-113 (backup slot see moodle for lecture dates)
- 2 hrs of tutorial per week choose one
  - Thursday (14:15 15:45) 02.133-113

#### OR

- Friday (10:15 11:45)
   02.134-113
- CAM office hours: Friday 13:00 14:00 in the office 04.139-113
   starting after first project intro (will be announced on Moodle)

#### During lectures / tutorial: DON'T BE SHY AND ASK QUESTIONS!

- Lecture/Tutorial is completely documented in moodle LMS: https://go-nhr.de/PTfS (see also StudOn entry)
- Please enroll into the lecture and specify your matriculation number!
  - Homework assignments, announcements etc. all handled via moodle
  - Use forum for questions or discussion with other students

- Recordings of 2020 and 2021 PTfS lectures are available at <u>https://www.fau.tv</u>
  - <u>https://www.fau.tv/course/id/2351</u> (2021 Zoom lecture)
  - <u>https://www.fau.tv/course/id/1233</u> (2020 CAMTASIA recording)

Material has changed since then!!!!!

## Organization & Format: Tutorials and Homework

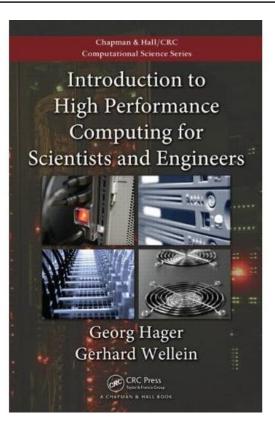
- New homework assignments are released every Wednesday around 10:00 a.m.
- Report submission
  - Deadline: one week later, i.e., Thursday 10:00 a.m. No extensions!
  - Deadline for Assignment 0: to be announced  $\rightarrow$  Moodle
  - Upload a single file in Moodle
    - PDF report or
    - compressed archive including a PDF report and supporting material
  - Grading will be done based on PDF report
- Problems? Questions?
  - Ask during tutorial Q&A
  - Use Moodle forum

#### Thursday / Friday Tutorial Sessions: Content

- Presentation of solution to previous assignment
- Presentation of current (new) assignment
- III Opportunity to ask questions III
- Strongly recommended to attend the tutorial weekly

- CAM students have to do a programming and performance modeling project:
- Shared memory parallel Preconditioned Conjugate Gradient (PCG) solver

- Extra events for PTfS-CAM students:
  - Basic shell introduction: May 2<sup>nd</sup>, after the tutorial
  - Introduction to C: April 29<sup>th</sup>, instead of lecture
  - Introduction to project work (OpenMP parallelization)
  - Introduction to project work (performance modelling)
  - PTfS-CAM-Consultation hour every week (Jan / Dane)
  - Dates & times will be announced in moodle → SEE MOODLE


Can also be attended by other students

#### Format of the course

- Prerequisite (for exercises):
  - Basic programming knowledge in C/C++ or FORTRAN
  - Using LINUX / UNIX OS environments (including ssh)
- Recommended
  - First experiences with parallel programming though we will introduce necessary basics
- Tutorials:
  - You **must** submit your homework assignments for inspection to qualify for bonus!
  - Do the exams and programming exercises even if you do not submit!
  - Some topics will be covered (in more detail) in the tutorials
  - Topics additionally covered in the tutorials are part of the 7.5 ECTS exam
  - Practical parallelization skills will be tested in the 7.5 ECTS exam!

# Supporting material

- Books:
  - G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924
    - 10 copies are available in the library
    - discounted copies ask us



- J. Hennessy and D. Patterson: Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, 2017. ISBN 978-0128119051
- W. Schönauer: Scientific Supercomputing. (cf. http://www.rz.uni-karlsruhe.de/~rx03/book/)

## Supporting material

- Documentation:
  - http://www.openmp.org
  - <u>http://www.mpi-forum.org</u>
  - <u>http://developer.intel.com/products/processor/manuals</u>
  - <u>http://developer.amd.com/documentation/guides</u>

- The big ones and more useful HPC related information:
  - <u>http://www.top500.org</u>

Regular seminar on

"Efficient numerical simulation on multicore processors" (MuCoSim)

- 5 ECTS
- 2 hrs per week
- 2 talks + written summary
- Topics from code optimization, code parallelization and code benchmarking on latest multicore / manycore CPUs and GPUs
- This semester: Wednesday 16:00 17:30
- See moodle: <u>http://go-nhr.de/MuCoSim</u>
- Also offered during winter term

# Related teaching activities

Lecture on

Practical parallel algorithms with MPI (**PAMPI**)

- Winter term
- 5 ECTS
- 2 hrs of lecture
- 2 hrs of tutorials
- Lecturer: Dr. Jan Eitzinger





