
Programming Techniques for Supercomputers:
Modern processors: Single Core

Introduction
Basic technology trend / Moore‘s law
Basic concept of single core architecture

Key single core features
Pipelining
Superscalarity
SingleInstructionMultipleData

Maximum In-Core Performance
Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)

(a)Erlangen National Center for High Performance Computing
(b)Department für Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025

Introduction
Basic technology trend / Moore’s law
Basic concept of core architecture

Key single core features:
Pipelining
Superscalarity
SingleInstructionMultipleData

Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

6PTfS 2025

Multi-core today: Intel Xeon Sapphire Rapids (2023)

 Xeon “Sapphire Rapids” (Platinum/Gold/Silver/Bronze):
Up to 60 cores running at 1.7+ GHz
(+ “Turbo Mode” 4.8 GHz),

 Simultaneous Multithreading
 reports as 120-way chip

 “Intel 7” process / up to 350 W

 Multi-die package (4 chips)

 Clock frequency:
flexible

May 6, 2025

https://www.techpowerup.com/292204/intel-sapphire-rapids-xeon-4-tile-mcm-annotated

Optional: “Sub-NUMA
Clustering” (SNC) mode
boot option

 One memory domain
per die

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

L3

Memory Interface

Memory

L1D
L2

P
T1 T2

L1D
L2

P
T1 T2

…

Introduction
Basic technology trend / Moore’s law
Basic concept of core architecture

Key single core features:
Pipelining
Superscalarity
SingleInstructionMultipleData

Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

May 6, 2025PTfS 2025

Basic „stored program computer“ concept – still in use
 Stored Program Computer”

concept (Turing 1936)

Stored-program computer

 Similar designs on all
modern systems

Flexibility!
(Still) multiple potential bottlenecks

11

12PTfS 2025

Stored Program Computer

C
PU

Control Unit

Execution Unit

Load-Store Unit

M
em

or
y

Program code Binary data

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58

addss
add
cmp
ja
mulpd
add

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58

1.056
1000
.label
2983
-493.98
true

Primary work Secondary work

1 Instruction execution

2 Data transfers

May 6, 2025

..LABEL:
movsd xmm2, [rdi+rdx*8]
addsd xmm1, xmm2
inc rdx
cmp rax, rdx
jb ..LABEL

13PTfS 2025

From high level code to actual execution
for(int i=0; i<N; i++){
sum += a[i];

}

sum in
register xmm1

N in
register rax

C
om

pi
le

r

Conditional jump to label if
loop continues

Counter increment

addsd: Add 2nd argument to 1st argument
and store result in 1st argument

Compare register
content

i in
register rdx

sizeof(double)

Load a[i] to register xmm2

&a[0]

May 6, 2025

May 6, 2025PTfS 2025

General-purpose (cache based) microprocessor core

Modern CPU core

Instruction Cache

Data Cache “Compute node”

14

May 6, 2025PTfS 2025

Introduction: From application to microprocessor core

 High Level Programming Language
(e.g. C / C++ / Fortran): Aplication –
portable

 Compiler translates program to
Instruction set (architecture) (IA32,
Intel 64, AMD64 a.k.a. x86, x86_64)

 Instruction Set Architecture (ISA):
Hardware specific

Computer

Control Unit

Mem ALU I/O

Instruction Set

Compiler

Application…
sum=0.0
do i=1, N

sum=sum + A(i)
enddo
…

U
p to 96 x

perform
ance

15

addss xmm1, [rdi+rdx*8]
inc. rdx
cmp. rax, rdx

gcc –O3 code.f

May 6, 2025PTfS 2025

Introduction: Instruction Set Paradigms
 In the beginning (60’s): Complex Instruction Set Computers (CISC) :

 Powerful & complex instructions
 Instruction set is close to high-level programming language
 Variable length of instructions - Save storage!

