FAU

Friedrich-Alexander-Universitat
Erlangen-Nirnberg

Programming Techniques for Supercomputers:
Modern processors: Single Core

Introduction

Basic technology trend / Moore's law
Basic concept of single core architecture

Key single core features
Pipelining
Superscalarity
ingle nstruction ultiple ata

Maximum In-Core Performance

-
-
|H

Friedrich-Alexander-Universitat

FAU Erlangen-Nirnberg

Programming Techniques for Supercomputers
Modern processors: Single Core

Basic concept of core architecture
Key single core features:

Pipelining

Superscalarity

SinglelnstructionMultipleData
Maximum In-Core Performance

= Xeon “Sapphire Rapids” (Platinum/Gold/Silver/Bronze):
Up to 60 cores running at 1.7+ GHz

(+ “Turbo Mode” 4.8 GHz),

Optional: “Sub-NUMA
Clustering” (SNC) mode

= Simultaneous Multithreading boot option
- reports as 120-way chip \
- One memory domain
per die
= “Intel 7” process / up to 350 W /

= Multi-die package (4 chips)

= Clock frequency:
flexible ©

| Memo terface ||

PTfS 2025 May 6, 2025 6

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Programming Techniques for Supercomputers
Modern processors: Single Core

Basic technology trend / Moore’s law

Key single core features:
Pipelining
Superscalarity
SinglelnstructionMultipleData
Maximum In-Core Performance

Basic ,stored program computer” concept — still in use

Stored Progr.am Computer” Similar designs on all
concept (Turing 1936) modern systems

Control
unit

logic
unit

CPU P P —i Input/Output
Arithmetic i i -

Input/Output

Memory

Stored-program computer

Flexibility!
(Still) multiple potential bottlenecks

PTfS 2025 May 6, 2025 11

Stored Program Computer

Program code

addss =—

add s 3

cmp .

5a Primary work

mulpd 82 48 83 c0 82
/ 39 77 0f 58 39 -

add

Binary data

— 1.056

Of 58 04 £3 0f 58 04 =—

SRR 1000

Secondary work -label
2983

48 83 c0 82 48 83 cO ~493.98

? Data transfers ——true

Control Unit Load-Store Unit

CPU

PTfS 2025

May 6, 2025

12

From high level code to actual

execution

for (int i=0;

sum +=

}

addsd: Add 2" argument to 1stargument
and store result in 15t argument

. .LABEL:

Counter increment movsd
‘\\\\\\\\\“‘\\\\\\\\\\e>addsd
Compare register /]

inc
content

Conditional jump to label if
loop continues

Nin
register rax

i<N;
al[i];

i++) {

Load a[i] to register xmm?2

&a[0]

Compiler

xmm2 ,
xmml, xmm2
rdx
rax,
. .LABEL

[rdi+rdx*8]

sizeof (double)

rdx

iin
sum in register rdx

register xmml

PTfS 2025

May 6, 2025

13

General-purpose (cache based) microprocessor core

L1 lcache

——

Instruction Cache

Modern CPU core

| |
I I
I I
. Input/Output
: =) Reorder buffer / Register renaming o : P P :
D I I
';g; :.i—_J Scheduler : : |
- | |
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 : P P : @
- — P — - !
CPU Storage
ALU ALU W /J%/ W ALU
/AW ADRS ADRS JMP
DIV
Memory
Data Cache | 1 1 €= Data flow “Compute node”
Control flow
L1 Dcache <+> Memory control __—~ Pot. bottleneck
PTfS 2025 May 6, 2025 14

Introduction: From application to microprocessor core

Application

. ® S
gcc —-03 code.f Compller -g; =
Instruction Set =g

0]

High Level Programming Language
(e.g. C/ C++/ Fortran): Aplication —
portable

Compiler translates program to
Instruction set (architecture) (I1A32,
Intel 64, AMDG6G4 a.k.a. x86, x86_64)

Instruction Set Architecture (ISA):
Hardware specific

PTfS 2025

May 6, 2025

15

Introduction: Instruction Set Paradigms

In the beginning (60°s): Complex Instruction Set Computers (CISC) :
Powerful & complex instructions
Instruction set is close to high-level programming language

Variable length of instructions - Save storage!

