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Native GPU Programming

• GPUs ≠ performance silver bullet
• Vendor-specific C/C++ APIs for GPUs

CUDA Nvidia only, no portabilityHIP AMD’s API, can be used for Nvidia GPUs too, limited portability
• Proprietary CUDA Fortran extension exists
• Good choice to tune code for device specific capabilities
• Best ecosystem support (Compilers, Debuggers, Profilers)
• Downside: Bound to vendor’s devices
• Not recommended for application developers
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Evolving Market
• Nvidia is dominating the market (still)
• But: Major processor vendors offer GPUs for diffrente markets

High-end GPUs: AMD MI300X, Intel GPU Max 1550, and Nvidia H100
• But: Top HPC systems with GPUs from other vendors existFrontier (AMD GPUs, TOP500 #2)Lumi (AMD GPUs, TOP500 #7)SuperMuc-NG Phase 2 (Intel GPUs, tba)Hunter/Herder (AMD GPUs)PVC-TDS-Partition am ZIB (Intel GPUs)
• What about your Notebook, Gaming PC, Workstation? What GPUs do you have there?
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Vendor-Agnostic GPU Programming
Recommendations

• Code and performance portability is possible!
More abstract programming→ not every platform detail accessible via APIs

• Standard Language Features
C++17 Execution Policies/Executors (Nvidia, Intel)Fortran 2008 DO/CONCURRENT (Nvidia, Intel, AMD)

• OpenMP Offloading Constructs W

Well-matured/established API for C/C++ and FortranWide/improving GPU support (vendor and Open Source compilers)
• SYCL – C++ header-only library; requires compiler support W

Currently pushed by Intel (oneAPI), but open standardCompiler ecosystem evolves: 3rd party support for Nvidia/AMD
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Vendor-Agnostic GPU Programming (cont’d)
Not so recommendations

• OpenACC support outside Nvidia ecosystem improves, but consider OpenMP!
supported by Nvidia, Cray, GCC

• OpenCL – Nah... Maybe for FPGAs
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High-Level Frameworks

• Provide more abstraction from platform and architecture + productivity
• Express the algorithm, don’t care much about the rest (DSL-like approach)

Framework cares about parallel execution/mapping to underlying frameworks/architecturesVarying levels of control
• Examples (most for C++)

Kokkos (Python binding exists)RajaAlpaka / CuplaPETSc. . .
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Libraries and AI
• Numerical libraries

All vendors provide libs for BLAS 1/2/3, FFT, collective communication etcOften similar interfaces→ wrappers exists (see oneMKL)Prefer multi-platform libraries, like Magma, Ginkgo

• Existing MPI support for all GPU vendors (varying extent)
Both open source (MPICH, Open MPI) and vendor libraries (Intel MPI)

• Accelerated libraries for AI workloads
Vendor libraries exists, wrappers also (see oneDNN)Hipified (AMD) PyTorchIntel Extension for PyTorch (IPEX)→ not needed anymore (!)
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Remember Pragmas?

• Compiler directives: steer compiler behavior (may have seen #pragma once )
• OpenMP is based on pragmas (C/C++): #pragma omp...

• Like annotations to source code
• Ideally: Ignore pragmas and you still have valid and working code.
• Essential one for this tutorial: offloading pragma→ #pragma omp target ...

• OpenMP clauses – control specifics for pragmas:
#pragma omp target [clause, ...]
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OpenMP Offloading Model
Established with OpenMP 4.0 (2013)

• Single host (processor/CPU)
• Multiple offload devices (GPUs) attached
• Memory/address spaces not shared between host and device (relaxations exists)→ Two data environments: Host and Device
• Data movements required!

CPU CPU

GPU
GPU

GPU
GPU
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Consequences of Device Modell
Goal: Bring two essential building blocks onto the device
1. Execution Û

2. Data Û
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Achieving First Goal: Code offloading
Make use of target construct! → Applied to a structured block (curly braces)
#pragma omp target
{

/* your device code here */
} /* implicit barrier here */

1. target construct moves execution of structured block to device
Execution on host blocked until offloaded code finishes (synchronous execution)Nothing is parallel, yet! Û

2. Also takes care of some data movements Û

3. Implicit barrier to wait for kernel to finish (sychronization)
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Data Movement: What is done for you
target construct handles some data movements
• All scalar variables→ private copies created on device

as firstprivate clause would do→ values are copiedno transfer back to host
• Arrays on the stack are copied to and from device

double fill_array_on_device_and_get_n_half(...)
{

const int n = 1000;
double alpha = 3.14;
double values[n]; // C/C++ Variable Length Array (VLA) - use with caution

#pragma omp target
for (int i = 0; i < n; i++) {

values[i] = alpha;
}
return values[n / 2];

}
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Data Movement: What you need to do
What about “dynamic arrays”, i.e. pointers?