# **Scope of the lecture**



## Scope of the lecture

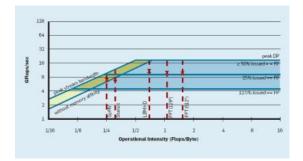
Understand relevant hardware features/concepts of modern HPC systems and derive efficient parallelization & implementation strategies

→Identify **basic hardware concepts** (CPU & GPU) single core, chip/device, node-level

→Learn strategies how to efficiently use (program) the hardware (code transformations/optimizations, OpenMP/CUDA)

→Establish appropriate performance expectations/models to
 →assess the attainable performance and
 →identify the "hardware bottleneck"

## Scope of the lecture

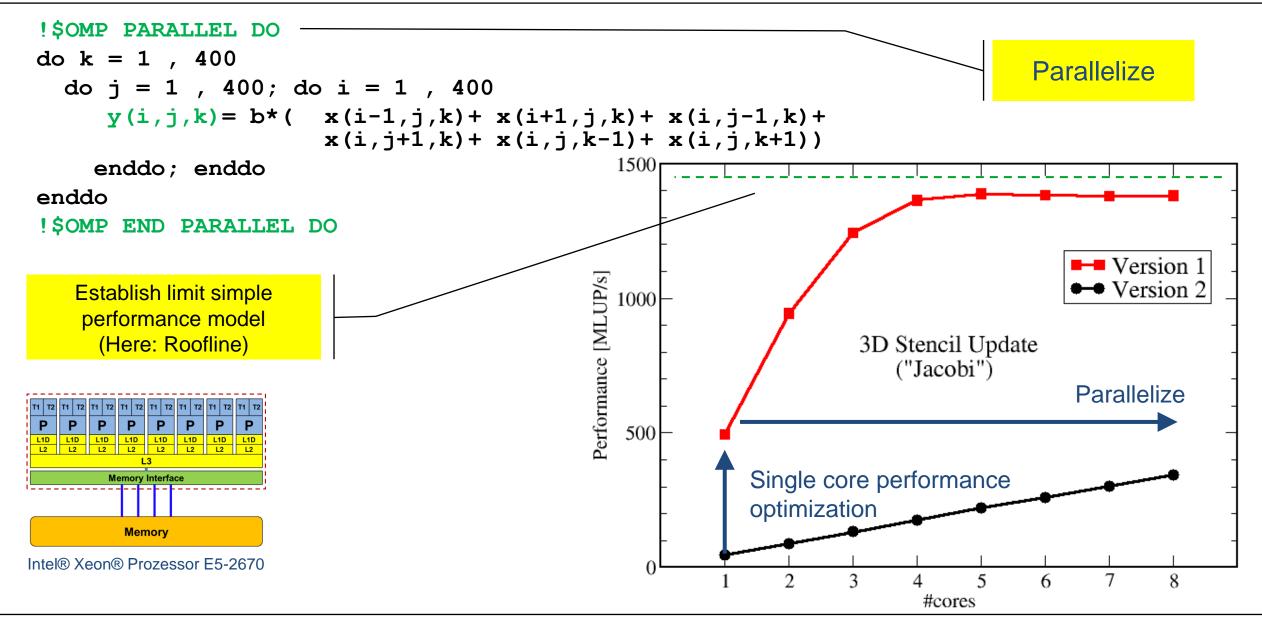

- Hardware coverage:
  - Single-core + Multi-Core
  - Many-core / GPU:
  - Shared memory nodes
  - Distributed memory computers

Intel Xeon & AMD EPYC & ARM-based NVIDIA A100 (multiple multi-/many-core & GPUs) (multiple/many nodes)

