
Programming Techniques for Supercomputers:
Introduction
Performance
Profiling
Measurement and Reporting
Benchmarks

Prof. Dr. G. Wellein(a,b)

(a) Erlangen National High Performance Computing Center
(b) Department für Informatik

University Erlangen-Nürnberg
Sommersemester 2025

April 25, 2025 2PTfS 2025

One thing up front: “cycle gymnastics”

 Two time metrics are used in the lecture:
 absolute time (seconds; s)

 relative time on the processor (processor cycle time or cycle)

 1 cycle [cy] = smallest unit of time on a CPU (“heartbeat”)

 1 GHz = 109 cy/s  1 cy = 10-9 s

 Typical clock speeds (CPU): 2.0 Gcy/s,…4.0 Gcy/s (or GHz)

 Typical clock speeds (GPU): 1.0 Gcy/s,…2.0 Gcy/s (or GHz)

April 25, 2025 3PTfS 2025

One thing up front: “cycle gymnastics” – Peak Performance

 Peak performance of 20-core CPU running at 2.4 GHz:

Ppeak = 1536 Gflop/s = 1.536 Tflop/s

 How many Flops per cycle per core is that?

1536 � 109 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠
20 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 2.4 � 109 𝑐𝑐𝑐𝑐𝑠𝑠

= 32
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑐𝑐𝑐𝑐 � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 Typical duration of a double precision multiply instruction: 4 cycles

› How much time is that? 4 𝑐𝑐𝑐𝑐
2.4�109𝑐𝑐𝑐𝑐𝑠𝑠

= 1.67 � 10−9𝑠𝑠 = 1.67 ns

April 25, 2025 4PTfS 2025

One thing up front: “cycle gymnastics” – Memory Bandwidth

 Basic unit of traffic: Byte

 Unit of bandwidth: Bytes/s

 Typical memory bandwidth (20 cores): 160 Gbytes/s = 1.6 ∙ 1011 Bytes/s

 How many bytes per cycle is that (20 cores)?
160�109𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠
2.4�109𝑐𝑐𝑐𝑐𝑠𝑠

= 67 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑐𝑐𝑐𝑐

 But: 32 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑐𝑐𝑐𝑐�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ 20 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 640 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑐𝑐𝑐𝑐

Profiling

Performance

Performance: Why thoroughly measure and report it?
 Determine which computer is best suited for a given (set of) application(s)?

 Gaming PC or Atom based Laptop?
 Cluster or fat server? Fast CPU? Intel or AMD or GPU?
 Which applications? Which input/data sets?

 Validate impact of new optimization / implementation / parallelization strategy and
present to others
 Results need to be interpreted and potentially reproduced by other scientists
 Compare with other / previous work
 Justify efficient usage of expensive resources

 Determine “attainable” capabilities of individual parts of the computer
 E.g., data transfer / IO / computational capabilities
 Often required to guide optimization strategies  Performance Modeling

April 25, 2025PTfS 2025 6

April 25, 2025PTfS 2025

Performance: What is a good measure/metric?
 Performance = WORK / TIME
 “Pure” metrics – basic choices for “WORK”

 Flop/s: Floating Point Operations per Second

(often cited for technical & scientific applications)

 MIPS: Millions of Instructions per Second

(computer architect’s view)

 How to determine WORK, e.g., “Floating Point Operations”?
 Count them manually (high level code / algorithm)
 Use CPU event counters  tools (e.g., LIKWID)

number of floating-point operations executed
TIME

Number of Instructions executed
106 * TIME

7

April 25, 2025PTfS 2025

Some WORK metrics may fool the observer
 “My vector update code runs at 2,000 MFlop/s on a 2GHz processor!”
 Great – isn’t it?

 Define WORK carefully – independent of implementation issues

for(i=0; i<n; i++)
{

a[i]= 3.d0*c0+c1*c2 +c3*c4*a[i] -1.d0 *a[i];
}

 #FLOP = 8 * n

d0 = 3.d0*c0+c1*c2;
d1 = c3*c4-1.d0;

for(i=0; i<n; i++)
{

a[i]= d0 + d1*a[i];
}

 #FLOP = 2* n + 5

If is a[i]loaded/stored
from/to main memory:

Same execution time but…

… but my
MFlop/s rate is

only ¼!