• Pointer itself is a variable, but actual data needs to moved to device
• Your task: Tell compiler how large underlying data actually is.
• Your task: Tell compiler when you want data transfers.
• Compiler’s/Runtime’s task: Allocate data on device, do transfers.

Mapping of host data to device data is established.
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Data Movement: Mappings
Tell compiler with mappings of your data withmap clause:
#pragma omp target map(how:what)

How can be:
to allocate and copy to device (when block is entered)

from allocation and copy from device (when block is exited)
tofrom combination of to and from
alloc just allocate, no copies made

... there’s more
What should be: Your pointer and which range is to be copied:
#pragma omp target map(tofrom:my_array[start:num_elements])
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Data Movement: Example with data mapping

float fill_array_on_device(float *buffer, size_t n)
{

float alpha = 3.14f;

#pragma omp target map(tofrom:buffer[0:n])
for (size_t i = 0; i < n; i++) {

buffer[i] = alpha;
}
return buffer[n / 2];

}

int main(void)
{

const size_t size = 100000;
float *data = new float[size];
float check_value = fill_array_on_device(data, size);
std::cout << check_value << std::endl; // what do you expect be printed?
delete data;

}
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Compile and Execute: What you need?

1. A GPU→ get one in the NHR center of your choice→ Today: Alex at NHR@FAUNvidia GPUs (A40)
2. A compiler and runtime that supports your GPU

AMD aocc for C/C++ or flang for Fortran
Intel ic[p]x for C/C++ or ifx for Fortran

Nvidia nvc[c,++] for C/C++ or nvfortran for Fortran→ Choice for today.
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Compile and Execute: How to do it
For Nvidia GPUs and Nvidia compiler

• Compilation: nvc++ -mp=gpu -Minfo=mp mycode.cpp -o mybinary
Enable support for offloading OpenMP to GPUGet Information about OpenMP compilation→ can be helpful

• Execution: As usual. Just launch your binary: ./mybinary

• Helpful environment variables and settings
OMP_TARGET_OFFLOAD , set to MANDATORY to force offloading
NVCOMPILER_ACC_NOTIFY , set to 31 to see what’s going on1
For LLVM-based compilers: LIBOMPTARGET_INFO

1https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#id27
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Try yourself!

1. Launch JupyterHub just like yesterday (choose Alex 1x A40 / Container type)
2. Clone git repository for tutorial https://git.zib.de/bzbchris/nhrgrads2025
3. Open the OpenMP notebook (openmp.ipynb), work through Compilation and Executionand Data movement sections.
4. Take a look at the output of compilation and execution!
5. What do you observe?
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Better Data Movement Control
target -clause not always bound to actual device code
• Avoid data movements to/from GPU where possible
• Structured code: Multiple functions operating on the same data on the GPU
• Methods of classes: Constructor creates data, destructor does destoys

Not so good example:
while (some_condition) {

#pragma omp target map(tofrom:buffer[0:n])
for (i = 0; i < buf_size; i++) {

buffer[i] = ...
}

}

Beneficial: separate map from target construct
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Better Data Movement control
More constructs to the rescue

• #pragma target data map(...) structured blockNote: structured block, i.e. code, is required
• #pragma target enter data map(...) map data to device
• #pragma target exit data map(...) unmap data from device

Last two are standalone directives→ no device code block needed
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Example: Standalone Mappings
class SomeCalculation {

private:
size_t m_n;
double *m_buffer;

public:
SomeCalculation(size_t n) /* constructor */

: m_n(n)
{

m_buffer = new double[m_n];

}

void run() { ... }

~SomeCalculation() /* destructor */
{

delete [] m_buffer;
}

}
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Example: Standalone Mappings
class SomeCalculation {

private:
size_t m_n;
double *m_buffer;

public:
SomeCalculation(size_t n) /* constructor */

: m_n(n)
{

m_buffer = new double[m_n];
#pragma omp target enter data map(to:buffer[0:m_n])

}

void run() { ... }

~SomeCalculation() /* destructor */
{

#pragma omp target exit data map(delete:buffer[0:m_n]) /* or from?! */
delete [] m_buffer;

}
}
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Recap
What we have achieved so far:

• Execution gets moved to device ( #pragma target ) ✓

• Data gets allocated and moved between host and device with map(...) clause in target
region or other data constructs ✓

What’s missing? Parallelism/Performance! Ç
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Example for this Block: Vector Copy
Sounds simple, but helps us to understand parallelism.