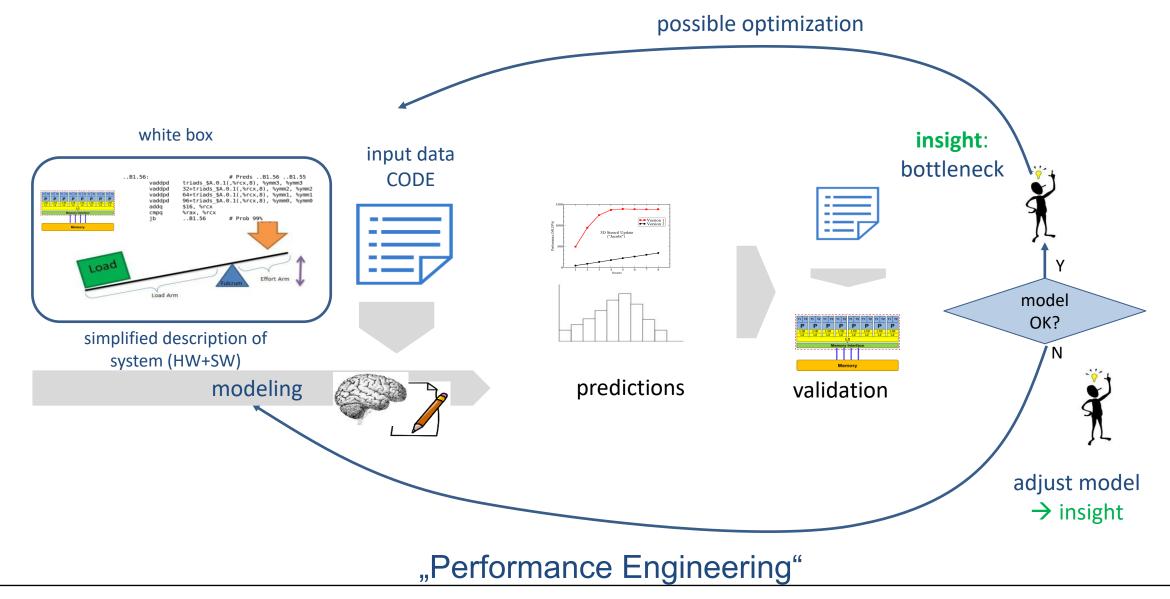
- Programming models (mostly basic introduction; performance issues):
  - OpenMP
  - CUDA
  - MPI

(shared memory nodes)
(GPUs)
(distributed memory) → PAMPI lecture

- Performance Modelling
  - Expectations
  - Roofline Model [Williams&Patterson, 2009]
  - (ECM Model)




## Structure of the lecture


- Introduction
  - Performance: Basics, Measuring & Reporting, Benchmarks
- Modern (multicore) processors
  - Single core: Basics, Pipelining, Superscalarity, SIMD
  - Memory Hierarchy: Caches & Main Memory
  - Multicore: Technology & Basics
  - GPU
- Parallel computers: Shared Memory
  - Shared-memory system architectures: UMA, ccNUMA
  - OpenMP basics
- Performance Modelling / Engineering:
  - Roofline Model
  - Case Studies: Dense&Sparse Matrix-Vector-Multiplication / Stencils / ...
- Shared Memory in depth
  - Advanced OpenMP, Pitfalls, Data Placement
- Hardware performance monitoring and model validation  $\rightarrow$  LIKWID

| Modeling                   |  |
|----------------------------|--|
| is and Mo                  |  |
| e Analysi                  |  |
| Performance Analysis and I |  |

#### Scope of the lecture – a typical example



#### Code optimization/parallelization – no black boxes!







# Introduction

Supercomputers: The Big Ones and the working horses



## Most powerful computers in the world: TOP500

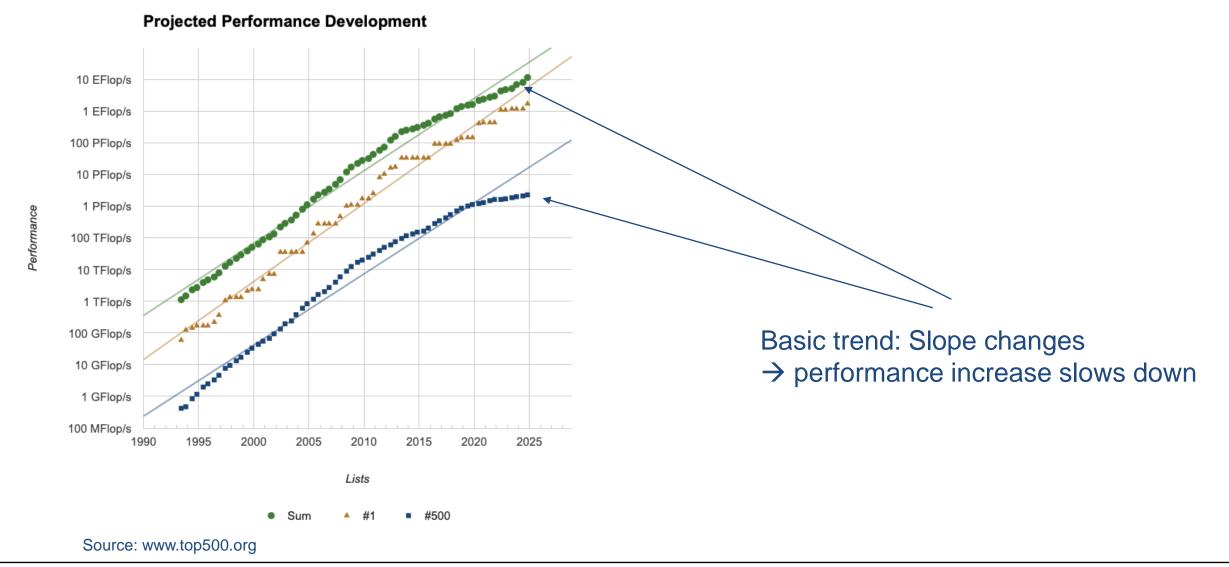
- Top 500: Survey of the 500 most powerful supercomputers
  - http://www.top500.org
  - How to rate the performance?
  - $\rightarrow$  Solve large dense system of equations: **A x** = **b** ("LINPACK")
  - Max. performance achieved with 64-Bit Floating Point Numbers: R<sub>max</sub>
  - Published twice a year (ISC in Germany, SC in USA)
  - First: **1993** (CM5/1,024 procs.):
  - Nov. 2024 (HPE AMD MI300A GPUs):