Multiply content of address a2 with
MULT 0 * [a2] > [al] register content r0

and write back to address al

Mid 80°s: Reduced Instruction Set Computer (RISC) evolved:
Fixed instruction length; enables pipelining and high clock frequencies

Uses simple instructions, e.g., above instruction is split into at least 3 instructions:

LOAD [a2]—2rl; MULT rO*rl—>r2; STORE r2—>[al]
Nowadays: RISC processor cores

Almost...

PTfS 2025 May 6, 2025

18

x86 CISC/RISC hybrid

Current x86_64 processors (Intel, AMD): Compiler still generates CISC instructions;
but processor core is RISC-like

Example:
addsd xmml, [rsi+rax*8]
xmml : register holding floating point data

rsi, rax: register holding integer data

- combined address calculation, LD, and ADD instruction
1. Calculate address rsi+rax*8

2. Load double value from that address

3. Add double value into register xmm1 (accumulate)

PTfS 2025 May 6, 2025

19

From high level code to machine execution (CISC-style)

addsd: Add 2"? argument to 1%
argument and store result in 1%

double sum=0.0;
for (i=0; i<N; ++i)
sum += a[i];

Compiler

sum in register xmm1 &al[0]

addsd xmml, [rdi+rdx*8]

N

Register increment

>inc rdx <—

/>cmp rax, rdx 1in

/)b - -ﬁ@EL register rdx

Compare register content /

Jump to label if loop
continues

N

N in
register rax

PTfS 2025

May 6, 2025

20

From high level code to macro-/microcode execution

. .LABEL:
addsd xmml, [rdi+rdx*8]
inc rdx
cmp rax, rdx
jb . .LABEL

Instructions are mapped
to execution ports / units

ADDSD Instruction requires

LOAD Execution unit

ADD Execution unit

v L1 lcache
-
= Reorder buffer / Register renaming G
o}
-ag:’ ;.i—_J Scheduler
o
\\’ Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
Ab—| AL {JLOAD | | LOAD | |STORE AL
,@; ;-/ ADRS ADRS JMP
DIV
| l l P iz flow
Data Control flow
L1 Dcache Memory control

-

SUOIONIISU|

suonelsadp

/ Pot. bottleneck

PTfS 2025

May 6, 2025

21

Key single-core features: Pipelining

L1 lcache

P -

Plpe|lnlng _ = Reorder buffer / Register renaming N
[}
Most units can complete > 2 Scheduler
. . o
one InStrUCtlon per CyC|e’ e'g' Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
MULT / ADD / LOAD /STORE T ¥ F r 9w
ALU ALU | [LoAD | | LoaD | |sTORE | ALU
M ADRS ADRS JMP
DIV I
| l l P iz flow
Focus on: Floating Point L1 Dcache <+> Memary control - Sztn t::t:::eck
Instructions/Operations
PTfS 2025 May 6, 2025 22

Key single-core features: Superscalarity

Multiple instructions

—

iIssued in parallel

Multiple execution
units/ports —

L1 lcache

—

I
—)

(can run in parallel)

Superscalarity
(“Instruction level parallelism®)

= Reorder buffer / Register renaming G
Q@
% ;,i—_J Scheduler
o]
o
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
AW || A | [loan | |LoAD | STORE AL
“ADD ADRS | | ADRS | | JMP
DIV I
| l l P iz flow
Control flow
L1 Dcache <+> Memory control __— Pot. bottleneck

PTfS 2025

May 6, 2025

23

Key single-core features: SIMD

SIMD:

Single Instruction Multiple Data
Instruction is applied to
multiple operands in parallel
(,width of execution
units/registers®)