• Goal: Copy data from one array efficiently to another one.
• Something like

for (size_t i = 0; i < N; ++i) { dst[i] = src[i]; }

• Goal: Better understanding of OpenMP worksharing constructs on GPU
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Benchmark
Task (copy data from A to B) sounds familiar? → Stream-Benchmark

• Stream was made for CPU (John McCalpin)
• BabelStream for GPU (U Bristol, Tom Deakin et al.)

Implementation using different programming frameworks
OpenMP
OpenACC
CUDA
HIP
SYCL
. . .

NHR Graduate School 2025 S. Christgau (ZIB): Introduction to GPU programming II: OpenMP and SYCL 27 / 91



What can we expect?

• Educated Guess: Problem ismemory-bound→much more memory accesses thancomputation.
• Datasheet: Memory bandwidth 696GB/s
• BabelStream for double data type:

CUDA Copy: 658GB/s (94.5% of peak)OpenMP Copy: 651 GB/s (93.5% of peak)
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Try Yourself

• Go to OpenMP notebook
• Follow steps in section Stream: A First Try

Add mappings for data needed on device?Achieve code offloading in stream function (template)
• What bandwidth do you achieve?

Use double as data typeTry with 128 M elements, will take about 2 MinutesReminder: Datasheet promised 696GB/s
• Disappointed?!
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OpenMP offloading in detail
Quote from OpenMP 6.0 Specification, Section 1.2 Execution Model:

An initial thread executes the enclosed target region.
The initial thread executes sequentially, [. . . ]

host thread

initial device thread

host thread

■ Unified virtual memory and paging support—The Pascal GP100 GPU adds
page-fault capabilities within a unified virtual address space. This feature
allows a single virtual address for every data structure that is identical across
all the GPUs and CPUs in a single system. When a thread accesses an address
that is remote, a page of memory is transferred to the local GPU for subsequent
use. Unified memory simplifies the programming model by providing demand
paging instead of explicit memory copying between the CPU and GPU or
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Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Pascal GPU. Each of the 64 SIMD Lanes
(cores) has a pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and oper-
ands to these units, and a queue for holding results. The 64 SIMD Lanes interact with 32 double-precision ALUs (DP
units) that perform 64-bit floating-point arithmetic, 16 load-store units (LD/STs), and 16 special function units (SFUs)
that calculate functions such as square roots, reciprocals, sines, and cosines.

330 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures
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Introduce Parallelism: parallel construct

host thread

Team of threads

host thread

The parallel construct creates a team of OpenMP
threads that execute the region.

All threads in the new team, including themaster
thread, execute the region

• #pragma omp parallel enables parallelism
• Your task: Add parallel construct to stream loop!
• Parallel provides no worksharing
• work is replicated among team members
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Enable Worksharing: for construct

host thread

Team of threads

host thread

Worksharing-Loop Construct: Iterations are
distributed across threads in team:
#pragma omp for
for (i = 0; i < n; i++) { ... }

Can be merged with parallel construct
#pragma omp parallel for
for (i = 0; i < n; i++) { ... }

• Your task: Add parallel for to stream loop
• Does performance increase? Yes.
• Still not close to promised/observed values.

NHR Graduate School 2025 S. Christgau (ZIB): Introduction to GPU programming II: OpenMP and SYCL 32 / 91



Remember GPU-Architecture

■ Unified virtual memory and paging support—The Pascal GP100 GPU adds
page-fault capabilities within a unified virtual address space. This feature
allows a single virtual address for every data structure that is identical across
all the GPUs and CPUs in a single system. When a thread accesses an address
that is remote, a page of memory is transferred to the local GPU for subsequent
use. Unified memory simplifies the programming model by providing demand
paging instead of explicit memory copying between the CPU and GPU or
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Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Pascal GPU. Each of the 64 SIMD Lanes
(cores) has a pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and oper-
ands to these units, and a queue for holding results. The 64 SIMD Lanes interact with 32 double-precision ALUs (DP
units) that perform 64-bit floating-point arithmetic, 16 load-store units (LD/STs), and 16 special function units (SFUs)
that calculate functions such as square roots, reciprocals, sines, and cosines.