8

Performance – choices for WORK
 Iterations: Total number of loop iterations performed: WORK = n iterations (see previous

slide)
 Performance metric: Iterations / s

 Lattice Site/ Cell / Particle Updates: Often used for stencil codes or Lattice Boltzmann fluid
solvers: WORK = number of sites/cells/particles to be updated/computed
 Performance metric: Cell updates / s

 Physical simulation time: Often used in molecular dynamics codes: WORK = Physical time
(e.g. nanosenconds) a system is propagated
 Performance metric: nanoseconds / day

 Complete problem solution: WORK: “1” well-defined problem
 Performance metric: 1 / s

April 25, 2025PTfS 2025 9

Performance – TIME
 Simplest performance metric (“bestseller”): 1 / TIME
 Measures time to solution
 Carefully specify the “problem” you solved!
 Best metric thinkable, but not intuitive in all situations (see later)

 Problem: Which TIME?

 LINUX / UNIX command time :

>time ./test.x
>34.650u 0.612s 0:35.28 99.9%

>time ./testwIO.x
>33.802u 0.608s 0:43.64 78.8%

 > xxxu yyys mm:ss CPUratio%

xxx  USER CPU time [s] yyy  SYSTEM CPU time [s]
mm:ss  Elapsed time CPUratio  (xxx+yyy)/mm:ss

April 25, 2025PTfS 2025 10

Performance – TIME

 Stay away from CPU time – it‘s evil!
 Elapsed time (WALLTIME) is the time you wait for your result!

(Always use dedicated resource, e.g., one node)

 WALLTIME as difference of two timestamps on UNIX(-like) systems

 Replaces gettimeofday()
 Code available in the exercise templates
 Works fine for serial timings – due care for parallel apps is required

#include <stdlib.h>
#include <time.h>

double getTimeStamp() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9; }

April 25, 2025PTfS 2025 11

Profiling

Where do I spend my time?

Performance: Where do I spend my time

 How do I know where my code spends most of its time?
 This is called “Profiling”
 Profiling may impact runtime (i.e., performance)  Qualitative insight
 Two kinds: instrumentation and sampling

 Sampling
 Application is interrupted at regular intervals while running; stack trace is recorded

and all info is statistical. No recompilation required

 Instrumentation
 Application code is (automatically) instrumented at compile time such that runtime

contributions of all subroutines, functions, etc. can be determined

 Many advanced profiling tools exist, e.g., Intel Amplifier, Oprofile, Codeanalyst –
we start with simple one (gprof – instrumentation based)

April 25, 2025PTfS 2025 13

Profiling with gprof

 Basic profiling tool under Linux: gprof
 Compiling for a profiling run (use compiler-specific flag)

icc -pg …… -o a.out
./a.out

 After running the binary, a file gmon.out is written to current directory
 Human-readable output via

gprof a.out

 Compiler inlining should be disabled for profiling
 But then the executed code isn’t what it should be…

 Profiling may (substantially) reduce overall code performance

April 25, 2025PTfS 2025 14

April 25, 2025PTfS 2025

Profiling with gprof: Example

Test of kernel routine:
 Initialize

 Run the 2 computational
kernels 10 times

15

April 25, 2025PTfS 2025

Profiling with gprof: Example

Butterfly graph

Who calls whom and how often?

16

April 25, 2025PTfS 2025

Profiling with gprof: Example (C++)
Example with wrapped double class:

class D {
double d;

public:
D(double _d=0) : d(_d) {}
D operator+(const D& o) {
D r;
r.d = d+o.d;
return r;

}
operator double() {
return d;

}
};

const int n=10 000 000;
D a[n],b[n];
D sum;

for(int i=0; i<n; ++i)
a[i] = b[i] = 1.5;

double s = timestamp();
for(int k=0; k<10; ++k) {
for(int i=0; i<n; ++i)
sum = sum + a[i] + b[i];

}

Main program:

17

Profiling with gprof: Example (C++) profiler output

 icpc -O3 -pg perf.cc

 icpc -O3 -fno-inline -pg perf.cc

 But where did the time actually go?
 Butterfly (callgraph) profile also available
 Real problem also with libraries
 Sometimes you have to roll your own little profiler (timing functions within the code)

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
101.01 0.41 0.41 main

% cumulative self self total
time seconds seconds calls ns/call ns/call name
46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D const&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)
24.82 1.27 0.31 main

April 25, 2025PTfS 2025 18

Probing hardware performance

What does the hardware do?