L1 lcache

—

= Reorder buffer / Register renaming G
Q@
% ;,i—_J Scheduler
o]
o
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
AW || A | [loan | |LoAD | STORE AL
“ADD ADRS | | ADRS | | JMP
DIV I
| l l P iz flow
Control flow
L1 Dcache 4+> Memory control

_—

Pot. bottleneck

PTfS 2025

May 6, 2025 24

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Programming Techniques for Supercomputers
Modern processors: Single Core

Basic technology trend / Moore’s law
Basic concept of core architecture
Key single core features:

Superscalarity
SinglelnstructionMultipleData
Maximum In-Core Performance

Pipelining of arithmetic/functional units

Concept:
Split complex instruction into several simple / fast steps (stages)
Each step takes the same amount of time, e.g. a single cycle
Execute different steps on different instructions at the same time (in parallel)

Benefit:
Pipeline can work on multiple instructions simultaneously (in parallel)
If pipeline is full one instruction completes every cycle - Throughput: 1 inst./cy.
Enables faster clock speeds (simple steps/stages)

Drawback:
Pipeline must be filled (“wind-up”) - start-up “latency” = number of stages

Independent instructions required - complex instruction scheduling by hardware (“out-of-order”) or compiler
(“software-pipelining”)

Pipelining is widely used in modern computer architectures
Pipelining addresses Instruction Level Parallelism

PTfS 2025 May 6, 2025 26

Interlude: Possible stages for Floating Point Multiply

Real numbers can be represented as mantissa and exponent in a “normalized” representation, e.g.:
s*0.m * 10¢ with

Sign s={-1,1}
Mantissa m which does not contain O in leading digit
Exponent e some positive or negative integer

Multiply two real numbers r1*r2 = r3
rl=sl*0.ml * 10¢l , r2=s2*0.m2 * 10¢?

sl1*0.ml1 * 10! * s2*0.m2 * 10

(sl*s2) * &O.ml*O.mZ) * 10(e1+ej)
X

p
Normalize result: s3* 0.m3 * 103

~

PTfS 2025 May 6, 2025

27

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Cycle: 1 2 3 4 5 6 N N+1 N+2 N+3 N+4

Stage

Wind-down
B(N)
e e o)) I >
B(N)
C(N)
B(N)
C(N)
B(N)
C(N)

Wind-up B(N)
) - o s

First result is available after 5 cycles (=latency of pipeline)!

After that one instruction is completed in each cycle (N-1 cycles)!
Empty pipeline stages in Wind-up/-down phase!

PTfS 2025 May 6, 2025

28

Pipelining: Latency, Throughput and Speed-Up

Assume m-stage pipeline (pipeline latency: m cycles), fixed clock speed and N independent
instructions to be executed

Speed-up of pipelined (T) vs. non-pipelined (T,) execution time

Tseq =~ m-N

Tpipe m+N-—1

Pipeline throughput, i.e. average instructions completed per cycle [inst./cy]:

N N
Tpipe N+m-—-1
o Speed-Up: fseas —— ~m forN » m
Large NV limits : > /T’”pe

\ Throughput: N/Tpipe ~ 12 forN > m

cy

PTfS 2025 May 6, 2025

Throughput as function of pipeline stages

90% pipeline
efficiency

1.0

T T T TTTT] T T T TTT1 —F——F = FTT)
i#____.-* B P j
— —
"l“ -
P -
EUS_ g ra T
o d ’
= 4 .
8.. / 7
= / ’
Z2 | / K i
/
) /
S 0.4 7/ / i
£ / ’
ol 7’ ‘
= T 7 ‘
Pid e — m=5
E 0.2 Y R — m=10 .
7 .
_..--""" ,,"' = m=30
- L - m=100 -
DD-T-"'I"'I'..I.Illlll Lot il ANt 1
1 10 100 1000