60 GFlop/s (TOP1) 1,742,000,000 GFlop/s (TOP1)

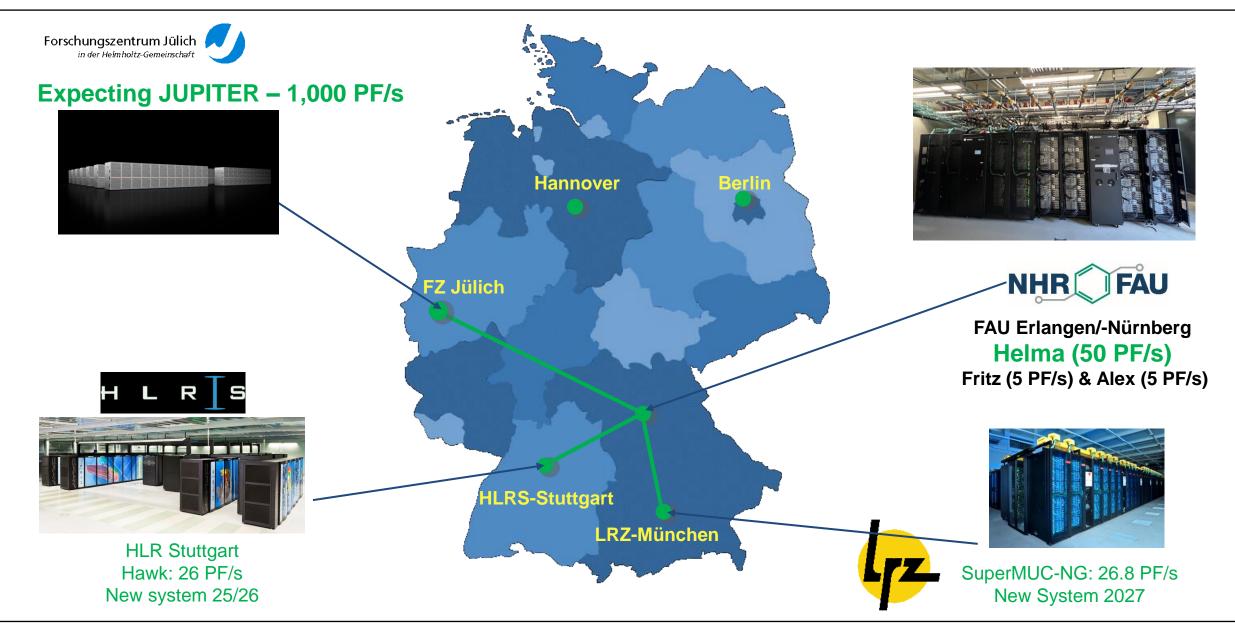
Performance increase: 74% p.a. from 1993 – 2024

## Most powerful computers in the world: TOP500

- Performance measures: MFlop/s, GFlop/s, TFlop/s, PFlop/s, EFlop/s
  - Number of FLOATING POINT operations per second
  - FLOATING POINT operations: Typically Add & Multiply operations (→Chapter 3 of the lecture)
  - Performance may depend on accuracy (of input operands):
    - double precision, double: 64 Bit
    - single precision, float: 32 Bit
    - half precision: 16 Bit
    - default: 64 Bit
    - See Chapter 3 for details
- 106: MFlop/s $10^{12}$ :TFlop/s $\leftarrow$  Single node or GPU109: GFlop/s $10^{15}$ : PFlop/s $\leftarrow$  TOP500 systems $10^{18}$ : EFlop/s $\leftarrow$  TOP1 in 2023