Probing Performance behavior
 Once a hotspot is identified  determine the hardware utilization

 Performance counters allow to monitor processor events:
 The number and kind of instructions executed
 The data transfers executed for each cache/memory level
 The clock speed at which the processor runs
 The power/energy consumption
 …

 likwid-perfctr (from likwid toolbox) allows easy access to performance
events and provides useful derived metrics, e.g., main memory bandwidth or
Flop/s or cycles/instruction
 https://github.com/RRZE-HPC/likwid

 See separate lecture  Thomas Gruber

April 25, 2025PTfS 2025 21

https://github.com/RRZE-HPC/likwid

Best Practices for Performance Measurement &
Reporting
Measuring performance in a reproducible way

April 25, 2025PTfS 2025

Performance: Impact factors

“My code runs on an Intel Xeon Sandy Bridge processor 12 times
faster than the results reported for code A in [xyz].”

23

Performance: Impact factors
 For a given code/problem, performance may be influenced by many factors

 For reproducibility of performance results:
 All critical factors need to be reported!
 Sensibility and stability analysis!
 Statistics – fluctuations among several runs (min/max/median)

Performance

CPU
Clock speed, SMT,
#cores, cache size

Memory
Interface, Size, Speed

Vendor / Board

IO subsystem

Compiler
Version, Flags

OS
Parameters,

Version, Libraries
BIOS

Settings

Libraries

gnu, Intel, pgi,
pathscale

Atlas, mkl,
fftw,…

SuSe,
RedHat,
Ubuntu,…

April 25, 2025PTfS 2025 24

Performance Measurement: Best Practices
 Preparation

 Consider to automate runs with a script (shell, python, perl)
 Reliable timing/timer granularity (minimum time which can be measured?)
 Document code generation (flags, compiler version)
 Document system state (clock frequency, turbo mode, memory, caches,…)

 Doing
 Get exclusive system
 Fix clock speed
 Control Affinity / Topology– where does my code/threads/processes run exactly?
 Working set size – code input parameters?!
 Is result deterministic and reproducible  Statistics: Mean, Median, Best ??
 Basic variations: Thread count, affinity, working set size  runtime
 Check: Are the results reasonable?

April 25, 2025PTfS 2025 25

Performance Measurement: Best Practices (cont.)
 Postprocessing

 Documentation
 Plan variations to gain more information
 Many things can be better understood if you plot them (gnuplot, xmgrace)
 Use statistics to report performance fluctuations
 Try to understand and explain the result
 Is there a (simple) model which can (qualitatively) explain the performance levels and

variations?

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz
Memory Bandwidth 48 GB/s

do k = 1 , Nk; do j = 1, Nj
do i = 1, Ni

y(i,j,k) = const*
$ (x(i-1,j,k) + x(i+1,j,k)
$ + x(i,j-1,k) + x(i,j+1,k)
$ + x(i,j,k-1) + x(i,j,k+1))

enddo
enddo; enddo

April 25, 2025PTfS 2025 26

Benchmarks

Benchmarks provide insights beyond the hardware fact sheet

Benchmarks: Classification
1. Real (full) applications: Solves real world problem but includes everything and may run for hours or days on

thousands of processors!

2. Proxy applications or mini-apps: Small and simplified code which allows to capture relevant performance
features of real (full) scale applications, e.g., Mantevo [1], Exascale proxy applications [2], or SPEC [3]

3. Kernels: “Small” code pieces representing single steps of (proxy) applications e.g., solvers ( LINPACK,…)
or time-consuming computational steps ( STREAM, (sparse) matrix-vector multiplication,…). Easy to port,
analyze and optimize. Also very popular with vendors, easy to report (everyone knows the popular ones)

4. Toy benchmarks: Small pieces of code implementing popular algorithms (e.g. quicksort). Typically used for
getting students started with programming.