N (Operation Count)

m = #pipeline stages

PTfS 2025

May 6, 2025

30

Efficient use of Pipelining

= (Potential) dependencies within loop body may prevent efficient software pipelining or OOO
execution, e.g.:

No dependency: Dependency:
do i=1,N do i=2,N

a(i) = a(i) + s a(i) = a(i-1) + s
end do end do

al2l=-1fs

PTfS 2025 May 6, 2025

Pipelining: Data dependencies

Single core on Intel Xeon E5-2695 v3 (“Haswell”) with clock speed fixed to 2.3 GHz
(Compiler: -03 —-no-vec)— HW limit: 1 MULT instr./cy

2500 ! IIIIIII ! IIIIIII| LI

ﬁf.Z.SQO.MEf.S.
- ——— TN
Max. MULT T
performance w/ 2000 7
pipelining K
W L
L
% 1500~ — A(i)=s*a(i-1)
§ L —— A(i)=s*A(i)
= Performance
& 1000
T measured
D_ -
Max. MULT .
performance w/o | |
i elinin O | 1L 1 11111 | 1L 1 11111 | |
pIp g 10 102 103

Array length [elements]

PTfS 2025 May 6, 2025

Pipelining: Data dependencies — performance model

Dependency

do i=2,N
A(i) = A(i-1) * s
end do

A(4)*s

\

J

Y
MULT pipe

Latency (MULT): 5cy
Throughput: 1 MULT/5 cy
Clock Speed: 2.3 Gcey/s

Performance:
2.3-10%cy/s - 1 MULT /5 cy

= 2300/5 MF/s = 460 MF/s
(with 1 MULT =1 F)

Pipeline utilization / performance improvement by unrelated workload:

2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s
end do

A(4)*s

B(3)*s

\

Y
MULT pipe

Latency (MULT): 5cy
Throughput: 2 MULT/5 cy
Clock Speed: 2.3 Gcey/s

Performance:
2.3-10%cy/s - 2 MULT /5 cy

= 2300 - 2/5 MF/s = 920 MF/s
(with 1 MULT =1 F)

PTfS 2025

May 6, 2025

33

Pipelining: Data dependencies

Single core on Intel Xeon E5-2695 v3 (“Haswell”) with clock speed fixed to 2.3 GHz
(Compiler: -03 —-no-vec)— HW limit: 1 MULT instr./cy

2500 T I IIIIII| I T TTTTIT I T TTTTIT I T TTTTIT I T TTTTIT I T TTTTIT
______ 2300 MF/s.
2000 - . I = Increasing number of
. 1840 MF/s « . .independent dependencies®
‘mﬁ _______________________ (i.e. increasing parallel workload)
=, 1500 /—/ improves pipeline throughput
Lo}
§ (1)=s*A(i-1)| -
£ / A(i)=s*A(i-1)|.
L2 1000~ QZOME{S T B(i)=s*B(i-1)| |
Q //v, A(i)=s*A(i-1)|—
___ B(i)=s*B(i-1)
500}-.... 460 MFE/s C(i)=s*C(i-1)|_
o D(i)=s*D (i-1)
0 | | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII| | 1 1 1111l
10’ 10° 10° 10 10° 10° 10’
Array length [elements]
PTfS 2025 May 6, 2025 34

Pipelining: Data dependencies

Single core on Intel(R) Xeon(R) Platinum 8360Y CPU with clock speed fixed to 2.0 GHz
(Compiler: -03 —no-vec)— HW limit: 2 MULT instr./cy

2000 -

u=2 Dependencies

& 1500 do i=2,N

2, A(i) = A(i-1) * s

§ B(i) = B(i-1) * s

E 1000, end do

qe !

o

~

500 .
Latency/depth of MULT
pipeline?
| ‘ 1 [e ‘ 1 I I
0 100 10000 1000000
Data set (kB)

PTfS 2025 May 6, 2025

Pipelining: Data dependencies

Single core on AMD EPYC 7543 CPU with clock speed fixed to 2.1 GHz
(Compiler: -03 —no-vec)— HW limit: 2 MULT instr./cy

2000

”"\/;\ L = 5 -

=
T T Ron e —— [wepry-1

1500
T SN U ;
glooo,i
&
o i . .
k2 -)
500—\// —
-—-u=2
I e
o
O L1 | Lo | !
100 10000

Data set (kB)

u=2 Dependencies

do i=2,N
A(i) = A(i-1) * s
B(i) = B(i-1) * s
end do

Latency/depth of MULT
pipeline?