#### TOP3 as of November 2024

| Number of processors                                        |      |                                                                                                                                                                                                   |            |                   |                    |               |  |  |
|-------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------|---------------|--|--|
|                                                             |      |                                                                                                                                                                                                   |            |                   |                    |               |  |  |
|                                                             | Rank | System                                                                                                                                                                                            | Cores      | Rmax<br>(PFlop/s) | Rpeak<br>(PFlop/s) | Power<br>(kW) |  |  |
|                                                             | 1    | El Capitan - HPE Cray EX255a, AMD 4th<br>Gen EPYC 24C 1.8GHz, AMD Instinct<br>MI300A, Slingshot-11, TOSS, HPE<br>DOE/NNSA/LLNL<br>United States                                                   | 11,039,616 | 1,742.00          | 2,746.38           | 29,581        |  |  |
|                                                             | 2    | Frontier - HPE Cray EX235a, AMD<br>Optimized 3rd Generation EPYC 64C 2GHz,<br>AMD Instinct MI250X, Slingshot-11, HPE<br>Cray OS, HPE<br>DOE/SC/Oak Ridge National Laboratory<br>United States     | 9,066,176  | 1,353.00          | 2,055.72           | 24,607        |  |  |
| Investment for such systems: > 200 M€                       | 3    | Aurora - HPE Cray EX - Intel Exascale<br>Compute Blade, Xeon CPU Max 9470 52C<br>2.4GHz, Intel Data Center GPU Max,<br>Slingshot-11, Intel<br>DOE/SC/Argonne National Laboratory<br>United States | 9,264,128  | 1,012.00          | 1,980.01           | 38,698        |  |  |
| Power bill @ 30ct/kWhr: 1 MW $\leftarrow \rightarrow \in 2$ | ,500 | ,000 p.a.                                                                                                                                                                                         |            |                   |                    |               |  |  |


Source: www.top500.org

| TOP10 as of November 2024                                             | Rank | c System                                                                                                                                                                                          | Cores      | Rmax<br>(PFlop/s) | Rpeak<br>(PFlop/s) | Power<br>(kW) |
|-----------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------|---------------|
| TOP TO as of november 2024                                            | 1    | El Capitan - HPE Cray EX255a, AMD 4th<br>Gen EPYC 24C 1.8GHz, AMD Instinct<br>MI300A, Slingshot-11, TOSS, <b>HPE</b><br>DOE/NNSA/LLNL                                                             | 11,039,616 | 1,742.00          | 2,746.38           | 29,581        |
|                                                                       |      | United States                                                                                                                                                                                     |            |                   |                    |               |
| Leading systems: US (5 entries) –<br>National Labs and Industry       | 2    | Frontier - HPE Cray EX235a, AMD<br>Optimized 3rd Generation EPYC 64C 2GHz,<br>AMD Instinct MI250X, Slingshot-11, HPE<br>Cray OS, HPE<br>DOE/SC/Oak Ridge National Laboratory<br>United States     | 9,066,176  | 1,353.00          | 2,055.72           | 24,607        |
| National Labs and madstry                                             | 3    | Aurora - HPE Cray EX - Intel Exascale<br>Compute Blade, Xeon CPU Max 9470 52C<br>2.4GHz, Intel Data Center GPU Max,<br>Slingshot-11, Intel<br>D0E/SC/Argonne National Laboratory<br>United States | 9,264,128  | 1,012.00          | 1,980.01           | 38,698        |
| Four systems from Europe in Top 10: 5, 7, 8, 9                        | 4    | Eagle - Microsoft NDv5, Xeon Platinum<br>8480C 48C 26Hz, NVIDIA H100, NVIDIA<br>Infiniband NDR, Microsoft Azure<br>Microsoft Azure<br>United States                                               | 2,073,600  | 561.20            | 846.84             |               |
| Germany:                                                              | 5    | HPC6 - HPE Cray EX235a, AMD Optimized<br>3rd Generation EPYC 64C 2GHz, AMD<br>Instinct MI250X, Slingshot-11, RHEL 8.9,<br>HPE<br>Eni S.p.A.<br>Italy                                              | 3,143,520  | 477.90            | 606.97             | 8,461         |
| JETI - JUPITER Exascale Transition Instrument @FZJ Jülich:            | 6    | Supercomputer Fugaku - Supercomputer<br>Fugaku, A64FX 48C 2.26Hz, Tofu<br>interconnect D, Fujitsu<br>RIKEN Center for Computational Science<br>Japan                                              | 7,630,848  | 442.01            | 537.21             | 29,899        |
| #18 $\rightarrow$ Transition system to first EFlop/s system in Europe |      | Alps - HPE Cray EX254n, NVIDIA Grace<br>72C 3.1GHz, NVIDIA GH200 Superchip,<br>Slingshot-11, HPE Cray OS, <b>HPE</b><br>Swiss National Supercomputing Centre<br>(CSCS)<br>Switzerland             | 2,121,600  | 434.90            | 574.84             | 7,124         |
| Only a single CPU based system left                                   |      | LUMI - HPE Cray EX235a, AMD Optimized<br>3rd Generation EPYC 64C 2GHz, AMD<br>Instinct MI250X, Slingshot-11, HPE<br>EuroHPC/CSC<br>Finland                                                        | 2,752,704  | 379.70            | 531.51             | 7,107         |
|                                                                       | 9    | Leonardo - BullSequana XH2000, Xeon<br>Platinum 8358 32C 2.6GHz, NVIDIA A100<br>SXM4 64 GB, Quad-rail NVIDIA HDR100<br>Infiniband, <b>EVIDEN</b><br>EuroHPC/CINECA<br>Italy                       | 1,824,768  | 241.20            | 306.31             | 7,494         |
| Source: www.top500.org                                                | 10   | <b>Tuolumne</b> - HPE Cray EX255a, AMD 4th<br>Gen EPYC 24C 1.8GHz, AMD Instinct                                                                                                                   | 1,161,216  | 208.10            | 288.88             | 3,387         |
| PTfS 2025                                                             |      | MI300A, Slingshot-11, TOSS, HPE<br>DOE/NNSA/LLNL<br>United States                                                                                                                                 |            |                   |                    |               |