5. Synthetic benchmarks (microbenchmarks): Simulate operations and data accesses of a variety of applications
without having any relation to the application codes

Kernels are central for structured performance modelling!

[1] https://mantevo.github.io ; [2] https://proxyapps.exascaleproject.org ; [3] www.spec.org

April 25, 2025PTfS 2025 28

https://mantevo.github.io/
https://proxyapps.exascaleproject.org/
http://www.spec.org/

Benchmarks – HPC standard benchmarks

 STREAM  Attainable main memory bandwidth (microbenchmark)

 LINPACK  Top500 Ranking / Attainable peak performance (solver)

 HPCG  Preconditioned conjugate-gradient solver (solver)

 SPEC-HPC  Industry standard (HPC proxy app suite)

April 25, 2025PTfS 2025 29

Benchmarks: STREAM for memory bandwidth
 http://www.cs.virginia.edu/stream/
 Performs four “streaming” tests:

 Copy: A(1:N) = B(1:N)

 Scale: A(1:N) = s*B(1:N)

 Add: A(1:N) = B(1:N)+C(1:N)

 Triad: A(1:N) = B(1:N)+s*C(1:N)

 Results are reported in MByte/s (data
transfer rate)

 No changes are allowed
 Tests the attainable

main memory bandwidth
 Stream & stream-like tests are used throughout the lecture

April 25, 2025PTfS 2025 30

http://www.cs.virginia.edu/stream/

Benchmarks – LINPACK: Towards Peak Performance

 Solve large dense linear system of equations, i.e.,
𝐴𝐴 𝑥𝑥 = 𝑏𝑏

 with 𝐴𝐴 is a dense 𝑁𝑁 × 𝑁𝑁 matrix

 Algorithm: LU factorization of 𝐴𝐴
(+ forward/backward substitution) with
effort 2

3
𝑁𝑁3 + 𝛰𝛰(𝑁𝑁2)

 Highly parallel implementations are available

 Achieves high fraction of machine peak performance (see 1st lecture)

(see http://www.netlib.org/benchmark/hpl/algorithm.html)

April 25, 2025PTfS 2025 31

http://www.netlib.org/benchmark/hpl/algorithm.html

Benchmarks: HPCG – Something more realistic?

 HPCG: High Performance Conjugate Gradient benchmark

 Basic algorithm: Conjugate Gradient with a local symmetric Gauss-Seidel
preconditioner

 Synthetic 3D sparse linear system (stencil-structure)

 Strong correlation with
main memory bandwidth and
STREAM benchmark

 https://www.top500.org/hpcg/ Figure from:
https://devblogs.nvidia.com/parallelforall/optimizing-high-

performance-conjugate-gradient-benchmark-gpus/

April 25, 2025PTfS 2025 32

https://www.top500.org/hpcg/

	Programming Techniques for Supercomputers:�Introduction
	One thing up front: “cycle gymnastics”
	One thing up front: “cycle gymnastics” – Peak Performance
	One thing up front: “cycle gymnastics” – Memory Bandwidth
	Profiling
	Performance: Why thoroughly measure and report it?
	Performance: What is a good measure/metric?
	Some WORK metrics may fool the observer
	Performance – choices for WORK
	Performance – TIME
	Performance – TIME
	Profiling
	Performance: Where do I spend my time
	Profiling with gprof
	Profiling with gprof: Example
	Profiling with gprof: Example
	Profiling with gprof: Example (C++)
	Profiling with gprof: Example (C++) profiler output
	Probing hardware performance
	Probing Performance behavior
	Best Practices for Performance Measurement & Reporting
	Performance: Impact factors
	Performance: Impact factors
	Performance Measurement: Best Practices
	Performance Measurement: Best Practices (cont.)
	Benchmarks
	Benchmarks: Classification
	Benchmarks – HPC standard benchmarks
	Benchmarks: STREAM for memory bandwidth
	Benchmarks – LINPACK: Towards Peak Performance
	Benchmarks: HPCG – Something more realistic?