330 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Example of GPU architecture (not A40)

• GPU has multiple levels of parallelism
Multiple Streaming Multiprocessors (SMs)Multiple Processing Elements (PEs)

• Numbers for A40
84 SMsTotal of 10752 PEs (CUDA cores)

• Multiple levels addressed by OpenMP
Parallel – accross PEs inside SM (Team of Threads)
Teams – accross SMs inside GPU (League of Teams)

• Teams are created by teams construct
• Work must be shared among teams/within league:

distribute construct
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Putting it together

host thread

host thread

Six constructs
• target – brings code to device,creates initial thread on device
• teams – create league of teams withindividual initial threads
• distribute – distribute workamong teams
• parallel – creates mutiple threadsinside existing teams
• for – distribute work within team
• simd – make use of data parallelism
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BUD: The Big Ugly Directive
Six constructs can be combined together

• #pragma omp target teams distribute parallel for simd for loop

• Loop iterations are distributed among teams and within team
• No synchronization between teams→ loop iterations must be independent
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Controlling Parallelism
You can control the degree of parallelism
1. num_teams – sets upper limit for number of created teams (note: it’s a limit)
2. thread_limit –
3. num_threads – sets number of threads in parallel region
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Try yourself: Multi-Level Parallelism

• Take stream example
• Extent target parallel for by BUD constructs

1. teams

2. teams distribute

3. simd

and measure achieved bandwidth. What values do you achieve?
• Adjust num_teams for teams and num_threads for parallel construct.

What are the defaults chosen by compiler/runtime?To what do teams and threads map on Nvidia hardware?Can you get better bandwidth than with the default values?Is this portable?
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Mapping: CUDA and OpenMP terms

• OpenMP teammaps to CUDA thread block (executed on SMT)
Teams work indepedent of each other, no sychronization possibleAll OpenMP teamsmap to CUDA grid

• OpenMP threadsmap to CUDA threads within block (executed on CUDA core)
• OpenMP SIMD is effectively ignored by Nvidia Compiler (simdlen=1)

Can be different for different compilers! (see Cray)Hardware can be differentDon’t leave simd out
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The loop construct

A loop construct specifies that the iterations of the associated loops may execute con-
currently and permits the encountering thread(s) to execute the loop accordingly.

• Can be used to replace BUD
• #pragma omp target loop

• Important: You have a contract with compiler that loop iterations are independent!
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Try yourself: Loop construct

• Replace BUD with loop construct.
• What bandwidth do you achieve with this version?

Bio Break
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Recap
What we have achieved so far:

• Code execution on device ( #pragma target ) ✓

• Data gets allocated and moved between host and device with map(...) clause in target
region or other data constructs ✓

• Achieve parallelism on device with BUD or loop construct Ç

What’s missing? Dealing with device memory >
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Extended Example: Matrix Addition
We want to add two matricies.

• Cij = Aij + Bij (element-wise addition)
• Find sequential code in notebook’s 3_matrixadd directory.
• Again educated guess: Code is still memory bound (three memory accesses plus onefloating-point operation)
• How would you port this code to the GPU with OpenMP?

What data needs to be moved to GPU?Which functions are offloaded?How do you achieve parallelism?
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Try yourself: Port code to GPU

• Port matrix-add.cpp example to GPU
• What performance do you observe?
• Are you getting close to maximum device bandwidth?

NHR Graduate School 2025 S. Christgau (ZIB): Introduction to GPU programming II: OpenMP and SYCL 43 / 91



Memory Access Patterns
Assume two nested loops: first/outer one’s iterations are distributed accross GPU.
Two possibilities to code this:
1. ij-Loop (row-major) – Iterate over rows, then over columns inside current row

idx = i * n_columns + j ← different i ’s on threads
Main Memory (with matrix data)

accessed “all at once” (parallel thread execution)
2. ji-Loop (column-major) – Iterate over column, then over rows inside current column

idx = i * n_rows + j ← different j on threads
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Coalesced Memory Accesses