PTfS 2025

May 6, 2025 36

Pipelining: Resolving dependencies

Sometime the data dependencies are not that obvious..

- - in register xmm1
What about “reduction operations”? sumin ey

\ / A (i) (incl. LD)
sum=0.d0

.LABEL: /
do i=1, N addsd xmml [rdi+rdx*8]
sum=sum + A(i}——) ;’;C rax, rdx
enddo b /NLABEL S~
ADD 2nd argument to 1st \ N i (loop counter)

argument and store result
in 1t argument

Data (register) dependency on sum (xmml) —> 1 F/ m cy for above code! (assuming an ADD
latency of m cycles, m=3 for Intel)

How to enable pipelining here?

PTfS 2025 May 6, 2025

Pipelining: Resolving dependencies

Increase pipeline utilization by “loop unrolling”

“2-way Modulo Variable Expansion” (we assume that N is even)

suml=0.d0
sum=0.d0 sum2=0.d0
do i=1l, N do i=1, N, 2
sum=sum+A (1) suml=suml+A (1)
enddo sum2=sum2+A (1+1)
enddo

sum = suml + sum2

sum2
+=A (4)

sum+= suml
A(4) +=A(3)

PTfS 2025 May 6, 2025

38

Pipelining: Resolving dependencies

m-way Modulo Variable Expansion (MVE) to get best performance!
Sum is split up in m independent partial sums
Optimal for Intel ADD: 3-way MVE

N,=3* (N/3)
suml=0.d0
sum2=0.d0
sum3=0.d0

do i=1, N_, 3
suml=suml+A (1)
sum2=sum2+A (i+1)
sum3=sum3+A (1+2)

enddo

do i=N_+1, N
suml=suml+A (1)

enddo)

sum=suml+sum2+sum3

-

Y
Remainder
loop

PTfS 2025 May 6, 2025

39

Pipelining: Resolving dependencies

Compiler can do that, if it is allowed to do so...
High optimization levels
Compiler prefers powers of 2 for unrolling

Reason: Computer’s floating point arithmetic is not associative!
((((a+b)+c)+d)+e)+f) +(@+b)+(c+d)+(e+f)

If you require binary exact results (-fp-model strict for Intel) the compiler is not allowed to do
this transformation

Beware additional latency due to reduction at the end
Final sum cannot be pipelined
High unrolling factor leads to high overhead
High unrolling may lead to register shortage

PTfS 2025 May 6, 2025

40

Pipelining: Available resources in modern CPUs

Typical number of pipeline stages on modern cores:
2-5 for most (important) hardware pipelines: LoaD; STore; MULT; ADD; FMA
>>10 for other floating point pipelines: DIVide/SQuareRooT
Many other other piplined ALUs, e.g. integer arithmetic, logical, shift, branch, address generation

Most “older” x86 cores (AMD, Intel):

1 MULT & 1 ADD floating point unit per processor core
- Max. 1 MULT & 1 ADD instruction per cycle

Latest Intel (Haswell, Broadwell, Skylake) & AMD (Zen+) cores:
1 (AMD) or 2 Floating Point Fused MultiplyAdd (FMA) floating point units

FMAS instruction: s=s+a*b = 1 Input register (s) is overwritten
FMAA4 instruction: s=r+a*b - No input register is modified
Typically 2 (1) FMA instruction per cycle for Intel (AMD) processors
On Intel: Per cycle up to 2 MULT or ADD instructions