#### Performance Trend & Projection (2024)



## HPC Centers in Germany: A view from Erlangen



# Erlangen National Center for High Performance Computing

#### www.nhr.fau.de

One out of nine national HPC centers at German universities

#### Ongoing:

- New system installed (Helma-GPU)
- New HPC center 2030

#### Focus topics:

- Node-level Performance engineering
- Atomistics simulations
- AI/ML



This is the joint home page of the Erlangen National High Performance Computing Center (NHR@FAU) and the Tier3 HPC services (HPC4FAU) offered by the Erlangen Regional Computing Center (RRZE) at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

- Our interdispciplinary team of staff, PIs, and liaison scientists
- conducts research in several HPC areas,
- provides lectures, tutorials and trainings,
- but also <u>supports</u> scientists at FAU or through NHR with <u>code porting and</u> optimizations, or in the <u>area of atomistic simulations</u>,
- $\circ~$  and, of course, operates the supercomputers within the system infrastructure at NHR and RRZE.

#### HPC-Café - chat, get advice, and have some coffee



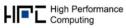
The next HPC Café takes place VIRTUALLY on Tuesday, April 13, at 4 p.m. The HPC Café is a new offering to complement our established contact channels and training events. Every second Tuesday of the month this is an opportunity to get to know each other. On demand we will offer short talks about ... >

#### How to reach us

NHR@FAU and HPC4FAU Regionales Rechenzentrum Erlangen (RRZE)

Martensstr. 1 91058 Erlangen

hpc-support@fau.de
 https://hpc.fau.de


#### 0 0

Note: Currently we mostly work from home and thus cannot be reached via our office phone numbers. We can arrange virtual appointments by Zoom, MS Teams, or BigBlueButton. You may also call RRZE's HelpDesk (+49-9131-85-29955) and leave a message for us - but you probably get a faster response by sending us an e-mail (hpc-support@fau.de).

Erlangen Regional Computing Center



Professorship for High Performance Computing



Student positions, master theses, doctoral positions available

# Fritz & Alex: Fact Sheet



|       | #nodes                          | Node conf.                                          | Storage                                       | Typical<br>job sizes | Peak<br>(FP64)         |
|-------|---------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------|------------------------|
| Enide | 992 Intel ICL<br>(71,424 cores) | 2 * 36 c (8360Y)<br>256 GB<br>1 x HDR100            | Shared PFS                                    | 1 – 64 nodes         | 5.9 PF/s<br>(4.1 PF/s) |
| Fritz | 64 Intel SPR<br>(6,656 cores)   | 2 * 52 c (8470)<br><b>1 TB / 2 TB</b><br>1 x HDR100 | <ul> <li>3 PB</li> <li>&gt;20 GB/s</li> </ul> | 1 – 4 nodes          | n.y.a.                 |