Consecutive block!♥
• GPUs are bandwidth-optimized→ wide memory interfaces
• Access of consecutive addresses accross threads is preferred access patternsTurn accesses from multiple threads into one→ coalesce memory access

• Ideally aligned to boundaries (for A100/A40: 64 Byte)
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More Memory Access Patterns

• Constant offset: x = mem[idx + c] m

• Non-unit stride: x = mem[idx * stride] l

• Random: x = mem[random()] l l

0 12 34 56 7
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Try yourself: Memory Access Patterns
• Modify matrix add and implement different patterns

Constant offsetNon-unit strideRandom
• Pay attention not to cross memory boundaries.Use modulo operator ( % ) to stay in array bounds.
• Try to keep the number of total accesses the same between all versions
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Recap
What we have achieved so far:

• Code execution on device ( #pragma target ) ✓

• Data gets allocated and moved between host and device with map(...) clause in target
region or other data constructs ✓

• Achieve parallelism on device with BUD or loop construct Ç

• Understand working with device memory >

Bio Break
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More OpenMP: collapse

• Clause for loops
• #pragma ... for collapse(n)

• Apply for construct to the n nested loops→ think of merged loops
• Allow more work to be done in parallel.

Example:
#pragma omp parallel for collapse(2)
for (int i = 0; i < ny; i++) {

for (int j = 0; j < nx; j++) {
idx = i * nx + j;
...

}
}
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More OpenMP: Reductions

• Reduce clause (no pragma) reduction(op:vars) )
• Perform reduction of variables on other constructs ( parallel , for , loop )
• Built-in reductions: + , - , * , & , | , ˆ , && , || , min , max
• Can be tedious/error-prone when doing it efficiently on your own
• Reduction variables are implicitely mapped tofrom

Example:
#pragma omp target teams distribute parallel for simd reduce(+:sum)
for (int i = 0; i < ny; i++) {

for (int j = 0; j < nx; j++) {
int idx = i * nx + j;
sum += a[idx]

}
}
std::cout << sum << std::endl;
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More OpenMP: if
Sometimes you know, it is better not to offload/parallelize

• if(condition) clause
• Applies to target and parallel constructs
• Construct “does not take action” if conditions evals to false

offload → execution stays on host
parallel → no threads created
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More OpenMP: ...
There’s much more to discover:

• Tasks: More flexible worksharing; also allow to define dependencies
• Handling of multiple devices
• Atomic operations/synchronization
• Asynchronous Tasks
• InterOp with “low-level” APIs (CUDA, HIP, ...)
• . . .

Get familiar with what you learned today first. Advance afterwards.
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Hands-On: BYOC
Hands-On Session: Let’s practise some more.
You can choose:

• Re-Iterate examples from Notebook
• Try porting your own code
• Maybe (not so) easy: easyWave

github.com/christgau/easywave-syclCUDA, HIP, SYCL versions exist→ GPU code existsTry to port to OpenMPHint: Start with CUDA. No need to understand everything in detail
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Congrats! You made it!
Take-away messages:

• OpenMP makes portable GPU programming easy.
• Make use of parallelism on parallel hardware!
• Data movement and memory access patterns are critical (and easily done wrong).

Questions! Discussion!
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Further Reading and Doing

• Tom Deakin and Tim Mattson (2023): Programming Your GPU with OpenMP
• Ruud van der Pas, Eric Stotzer and Christian Terboven (2017): Using OpenMP—The NextStep Affinity, Accelerators, Tasking, and SIMD
• The OpenMP Specification
• Attend other Tutorials
• Code, Code, Code
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Sources/References

• T. Mattson, T. Deakin: Programming Your GPU with OpenMP – A “hands-on” Introduction.SC’23
• C. Terboven, M. Klemm, B. de Supinski: Advanced OpenMP Tutorial, ISC’22
• S. Pophale: Introduction to OpenMP Device Offload, 2022
• Sebastian Kuckuk § SebastianKuckuk/apex
• Xin Wu § pc2/OMP-Offloading
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Agenda
General Introduction
OpenMPIntroduction to OffloadingCompile and ExecuteData ManagementWorksharingMemory AccessesMore OpenMP constructsHands-On: BYOC...
SYCLOverviewUsing the QueueData Management
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Recap from Yesterday
Focus was on OpenMP

• Pragmas (compiler steering commands) to instruct compiler
• Developer marks offloaded code and controls data movements
• Compiler support required for device offloading.