PTfS 2025 May 6, 2025

41

Costs of arithmetic instructions: Intel Skylake processors

Latency [cy/in§truqtion] Throughput [instruction/cy]
Depth of pipeline, i.e. cycles to execute Cycles per instruction if pipeline is full
a single instruction (worst case) (best case: 2 instruction/cy — 2 HW units)

I__atency Max. thrgughput
[cy/instruction] [instructions/cy]
_(ADDDP (SP) 4 (4) 2 (2)
;2; , | MULTDP(SP) 4 (4) 2 (2)
?-g) FMA DP (SP) 4 (4) 2 (2)
g g SQRT DP (sqrtsd) 26 1/12 = 0.08
£ SQRT SP (sqrtss) 20 1/6 = 0.16
_ DIVDP (divsd) 14 1/4 =0.25

Consequence: Avoid expensive instructions in hot spots!
Other expensive math (transcendental, log,...) is done in libraries

PTfS 2025 May 6, 2025

Pipelining: The Instruction pipeline

Besides arithmetic & functional units, instruction execution itself is pipelined also, e.g.: one
instruction performs at least 3 steps:

Fetch Instruction Decode
from L1I instruction

Hardware Pipelining on processor (all units can run concurrently):

1 Fetch Instruction 1
from L1
2JIl Fetch Instruction 2 Decode
. from L1| Instruction 1
Fetch Instruction 3 Decode
3 from L1| Instruction 2
Il Fetch Instruction 4 Decode
4 ! from L1| Instruction 3

Non-predictable branches can stall this pipeline!
Hardware can predict conditional branches w/ high accuracy
Each unit is pipelined itself (cf. Execute=Multiply Pipeline)

PTfS 2025 May 6, 2025 43

Pipelining: The Instruction pipeline

Problem: Unpredictable branches to other instructions

: Assume: Result
1 Fetch Instruction 1 determines next
from L1l . .
instruction!

2
Instruction 1

- e

4 Fetch Instructior 2
| from L1

Decode
Instruction 2

.--.-Ill

3 gupuumumEE

Fetch Insteuetion

from L1I

Instruction 3

PTfS 2025 May 6, 2025

44

Pipelining summary

Pipelining tries to achieve
Maximum instruction throughput (1 instr/cy in many cases)
Hiding of instruction latency

Prerequisites
Independent instructions
A lot of independent instructions for maximum efficiency (N > m)
Highest benefit if code & data are close to the core (L1 instr./data cache)

Conditional branches must be correctly predicted by hardware

Drawbacks
Pipeline must be filled - inefficient for N < m
Dependencies between pipelines may increase effective depth (see tutorial)

Unresolvable data dependencies are hazardous

PTfS 2025 May 6, 2025

45

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Programming Techniques for Supercomputers
Modern processors: Single Core

Basic technology trend / Moore’s law

Basic concept of core architecture
Key single core features:

Pipelining

SinglelnstructionMultipleData
Maximum In-Core Performance

Superscalar Processors

Superscalar processors provide additional hardware (i.e. transistors) to execute multiple instructions
per cycle!

—> Exploit Instrucion Level Parallelism (ILP)

Parallel hardware components / pipelines are available to

fetch / decode / issues multiple instructions per cycle
(typically 3 — 8 per cycle)
perform multiple integer / address calculations per cycle

perform multiple load (store) multiple instructions per cycle
(e.g. one LD and one ST per cycle)

perform multiple floating point (FP) instructions per cycle
(e.g., 2 floating point instructions/cycle, e.g. 1 MULT + 1 ADD)

“Parallelization of instruction stream” required

Instructions Per Cycle: IPC

Performance metrics quantifying superscalarity: _
Cycles Per Instruction: CPI

PTfS 2025 May 6, 2025 47

Superscalar Processors — Instruction Level Parallelism

Issuing m concurrent instructions per cycle: P
“m-way superscalar” 1

Modern processors are 3- to 8-way superscalar
& perform 2 or 4 FP instructions per cycles