MULT r0 * [a2] [a1]

 Mid 80´s: Reduced Instruction Set Computer (RISC) evolved:
 Fixed instruction length; enables pipelining and high clock frequencies
 Uses simple instructions, e.g., above instruction is split into at least 3 instructions:

LOAD [a2]r1; MULT r0*r1r2; STORE r2[a1]

 Nowadays: RISC processor cores
 Almost…

Multiply content of address a2 with
register content r0
and write back to address a1

18

May 6, 2025PTfS 2025

x86 CISC/RISC hybrid
 Current x86_64 processors (Intel, AMD): Compiler still generates CISC instructions;

but processor core is RISC-like
 Example:

addsd xmm1, [rsi+rax*8]

xmm1: register holding floating point data
rsi, rax: register holding integer data

 combined address calculation, LD, and ADD instruction

1. Calculate address rsi+rax*8

2. Load double value from that address

3. Add double value into register xmm1 (accumulate)

19

May 6, 2025PTfS 2025

From high level code to machine execution (CISC-style)
double sum=0.0;
for(i=0; i<N; ++i)
sum += a[i];

&a[0]sum in register xmm1

i in
register rdx

N in
register rax

addsd: Add 2nd argument to 1st

argument and store result in 1st

argument

Co
m

pi
le

r
Jump to label if loop
continues

Register increment

Compare register content

..LABEL:
addsd xmm1, [rdi+rdx*8]
inc rdx
cmp rax, rdx
jb ..LABEL

20

May 6, 2025PTfS 2025

From high level code to macro-/microcode execution

ADD Execution unit

Instructions are mapped
to execution ports / units

ADDSD Instruction requires

LOAD Execution unit

Instructions
O

perations

Data

..LABEL:
addsd xmm1, [rdi+rdx*8]
inc rdx
cmp rax, rdx
jb ..LABEL

21

May 6, 2025PTfS 2025

Key single-core features: Pipelining

Pipelining
Most units can complete
one instruction per cycle, e.g.
MULT / ADD / LOAD /STORE

Focus on: Floating Point
Instructions/Operations

22

May 6, 2025PTfS 2025

Key single-core features: Superscalarity

Multiple execution
units/ports
(can run in parallel)

Multiple instructions
issued in parallel

Superscalarity
(“Instruction level parallelism“)

23

May 6, 2025PTfS 2025

Key single-core features: SIMD

SIMD:
Single Instruction Multiple Data
Instruction is applied to
multiple operands in parallel
(„width of execution
units/registers“)

24

Introduction
Basic technology trend / Moore’s law
Basic concept of core architecture

Key single core features:
Pipelining
Superscalarity
SingleInstructionMultipleData

Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

May 6, 2025PTfS 2025

Pipelining of arithmetic/functional units
 Concept:

 Split complex instruction into several simple / fast steps (stages)
 Each step takes the same amount of time, e.g. a single cycle
 Execute different steps on different instructions at the same time (in parallel)

 Benefit:
 Pipeline can work on multiple instructions simultaneously (in parallel)
 If pipeline is full one instruction completes every cycle Throughput: 1 inst./cy.
 Enables faster clock speeds (simple steps/stages)

 Drawback:
 Pipeline must be filled (“wind-up”) start-up “latency” = number of stages
 Independent instructions required complex instruction scheduling by hardware (“out-of-order”) or compiler

(“software-pipelining”)

 Pipelining is widely used in modern computer architectures
 Pipelining addresses Instruction Level Parallelism

26

May 6, 2025PTfS 2025

Interlude: Possible stages for Floating Point Multiply

 Real numbers can be represented as mantissa and exponent in a “normalized” representation, e.g.:
s*0.m * 10e with

Sign s={-1,1}
Mantissa m which does not contain 0 in leading digit
Exponent e some positive or negative integer

 Multiply two real numbers r1*r2 = r3
r1=s1*0.m1 * 10e1 , r2=s2*0.m2 * 10e2 :

s1*0.m1 * 10e1 * s2*0.m2 * 10e2

(s1*s2)* (0.m1*0.m2) * 10(e1+e2)

Normalize result: s3* 0.m3 * 10e3

27

May 6, 2025PTfS 2025

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N
1

B(1)
C(1)

2

B(2)
C(2)

B(1)
C(1)

3

B(3)
C(3)

B(2)
C(2)

B(1)
C(1)

4

B(4)
C(4)

B(3)
C(3)

B(2)
C(2)

A(1)

5

B(5)
C(5)

B(4)
C(4)

B(3)
C(3)

A(2)

A(1)

6

B(6)
C(6)

B(5)
C(5)

B(4)
C(4)

B(3)
C(3)

A(2)

...