NHR Graduate School 2025 S. Christgau (ZIB): Introduction to GPU programming II: OpenMP and SYCL 58 / 91



Today: SYCL

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

Let’s disect this sentence.
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What is SYCL?

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

You don’t need to split your source code for host (CPU) and device (GPU).→ Just like in OpenMP.
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What is SYCL?

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

Abstractions for management of low-level tasks, such as device handling, kernel launch, creationof data region etc. → Details are hidden from you, similar to OpenMP
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What is SYCL?

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

Unlike CUDA or OpenMP no language extensions or additional compiler pragma are needed.However: You need a SYCL compiler (like you need an OpenMP compiler)
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What is SYCL?

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

You can target different device types, not only GPUs.Device support depends on SYCL implementation
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SYCL Implementations

Intel oneAPI Intel’s SYCL implementation. The icpx compiler fully supports the Khronos SYCL2020 specification. Not limited to Intel products with help of plugins (see today).
Inte LLVM Intel’s open source LLVM compiler supports SYCL as well (base for oneAPI’s icpx)

AdaptiveCpp Independent, community-driven modern platform for C++-based heterogeneousprogramming.
neoSYCL A SYCL implementation for SX-Aurora TSUBASA.
SimSYCL A single-threaded, library implementation of SYCL 2020 for testing SYCLapplications against simulated hardware.
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Anatomy of a SYCL Program

#include <sycl/sycl.hpp>

int main()
{

// create Queue instance
sycl::queue defaultQueue;

// ...
}

• SYCL is based on C++17→ Template-based library with compiler/implementation support
• Header sycl/sycl.hpp file is required.
• Sometimes using namespace sycl is used. Don’t do this.
• sycl::queue is your access point to an offloading device. W

• Device model is similar to OpenMP’s: Multiple devices attached to a host with separateaddress spaces
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Steering Device Selection

• sycl::queue constructor accepts a device selector as parameter
• SYCL allows more than GPU offloading
• Predefined ones are:

default_selector_v – Default onegpu_selector_v – Selects a GPU of the node the code runs oncpu_selector_v – Selects a CPU of the node the code runs onaccelerator_selector_v – Select an accelerator→ FPGAs!
• Available devices depends on SYCL implementation→ run sycl-ls to see them
• For Intel, environment variable ONEAPI_DEVICE_SELECTOR can steer default selector

Fine grained filtering possible2Example: ONEAPI_DEVICE_SELECTOR="*:gpu" → select GPUs only
2see https://intel.github.io/llvm/EnvironmentVariables.html
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Compile and Execute

• Similar to OpenMP you need a SYCL compiler.
• For Intel oneAPI: icpx (remember, SYCL is C++-based)
• To activate SYCL support, provide -fsycl flag.
Example: icpx -fsycl mycode.cpp -o mybinary

• Launch the binary as usual: ./binary

• Important: Device selection does not neccessarily mean your code will work there.If you compiled for a certain device type (see later), selecting another device type will likelyvery cause errors.
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Try yourself: Show Name of selected Device
Create your working environment:

• Open JupyterHub as yesterday (use A40 container type)
• Clone repository from https://git.zib.de/bzbchris/nhrgrads2025

• Open SYCL notebook and follow steps in Device Selection

Bio Break
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Goals
What we need to use the GPU (not different from OpenMP):

• Execute code on device. Û

• Get data allocated and moved between host and device data constructs. Û

• Exploit GPU parallelism. Û
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Run Code on Device

• The queue is key to device access!
• Actually: Need a device context to talk to device, but provided through queueautomatically.
• Queue is used to submit commands (“work”) to the device.
• Work is essentially a kernel function which returns void, i.e. nothing
• Two major kinds of work submission (others exist):

single_task – sequentially execute kernel on deviceparallel_for – launch kernel code in parallel for given number of work items.
• Kernel execution is asynchronous w.r.t. the host!Submitting a kernel does not wait for completion of execution (Different to OpenMP!)
• Queue is out of order→ FIFO does not apply!
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Submitting a Kernel
single_task submission not covered here→ Focus on parallel_for.
Example:
sycl::range<2> domain_size(1024, 1024);
queue.parallel_for<class mykernel>(domain_size, [=](sycl::item<2> workitem) {

/* your code here */
});

Things to notice:
• No loops. You just state what is done per item in your compute domain
Data parallel programming (see loops in OpenMP)

• Iteration space provided by multidimensional sycl::range (not via loop boundaries)
• Kernel function will be instantiated/executed for each item in iteration space.