<> Reorder buffer / Register renaming

file

Scheduler

Register

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

ALU AU | Loan | | Lokn | [sTome | | A
woL | | aoo | 4 ADRS | | ADRS JMP

DIV A y N a A F

a

t~Ah | tri 1At Y| -
P manntian s 4-way

Fn+n|n lhntrii~tiAan D ,,superscalar“

. Fetch Instruction 1 SEREERAR o vy o
b from L SRR SRR e
t ' Fetch Instruction 5 Decode
H e rom L1L - EinStruction
' Fetch Instruction 9 Decode
Fiaenn fromLiL -, _EinStiUCtion'S
. Fetch Instruction 13 Decode

from L1I Instruction 9

PTfS 2025 May 6, 2025 48

Multiple pipelines at work: Interleaving instructions

Example:

load rl, a[i]
mult rl = ¢, rl
store af[i], rl
branch. loop

Fortran Code:
do i=1,N

a(i) = a(i) * c
end do

Store result from register to mem./cache (2 cycles)
Increase loop counter as long as i less or equal N (0 cycles)

v

Simple Pseudo Code: _
loop: 1load rl, a[i] Dependencies on rl

mult rl = ¢, rl within one iteration

store a[i], rl across iterations
branch. loop

Assumed

Load operand to register (47M Latencies
Multiply a(i) with ¢ (2 cyclesT; a[i],c in registers /

PTfS 2025

May 6, 2025

49

Superscalar & Pipelined Execution

af[i]=a[i]*c; N=12 Simple Pseudo Code:
loop: load a[i]
. . _ _ mult a[i] = c, a[i]
Naive instruction issue store al[i]
Cycle 1 load a[1] branch.loop
Cycle 2
Cycle 3
Cycle 4 .) .
Cic,e 5 mult a[]=c.a[1] Instruction executed ,in-order
Cycle 6
Cycle 7 store a[1]
Cycle 8 : .
o Cycle 9 load a[2] Total execution time:
E Cycle 10 — £ (A+D+ _
= Cycle 11 T=12"* (4+2+2) cy = 96 cy
Cycle 12
Cycle 13 mult a[2]=c,a|2 .
C{,C,e 14 [2l=eal2] IPC = 3/8 msjtr./cy
Cycle 15 store a[2] CPI = 8/3 cy/instr.
Cycle 16
Cycle 17 load a[3]
Cycle 18 o _
Cycle 19 No pipelining and superscalarity!

PTfS 2025 May 6, 2025

Superscalar & Pipelined Execution

time

af[i]=a[i]*c; N=12
Optimized instruction issue

load a[1]
load al2] | | p |atency S
load af3] 8’
load a[4] §
mult -~ =calll | muLT latency Q
load a[6] mult al2]=c,a[2]
load a7] mult a[3]=c,a[3] store)
load a[8] mult a[4]=c,a[4] store a[2]
load af9] store a[3] >_TJ
load a[10] mult a[6]=c,%[6] store a[d] =
load a[11] mult a[7]=c,a 2
load a[12] mult a[8]=c,a[8] store af6] |
mult a[9]=c,a[9] store a[7]
mult a[10]=c,a[10])
mult a[11]=c,a[11] >
mult a[12]=c,a[12] L)
o

~ IPC=3 instr./cy
T=19 cycles CPI=0.33 cy/instr.

Simple Pseudo Code:

loop: load a[i]
mult a[i] = ¢, a[i]
store a[i]
branch.loop

Assumptions:

LD/MULT/ST can be executed in
parallel!

Instructions are perfectly reordered
but dependecies (within loop
iteration) are maintained!

Register renaming required

Kernel:
Full pipelining and high superscalarity!