...

...

...

...

...

Cycle:

Separate
Mant. / Exp.

Mult.
Mantissa

Add.
Exponents

Normal.
Result

Insert Sign

Stage

First result is available after 5 cycles (=latency of pipeline)!
After that one instruction is completed in each cycle (N-1 cycles)!

N

B(N)
C(N)

B(N-1)
C(N-1)

B(N-2)
C(N-2)

B(N-3)
C(N-3)

A(N-4)

N+1

B(N)
C(N)

B(N-1)
C(N-1)

B(N-2)
C(N-2)

A(N-3)

N+2

B(N)
C(N)

B(N-1)
C(N-1)

A(N-2)

N+3

B(N)
C(N)

A(N-1)

N+4

B(N)
C(N)

Wind-up

Wind-down

Empty pipeline stages in Wind-up/-down phase!

28

May 6, 2025PTfS 2025

Pipelining: Latency, Throughput and Speed-Up

 Assume m-stage pipeline (pipeline latency: m cycles), fixed clock speed and N independent
instructions to be executed

 Speed-up of pipelined (𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) vs. non-pipelined (𝑇𝑇𝑠𝑠𝑝𝑝𝑠𝑠) execution time

𝑇𝑇𝑠𝑠𝑝𝑝𝑠𝑠
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝑚𝑚 � 𝑁𝑁

𝑚𝑚 + 𝑁𝑁 − 1

 Pipeline throughput, i.e. average instructions completed per cycle [inst./cy]:

𝑁𝑁
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝑁𝑁

𝑁𝑁 + 𝑚𝑚 − 1

 Large N limits:
Speed-Up: �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 ≈ 𝑚𝑚 for 𝑁𝑁 ≫ 𝑚𝑚

Throughput: �𝑁𝑁 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 ≈ 1 𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖.
𝑐𝑐𝑐𝑐

for 𝑁𝑁 ≫ 𝑚𝑚

29

May 6, 2025PTfS 2025

Throughput as function of pipeline stages

m = #pipeline stages

90% pipeline
efficiency

30

May 6, 2025PTfS 2025

Efficient use of Pipelining

 (Potential) dependencies within loop body may prevent efficient software pipelining or OOO
execution, e.g.:

Dependency:

do i=2,N
a(i) = a(i-1) + s

end do

No dependency:

do i=1,N
a(i) = a(i) + s

end do

a[5]=a[5]+sa[4]=a[4]+sa[3]=a[3]+s

a[1]=a[1]+s

a[2]=a[2]+s a[4]=a[3]+sa[3]=a[2]+s

a[1]=a[0]+s

a[2]=a[1]+s

31

May 6, 2025PTfS 2025

Pipelining: Data dependencies

 Single core on Intel Xeon E5-2695 v3 (“Haswell”) with clock speed fixed to 2.3 GHz
(Compiler: -O3 –no-vec) – HW limit: 1 MULT instr./cy

Max. MULT
performance w/o

pipelining

Max. MULT
performance w/

pipelining

Performance
measured

32

May 6, 2025PTfS 2025

Pipelining: Data dependencies – performance model

Pipeline utilization / performance improvement by unrelated workload:

Dependency

do i=2,N
A(i) = A(i-1) * s

end do

A(4)*s

M
U

LT
 p

ip
e

Latency (MULT): 5 cy

Throughput: 1 MULT/5 cy

Clock Speed: 2.3 Gcy/s

Performance:
2.3 ∙ 109 cy/s ∙ 1 MULT / 5 cy

= 2300/5 MF/s = 460 MF/s
(with 1 MULT = 1 F)