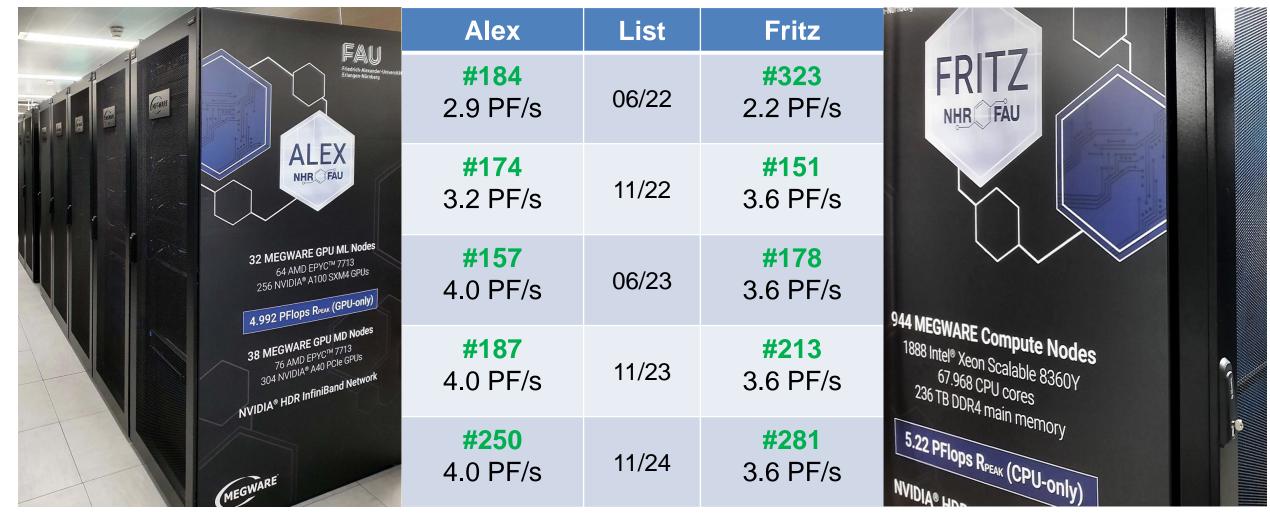
| 178 | <b>Fritz</b> - Megware D50TNP, Xeon Platinum 8360Y 36C<br>2.4GHz, InfiniBand HDR100, MEGWARE | 71,424 | 3.58    | 5.45 672        |
|-----|----------------------------------------------------------------------------------------------|--------|---------|-----------------|
|     | Universitaet Erlangen - Regionales Rechenzentrum                                             |        |         |                 |
|     | Erlangen                                                                                     |        | Power c | onsumption (kW) |
|     | Germany                                                                                      |        | fo      | r LINPACK       |
|     |                                                                                              |        |         |                 |

Fritz: https://doc.nhr.fau.de/clusters/fritz/

# Fritz & Alex: Fact Sheet



| Alex         38 AI/ML<br>(304 NVIDIA A100)<br>(+320 H100 in 2024)         8 * NVIDIA A100<br>2 * 64 c (AMD)<br>1 TB<br>2 x HDR200         Node local<br>14 TB NVMe         1 - 8 GPUs         6.1 PF/s           44 MD<br>(352 NVIDIA A40)         8 * NVIDIA A40<br>2 * 64 c (AMD)<br>0.5 TB         Node local<br>7 TB NVMe         1 - 8 GPUs         6.1 PF/s |      | #nodes            | Node conf.             | Storage | Typical<br>job sizes | Peak<br>(FP64) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------------------------|---------|----------------------|----------------|
| 44 MD<br>(352 NVIDIA A40)<br>(352 NVIDIA A40)<br>2 * 64 c (AMD)<br>7 TB NV/Me<br>1 - 8 GPUs                                                                                                                                                                                                                                                                       | Alex | (304 NVIDIA A100) | 2 * 64 c (AMD)<br>1 TB |         | 1 – 8 GPUs           | 6.1 PF/s       |
|                                                                                                                                                                                                                                                                                                                                                                   |      |                   | 2 * 64 c (AMD)         |         | 1 – 8 GPUs           |                |




157 Alex - MEGWARE NF5488A5, AMD EPYC 7713 64C 2GHz, 37,696 4.03 6.08 179 NVIDIA A100 SXM4 80 GB, Infiniband HDR, MEGWARE Universitaet Erlangen - Regionales Rechenzentrum Erlangen Germany https://doc.nhr.fau.de/clusters/alex/