PTfS 2025

May 6, 2025

51

Reordering the instruction stream: Two options

Software pipelining Dynamic reordering of instructions at runtime
Done by the compiler Done by the hardware
Compiler reorders instructions Out-of-order (OOQ) execution
Requires deep insight into application (data Instructions are executed when operands are
dependencies) and processor (latencies of available

functional units)

<. prologue .> e e e Jen

kernel: load a[i+6]
mult a [l+2] = ¢c, a [l+2] - Reorder buffer / Register renaming Q—‘

store a[i]
branch - kernel
<.. epilogue ..> Port0 | | Port1 Port2 | | Port3 | | Port4 | Ports

file

Scheduler

Register

Required on “in-order” architectures All modern general-purpose CPUs do this
Rarely used today (see right)

PTfS 2025 May 6, 2025 52

Register renaming

Prerequisite for good OoO execution: “Bogus” register dependencies can be resolved

Hardware has “shadow registers” it can use to store intermediate values that are already “officially”
overwritten

for(int i=1l; i<n; ++1i) LOOP:
a[i] = a[i] + s; LOAD rl = a[i]
rl = rl+r2
This looks like a ?TORE a[i] = rl
dependency: How can 1++
iterations overlap if they i<n ? BRANCH : EXIT

need the same register r1?
Solution: Hardware assigns a new register with the same name as soon as the old value gets
overwritten

“Shadow copy” lives as long as necessary
Until no instructions in flight reference the register any more

PTfS 2025 May 6, 2025

53

Superscalar processors
Intel processors — qualitative view (“Intel Sandy Bridge”)

Execution ports map =8
decoded instruction

G =T T T

N g Reorder buffer / Register renaming G

file

Scheduler

Register

FP MULT & FP ADD
can run in parallel

| l l P Data flow
Control flow
L1 Dcache Memory control _~Pot. bottleneck

11 loache Max. of 4 instr./cycle can
be decoded - CPI = 0.25

3 LD/ST units

2 memory instr.
Concurrently
(AGU)

PTfS 2025 May 6, 2025

54

	Programming Techniques for Supercomputers:�Modern processors: Single Core�	
	Programming Techniques for Supercomputers�Modern processors: Single Core��	
	Multi-core today: Intel Xeon Sapphire Rapids (2023)
	Programming Techniques for Supercomputers�Modern processors: Single Core��	
	Basic „stored program computer“ concept – still in use
	Stored Program Computer
	From high level code to actual execution
	General-purpose (cache based) microprocessor core
	Introduction: From application to microprocessor core
	Introduction: Instruction Set Paradigms
	x86 CISC/RISC hybrid
	From high level code to machine execution (CISC-style)
	From high level code to macro-/microcode execution
	Key single-core features: Pipelining
	Key single-core features: Superscalarity
	Key single-core features: SIMD
	Programming Techniques for Supercomputers�Modern processors: Single Core
	Pipelining of arithmetic/functional units
	Interlude: Possible stages for Floating Point Multiply
	5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N
	Pipelining: Latency, Throughput and Speed-Up
	Throughput as function of pipeline stages
	Efficient use of Pipelining
	Pipelining: Data dependencies
	Pipelining: Data dependencies – performance model
	Pipelining: Data dependencies
	Pipelining: Data dependencies
	Pipelining: Data dependencies
	Pipelining: Resolving dependencies
	Pipelining: Resolving dependencies
	Pipelining: Resolving dependencies
	Pipelining: Resolving dependencies
	Pipelining: Available resources in modern CPUs
	Costs of arithmetic instructions: Intel Skylake processors
	Pipelining: The Instruction pipeline
	Pipelining: The Instruction pipeline
	Pipelining summary
	Programming Techniques for Supercomputers�Modern processors: Single Core
	Superscalar Processors
	Superscalar Processors – Instruction Level Parallelism
	Multiple pipelines at work: Interleaving instructions
	Superscalar & Pipelined Execution
	Superscalar & Pipelined Execution
	Reordering the instruction stream: Two options
	Register renaming
	Superscalar processors �Intel processors – qualitative view (“Intel Sandy Bridge”)