2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s

end do

A(4)*s

B(3)*s M
U

LT
 p

ip
e

Latency (MULT): 5 cy

Throughput: 2 MULT/5 cy

Clock Speed: 2.3 Gcy/s

Performance:
2.3 ∙ 109 cy/s ∙ 2 MULT / 5 cy

= 2300 ∙ 2/5 MF/s = 920 MF/s
(with 1 MULT = 1 F)

33

May 6, 2025PTfS 2025

Pipelining: Data dependencies

 Single core on Intel Xeon E5-2695 v3 (“Haswell”) with clock speed fixed to 2.3 GHz
(Compiler: -O3 –no-vec) – HW limit: 1 MULT instr./cy

Increasing number of
„independent dependencies“

(i.e. increasing parallel workload)
improves pipeline throughput

34

May 6, 2025PTfS 2025

Pipelining: Data dependencies

 Single core on Intel(R) Xeon(R) Platinum 8360Y CPU with clock speed fixed to 2.0 GHz
(Compiler: -O3 –no-vec) – HW limit: 2 MULT instr./cy

35

u=2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s

end do

Latency/depth of MULT
pipeline?

May 6, 2025PTfS 2025

Pipelining: Data dependencies

 Single core on AMD EPYC 7543 CPU with clock speed fixed to 2.1 GHz
(Compiler: -O3 –no-vec) – HW limit: 2 MULT instr./cy

36

u=2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s

end do

Latency/depth of MULT
pipeline?

May 6, 2025PTfS 2025

Pipelining: Resolving dependencies

 Sometime the data dependencies are not that obvious..

 What about “reduction operations”?

 Data (register) dependency on sum (xmm1) 1 F / m cy for above code! (assuming an ADD
latency of m cycles, m=3 for Intel)

 How to enable pipelining here?

sum=0.d0
do i=1, N

sum=sum + A(i)
enddo
…

A(i) (incl. LD)
sum in register xmm1

i (loop counter) NADD 2nd argument to 1st

argument and store result
in 1st argument

..LABEL:
addsd xmm1, [rdi+rdx*8]
inc rdx
cmp rax, rdx
jb ..LABEL

37

May 6, 2025PTfS 2025

Pipelining: Resolving dependencies

 Increase pipeline utilization by “loop unrolling”

sum=0.d0
do i=1, N

sum=sum+A(i)
enddo

“2-way Modulo Variable Expansion” (we assume that N is even)

sum1=0.d0
sum2=0.d0
do i=1, N, 2

sum1=sum1+A(i)
sum2=sum2+A(i+1)

enddo
sum = sum1 + sum2

sum+=
A(4)

sum2
+=A(4)

sum1
+=A(3)

38

May 6, 2025PTfS 2025

Pipelining: Resolving dependencies

 m-way Modulo Variable Expansion (MVE) to get best performance!
 Sum is split up in m independent partial sums
 Optimal for Intel ADD: 3-way MVE

Nr=3*(N/3)
sum1=0.d0
sum2=0.d0
sum3=0.d0
do i=1, Nr, 3

sum1=sum1+A(i)
sum2=sum2+A(i+1)
sum3=sum3+A(i+2)

enddo
do i=Nr+1, N

sum1=sum1+A(i)
enddo
sum=sum1+sum2+sum3

R
em

ai
nd

er

lo
op

39

May 6, 2025PTfS 2025

Pipelining: Resolving dependencies

 Compiler can do that, if it is allowed to do so…
 High optimization levels
 Compiler prefers powers of 2 for unrolling

 Reason: Computer’s floating point arithmetic is not associative!