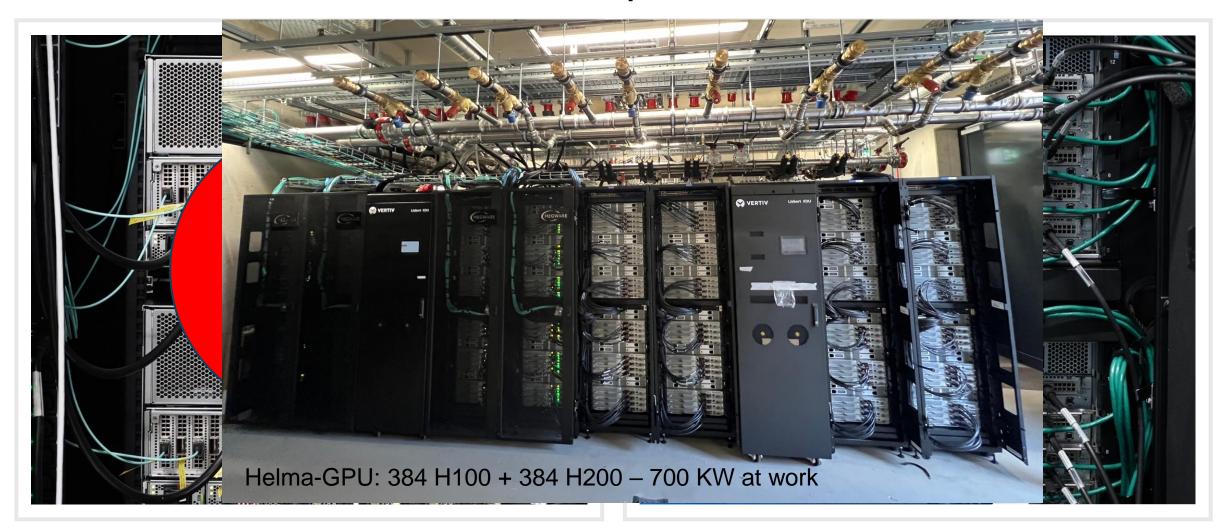
PTfS 2025

Alex:

# HPC compute infrastructure – TOP500



RRZE-Serverraum

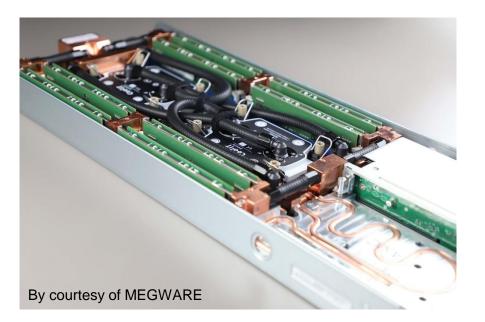

NatFak Kältezentrale

# Helma+: Fact Sheet

#### Helma: Wilhelmine von Brandenburg-Bayreuth (\* <u>3. Juli 1709</u> in <u>Berlin</u>; † <u>14. Oktober 1758</u> in <u>Bayreuth</u>)

|         |                         | #nodes                      | node configu                                                                   |                          | job sizes                          | peak<br>(FP64)              |         |
|---------|-------------------------|-----------------------------|--------------------------------------------------------------------------------|--------------------------|------------------------------------|-----------------------------|---------|
| 031     | (38                     | 96 AI/ML<br>34 NVIDIA H100) | 4 * H100 94 GB<br>2 * 64 c (AMD)<br>4 x NDR200                                 | 0.7 TB DDR<br>15 TB NVMe | l<br>age                           | 1–96 GPUs                   | 26 PF/s |
| Helma   | (12 <sup>5</sup><br>(38 | 96 AI/ML<br>84 NVIDIA H200) | 4 * H200 141 GB<br>2 * 64 c (AMD)<br>4 x NDR200                                | 0.7 TB DDR<br>15 TB NVMe | NDR Infiniband<br>5PB NVME Storage | 1–96 GPUs                   | 26 PF/s |
| <u></u> | 6125                    | 312 CPU<br>119,808 cores)   | 2 * 192 c (AMD)<br>0.7 – 2.1 TB DDR<br>1 x NDR200                              |                          | 5PB                                | 1–96 nodes                  |         |
|         | 79                      |                             | hinkSystem SD665-N V3, AME<br>Nvidia H100 SXM5 94Gb, Infini<br>ux 9.4, MEGWARE |                          | 6                                  | 16.94 25.90<br>TOP500 11/24 |         |

## NHR@FAU: Infrastructure requirements




#### NF-Technikzentrale: "data center" for Fritz & Helma











# Lecture plan until end of May (1)

- **24.04.2025:** Lecture
- 25.04.2025: Lecture + tour to Helma (backup slot)
- 29.04.2025: JE: Introduction to C
- 01.05.2025: PUBLIC HOLIDAY
- 02.05.2025: 8:15-9:45 and 10:15-11:45 Tutorial + intro to Linux Shell
- 06.05.2025: Lecture
- 08.05.2025: Lecture
- 09.05.2025: backup slot