NHR Graduate School 2025 S. Christgau (ZIB): Introduction to GPU programming II: OpenMP and SYCL 71 / 91



Submitting a Kernel

Example:
sycl::range<2> domain_size(1024, 1024);
queue.parallel_for<class mykernel>(domain_size, [=](sycl::item<2> workitem) {

/* your code here */
});

Further things to notice:
• Kernel function is a C++ lambda expression/unnamed function (or class)
• Kernel can be named with template parameter to submitting function→ Can be beneficialwhen using tools like profilers.
• Variables captured by value ( [=] )→ copies are created (see OpenMP)Restriction: Data type must be device-copyable (trivially copyable)
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Handle Queue Properties
Remember: Kernel execution is asynchronous to the host

• If need to wait for completion of work: queue.wait()

• Can be used to maintain order of submissions
• wait() may cause lots of overhead (series of submit+wait)
• Alternatives:

1. Create queue with in-order semantics:
sycl::queue q(sycl::property::queue::in_order{});

2. Use sycl::event to define dependenciesSubmitting work to queue returns event and accepts those as dependencies.3. Use SYCL Graphs for repetitive work submissions (experimental extension)
• Will stick to #1 for this tutorial
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Remark: We’re using shortcuts!
Actually . . .

• . . .we need to submit a command group
• . . . there’s a handler object that allows to add requisites (at most) one kernel function tothe submitted command group

queue.submit([&](sycl::handler &cgh) {
// add requisites

// add work the command group
cgh.parallel_for<class mykernel>(range, [=](...) {
});

});
queue.wait();

NHR Graduate School 2025 S. Christgau (ZIB): Introduction to GPU programming II: OpenMP and SYCL 74 / 91



Buffers and Accessors
SYCL’s Original Way to Handle Memory

Separation of storage and data access
• Storage – sycl::buffer

• Access – sycl::accessor

Consequences of this model:
• Buffer takes ownership of data for it’s lifetime and manages transfers upon access.
• Accessor are created (within command group) on buffer with access type
• Access to data in kernel must be done through accessor
• Dependencies detectable by runtime
• Accessor represents requisite
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Example with Buffer and Accessors
std::vector<double> vec(n);
{

sycl::buffer vec_buf(vec.data(), sycl::range{n});

queue.submit([&](sycl::handler& cgh) {
sycl::accessor acc_write_vec = vec_buf.get_access<sycl::write_only>(cgh);
cgh.parallel_for(n, [=](sycl::id<1> id) {

acc_write_vec[id] = id;
});

});

queue.submit([&](sycl::handler& cgh) {
sycl::accessor acc_read_vec = vec_buf.get_access<sycl::read_only>(cgh);
cgh.parallel_for(n, [=](sycl::id<1> id) {

... = acc_read_vec[id] ...;
});

});
// buffer get’s destroyed here (but not vec).

}

Uff.
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Unified Shared Memory (USM)
If you like pointers more than buffers/accessors.

• USM allows allocations visible to both host and device(s)
• Three different allocation types available:

host in host memorydevice in device memory, not accessible by hostshared in shared memory, accessible by host and device
• Three allocations function (plus overloads)

sycl::malloc_host

sycl::malloc_device

sycl::malloc_shared

• Templated versions exist→ sycl::malloc_host<mytype>(n_elems)

• Free with sycl::free
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Data Movement with USM
Two options:
1. Let runtime automatically manage data transfers→ only works for shared allocations.
2. Explicit data transfers.

Explicit data transfer/utility functions
• queue.memcpy(dst, src, num_bytes) – copy data to/from device memory.
• queue.copy<T>(src, dst, count) – templated version (watch for argument order!)
• memset and fill (templated version)
•
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Example with USM

double* d_vec = sycl::malloc_device<double>(n, queue);

// init on device, assume queue is created with in_order property
queue.parallel_for(n, [=](sycl::id<1> id) {

d_vec[id] = id;
});

queue.parallel_for(n, [=](sycl::id<1> id) {
// compute somethin on d_vec

});

double* h_vec = sycl::malloc_host<double>(n, queue);
queue.memcpy<double>(d_vec, h_vec, n).wait();

// queue.wait();
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Time to Practise