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 + 𝑒𝑒) + 𝑓𝑓 ≠ 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 + (𝑒𝑒 + 𝑓𝑓)

 If you require binary exact results (-fp-model strict for Intel) the compiler is not allowed to do
this transformation

 Beware additional latency due to reduction at the end
 Final sum cannot be pipelined
 High unrolling factor leads to high overhead
 High unrolling may lead to register shortage

40

May 6, 2025PTfS 2025

Pipelining: Available resources in modern CPUs
 Typical number of pipeline stages on modern cores:

 2-5 for most (important) hardware pipelines: LoaD; STore; MULT; ADD; FMA
 >>10 for other floating point pipelines: DIVide/SQuareRooT
 Many other other piplined ALUs, e.g. integer arithmetic, logical, shift, branch, address generation

 Most “older” x86 cores (AMD, Intel):
 1 MULT & 1 ADD floating point unit per processor core
 Max. 1 MULT & 1 ADD instruction per cycle

 Latest Intel (Haswell, Broadwell, Skylake) & AMD (Zen+) cores:
1 (AMD) or 2 Floating Point Fused MultiplyAdd (FMA) floating point units
 FMA3 instruction: s=s+a*b 1 Input register (s) is overwritten
 FMA4 instruction: s=r+a*b No input register is modified
 Typically 2 (1) FMA instruction per cycle for Intel (AMD) processors
 On Intel: Per cycle up to 2 MULT or ADD instructions

41

May 6, 2025PTfS 2025

Costs of arithmetic instructions: Intel Skylake processors

 Consequence: Avoid expensive instructions in hot spots!
 Other expensive math (transcendental, log,…) is done in libraries

Instruction Latency
[cy/instruction]

Max. throughput
[instructions/cy]

ADD DP (SP) 4 (4) 2 (2)
MULT DP (SP) 4 (4) 2 (2)
FMA DP (SP) 4 (4) 2 (2)
SQRT DP (sqrtsd) 26 1/12 = 0.08
SQRT SP (sqrtss) 20 1/6 = 0.16
DIV DP (divsd) 14 1/4 = 0.25

Pr
oc

es
so

r (
sc

al
ar

)
in

st
ru

ct
io

ns

Latency [cy/instruction]
Depth of pipeline, i.e. cycles to execute
a single instruction (worst case)

Throughput [instruction/cy]
Cycles per instruction if pipeline is full
(best case: 2 instruction/cy – 2 HW units)

42

May 6, 2025PTfS 2025

Pipelining: The Instruction pipeline

 Besides arithmetic & functional units, instruction execution itself is pipelined also, e.g.: one
instruction performs at least 3 steps:

Fetch Instruction
from L1I

Decode
instruction

Execute
Instruction

 Hardware Pipelining on processor (all units can run concurrently):
Fetch Instruction 1

from L1I
Decode

Instruction 1
Execute

Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

t

…
 Non-predictable branches can stall this pipeline!

 Hardware can predict conditional branches w/ high accuracy
 Each unit is pipelined itself (cf. Execute=Multiply Pipeline)

1

2

3

4

43

May 6, 2025PTfS 2025

Pipelining: The Instruction pipeline
 Problem: Unpredictable branches to other instructions

Fetch Instruction 1
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

t

…

1

2

3

4

Assume: Result
determines next

instruction!

44

May 6, 2025PTfS 2025

Pipelining summary

 Pipelining tries to achieve
 Maximum instruction throughput (1 instr/cy in many cases)
 Hiding of instruction latency

 Prerequisites
 Independent instructions
 A lot of independent instructions for maximum efficiency (𝑁𝑁 ≫ 𝑚𝑚)
 Highest benefit if code & data are close to the core (L1 instr./data cache)
 Conditional branches must be correctly predicted by hardware

 Drawbacks
 Pipeline must be filled inefficient for N ≲ 𝑚𝑚
 Dependencies between pipelines may increase effective depth (see tutorial)
 Unresolvable data dependencies are hazardous

45

Introduction
Basic technology trend / Moore’s law
Basic concept of core architecture

Key single core features:
Pipelining
Superscalarity
SingleInstructionMultipleData

Maximum In-Core Performance

Programming Techniques for Supercomputers
Modern processors: Single Core

May 6, 2025PTfS 2025

Superscalar Processors
 Superscalar processors provide additional hardware (i.e. transistors) to execute multiple instructions

per cycle!
 Exploit Instrucion Level Parallelism (ILP)

 Parallel hardware components / pipelines are available to
 fetch / decode / issues multiple instructions per cycle

(typically 3 – 8 per cycle)
 perform multiple integer / address calculations per cycle
 perform multiple load (store) multiple instructions per cycle

(e.g. one LD and one ST per cycle)
 perform multiple floating point (FP) instructions per cycle

(e.g., 2 floating point instructions/cycle, e.g. 1 MULT + 1 ADD)

 “Parallelization of instruction stream” required

 Performance metrics quantifying superscalarity: Instructions Per Cycle: IPC
Cycles Per Instruction: CPI

47

PTfS 2025

Superscalar Processors – Instruction Level Parallelism

 Issuing m concurrent instructions per cycle:
“m-way superscalar”

 Modern processors are 3- to 8-way superscalar
& perform 2 or 4 FP instructions per cycles

Fetch Instruction 4
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 3
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 2
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 1
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 5
from L1I

Decode
Instruction 5

Decode
Instruction 9

Execute
Instruction 5

Fetch Instruction 9
from L1I

Fetch Instruction 13
from L1I

4-way
„superscalar“

t

t

May 6, 2025 48

May 6, 2025PTfS 2025

Multiple pipelines at work: Interleaving instructions

 Example:

Simple Pseudo Code:
loop: load r1, a[i]

mult r1 = c, r1
store a[i], r1
branch.loop

Fortran Code:
do i=1,N

a(i) = a(i) * c
end do

load r1, a[i] Load operand to register (4 cycles)
mult r1 = c,r1 Multiply a(i) with c (2 cycles); a[i],c in registers
store a[i], r1 Store result from register to mem./cache (2 cycles)
branch.loop Increase loop counter as long as i less or equal N (0 cycles)

Assumed
Latencies

 Dependencies on r1
 within one iteration
 across iterations

49

May 6, 2025PTfS 2025

Superscalar & Pipelined Execution

Naive instruction issue
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8
Cycle 9
Cycle 10
Cycle 11
Cycle 12
Cycle 13
Cycle 14
Cycle 15
Cycle 16
Cycle 17
Cycle 18
Cycle 19

load a[1]

mult a[1]=c,a[1]

store a[1]

load a[2]

mult a[2]=c,a[2]

store a[2]

load a[3]

a[i]=a[i]*c; N=12

Instruction executed „in-order“

Total execution time:

T= 12 * (4+2+2) cy = 96 cy

IPC = 3/8 instr./cy
CPI = 8/3 cy/instr.

No pipelining and superscalarity!

tim
e

Simple Pseudo Code:
loop: load a[i]

mult a[i] = c, a[i]
store a[i]
branch.loop

50

May 6, 2025PTfS 2025

Superscalar & Pipelined Execution
a[i]=a[i]*c; N=12

T= 19 cycles

load a[1]
load a[2]
load a[3]
load a[4]
load a[5] mult a[1]=c,a[1]
load a[6] mult a[2]=c,a[2]
load a[7] mult a[3]=c,a[3] store a[1]
load a[8] mult a[4]=c,a[4] store a[2]
load a[9] mult a[5]=c,a[5] store a[3]
load a[10] mult a[6]=c,a[6] store a[4]
load a[11] mult a[7]=c,a[7] store a[5]
load a[12] mult a[8]=c,a[8] store a[6]

mult a[9]=c,a[9] store a[7]
mult a[10]=c,a[10] store a[8]
mult a[11]=c,a[11] store a[9]
mult a[12]=c,a[12] store a[10]

store a[11]
store a[12]

Optimized instruction issue

tim
e

pr
ol

og
ue

ep
ilo

gu
e

ke
rn

el

IPC=3 instr./cy
CPI=0.33 cy/instr.

Simple Pseudo Code:
loop: load a[i]

mult a[i] = c, a[i]
store a[i]
branch.loop

Assumptions:

 LD/MULT/ST can be executed in
parallel!