• Try to implement stream benchmark using SYCL
• You already know the incredients

double* d_vec = sycl::malloc_device<double>(n, queue);

// init on device, assume queue is created with in_order property
queue.parallel_for(n, [=](sycl::id<1> id) {

d_vec[id] = id;
});

queue.parallel_for(n, [=](sycl::id<1> id) {
// compute somethin on d_vec

});

double* h_vec = sycl::malloc_host<double>(n, queue);
queue.memcpy<double>(d_vec, h_vec, n).wait(); // or queue.wait();
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Goals
What we need to use the GPU (not different from OpenMP):

• Get code executed on device. ✓

• Get data allocated and moved between host and device. ✓

• Exploit GPUs’ parallelism. ✓
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Execution Model: Work-Item

• SYCL kernel functions are executed by work-items
• Think of a work-item as a thread of execution
• Work-item can run on CPU threads, SIMD lanes, GPU threads, . . .

SYCL kernel functions are executed by work-items
You can think of a work-item as a thread of execution
Each work-item will execute a SYCL kernel function from start to end
A work-item can run on CPU threads, SIMD lanes, GPU threads, or any
other kind of processing element

4
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Execution Model: Work-Group

• Work-items grouped in . . .work-groups
• Work-group size is adjustable

Work-items are collected together into
work-groups
The size of work-groups is generally
relative to what is optimal on the
device being targeted
It can also be affected by the resources
used by each work-item

5
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Execution Model with Work-Groups

• sycl::nd_range can be used to specify both global range, i.e. problem size, pluswork-group size

SYCL kernel functions are invoked
within an nd-range
An nd-range has a number of work-
groups and subsequently a number of
work-items
Work-groups always have the same
number of work-items

6
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A Closer Look on the Iteration Space

• Each invocation in the iteration space of annd-range is a work-item
• Each work-item has the following:

Global range: {12, 12}Global id: {6, 5}Group range: {3, 3}Group id: {1, 1}Local range: {4, 4}Local id: {2, 1}
• convenience function

nd_item::get_global_linear_id()

Each invocation in the iteration space
of an nd-range is a work-item
Each invocation knows which work-
item it is on and can query certain
information about its position in the
nd-range
Each work-item has the following:

Global range: {12, 12}
Global id: {6, 5}
Group range: {3, 3}
Group id: {1, 1}
Local range: {4, 4}
Local id: {2, 1}

8
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Iterating through the Iteration Space
Three ways for index retrieval/iteration space model:
1. Have sycl::id as parameter to kernel function:

parallel_for(sycl::range<1>(gs), [=](sycl::id<1> id) {...} )Local Range is decided by runtime.
2. Have sycl::item as parameter to kernel function:

parallel_for(sycl::range<1>(gs), [=](sycl::item<1> id) {...} )Local Range is decided by runtime.Difference to id : item also contains global range
3. Provide sycl::nd_range and sycl::nd_item

parallel_for(sycl::nd_range<1>(gs, ls), [=](sycl::nd_item<1> id) {...} )
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Try Yourself

• Take Stream benchmark code
• Play around with work group size and check obtained performance
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Things not Covered

• Using events for synchronization/dependencies
• Reduction variables
• Working with different memory types (shared, constant, . . . ...)
• Image and (experimental) bindless images
• Sychronization
• Handling of multiple devices and subdevices
• Specialization Constants
• Programming for other device types (CPUs, FPGAs[?])
• (Using SYCLomatic)
• InterOp with vendor tools, like profiler etc.

NHR Graduate School 2025 S. Christgau (ZIB): Introduction to GPU programming II: OpenMP and SYCL 88 / 91



Further Reading

• James Reinders, James Brodman, John Pennycook et al: Data Parallel C++ – ProgrammingAccelerated Systems Using C++ and SYCL. PDF freely available
• SYCLAcademy with step-by-steps tutorials
• CodePlay SYCL Guide – Product discontinued, but documentation still good.
• SYCL Specification (Khronos Group)
• SYCL tutorials
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SYCL Summary

• More explicit, yet high-level GPU programming
• Cross platform (not demonstrated for OpenMP)
• Performance can be portable as well.
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Overall Summary

• Took a look at OpenMP and SYCL
• Different approaches for GPU programming
• GPUs are powerful devices→ have problems that can make use of the power
• It takes time to get familar with (efficient) GPU programming

Questions? Discussion!
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