 Instructions are perfectly reordered
but dependecies (within loop
iteration) are maintained!

 Register renaming required

Kernel:
Full pipelining and high superscalarity!

LD latency

MULT latency

51

 Dynamic reordering of instructions at runtime
 Done by the hardware
 Out-of-order (OOO) execution
 Instructions are executed when operands are

available

 All modern general-purpose CPUs do this

May 6, 2025PTfS 2025

Reordering the instruction stream: Two options

 Software pipelining
 Done by the compiler
 Compiler reorders instructions
 Requires deep insight into application (data

dependencies) and processor (latencies of
functional units)

 Required on “in-order” architectures
 Rarely used today (see right)

<… prologue …>
kernel: load a[i+6]

mult a[i+2] = c, a[i+2]
store a[i]
branch kernel

<… epilogue …>

52

May 6, 2025PTfS 2025

Register renaming

 Prerequisite for good OoO execution: “Bogus” register dependencies can be resolved
 Hardware has “shadow registers” it can use to store intermediate values that are already “officially”

overwritten

 Solution: Hardware assigns a new register with the same name as soon as the old value gets
overwritten
 “Shadow copy” lives as long as necessary

 Until no instructions in flight reference the register any more

for(int i=1; i<n; ++i)
a[i] = a[i] + s;

LOOP:
LOAD r1 = a[i]
ADD r1 = r1+r2
STORE a[i] = r1
i++
i<n ? BRANCH : EXIT

This looks like a
dependency: How can
iterations overlap if they
need the same register r1?

53

May 6, 2025PTfS 2025

Superscalar processors
Intel processors – qualitative view (“Intel Sandy Bridge”)

Max. of 4 instr./cycle can
be decoded CPI ≥ 0.25

FP MULT & FP ADD
can run in parallel

3 LD/ST units

2 memory instr.
Concurrently

(AGU)

Execution ports map
decoded instruction
to execution units

54

	Programming Techniques for Supercomputers:�Modern processors: Single Core�	
	Programming Techniques for Supercomputers�Modern processors: Single Core��	
	Multi-core today: Intel Xeon Sapphire Rapids (2023)
	Programming Techniques for Supercomputers�Modern processors: Single Core��	
	Basic „stored program computer“ concept – still in use
	Stored Program Computer
	From high level code to actual execution
	General-purpose (cache based) microprocessor core
	Introduction: From application to microprocessor core
	Introduction: Instruction Set Paradigms
	x86 CISC/RISC hybrid
	From high level code to machine execution (CISC-style)
	From high level code to macro-/microcode execution
	Key single-core features: Pipelining
	Key single-core features: Superscalarity
	Key single-core features: SIMD
	Programming Techniques for Supercomputers�Modern processors: Single Core
	Pipelining of arithmetic/functional units
	Interlude: Possible stages for Floating Point Multiply
	5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N
	Pipelining: Latency, Throughput and Speed-Up
	Throughput as function of pipeline stages
	Efficient use of Pipelining
	Pipelining: Data dependencies
	Pipelining: Data dependencies – performance model
	Pipelining: Data dependencies
	Pipelining: Data dependencies
	Pipelining: Data dependencies
	Pipelining: Resolving dependencies
	Pipelining: Resolving dependencies
	Pipelining: Resolving dependencies
	Pipelining: Resolving dependencies
	Pipelining: Available resources in modern CPUs
	Costs of arithmetic instructions: Intel Skylake processors
	Pipelining: The Instruction pipeline
	Pipelining: The Instruction pipeline
	Pipelining summary
	Programming Techniques for Supercomputers�Modern processors: Single Core
	Superscalar Processors
	Superscalar Processors – Instruction Level Parallelism
	Multiple pipelines at work: Interleaving instructions
	Superscalar & Pipelined Execution
	Superscalar & Pipelined Execution
	Reordering the instruction stream: Two options
	Register renaming
	Superscalar processors �Intel processors – qualitative view (“Intel Sandy Bridge”)

