

Friedrich-Alexander-Universität Erlangen-Nürnberg

Programming Techniques for Supercomputers: Parallel Computers: Shared Memory

Modern multi- and manycore chips Parallel Computers: Basic Classifications Parallel Computers: Shared-memory computers

Prof. Dr. G. Wellein^(a,b) ^(a) Erlangen National High Performance Computing Center (NHR@FAU) ^(b) Department für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg

Intel Ice Lake NVIDIA A100 AMD MI100 Fujitsu A64FX (ARM)

Parallel Computers: Shared Memory Modern multi- and manycore chips Parallel Computers: Basic Classifications Parallel Computers: Shared-memory computers

Be prepared for more cores with less complexity and slower clock!

Modern Multicore Processors

T1 T2

Put *n_{core}* copies of core with their local caches on a chip and connect to shared cache / memory interface Floating Point (FP) Peak Performance of a single chip: $P_{chip} = \boldsymbol{n_{core}} \cdot P_{core}$ $P_{core} = n_{super}^{FP} \cdot n_{FMA} \cdot n_{SIMD} \cdot f$

Intel Xeon ("Ice Lake")

From single core to multicore

Intel Xeon Platinum 8360Y ("Ice Lake"):

f = 1.8, ..., 2.6 GHz (36 cores; AVX512)

$$n_{core} = 36$$
; $n_{super}^{FP} = 2$; $n_{FMA} = 2$; $n_{SIMD} = 8$

TOP1 – 1998 $\rightarrow P_{chip} = 2.1, \dots, 3.0 \frac{TF}{s}$ (double)

Nvidia A100 "Ampere" SXM4 specs

Architecture © Nvidia PCI Express 4.0 Host Inte 54.2 B Transistors COPC TPC TPC TPC TPC TPC TPC TPC TPC SM EN EN EN SM SM EN SM TPC TPC TPC TP SM SM SN SN ~ 1.4 GHz clock speed ~ 108 "SM" units (cores) -----64 SP / 32 DP FMA units each (SIMT) 2:1 SP:DP performance 4 "Tensor Cores" each 9.7 TFlop/s DP peak (FP64)

- 19.5 TFlop/s DP peak (Tensor) 40 MiB L2 Cache
- 40/80 GB (5120-bit) HBM2
- MemBW ~ 1555 GB/s (theoretical)
- MemBW ~ 1400 GB/s (measured)

PTfS 2025

Fujitsu A64FX (FX1000 processor)

Architecture

- 8.8 B Transistors
- Up to 2.2 GHz clock speed
- Up to 12x4 cores + 2-4 assistant cores
 - 2x 512-bit SIMD units each core (ARM SVE)
 - no SMT
- 3.4 TFlop/s DP peak (SP 2x)
- 32 MiB L2 Cache
- 32 GiB HBM2 Memory
 - MemBW ~ 860 GB/s (measured)

TOP500: #5 (06/2024) "Fugaku"

 $f = 2.2 \text{ GHz}; n_{\text{core}} = 48; n_{\text{super}}^{\text{FP}} = 2; n_{\text{FMA}} = 2; n_{\text{SIMD}} = 8 \rightarrow P_{\text{chip}} = 3.4 \text{ TF/s} \text{ (double)}$

Trading single thread performance for parallelism: GPGPUs vs. CPUs

GPU/A64FX vs. CPU light speed estimate (per device)

MemBW ~ 2-5 x

PeakPerf (DP) ~ 3-4 x

CPU

G	PU

	2x Intel Xeon Platinum 8360Y	Fujitsu A64FX	NVidia A100 "Ampere"	
Cores@Clock	2 x 36 @ ≥1.8 GHz	48 @ 2.2 GHz	108 SMs @ ~1.4 GHz	
DP peak	4.2,,6 TFlop/s	3.4 TFlop/s	19.5 TFlop/s	
Stream BW (meas.)	2 x 170 GB/s	860 GB/s (HBM)	1400 GB/s	
Transistors / TDP	~? Billion / 2x250 W	8 Billion / ~200W	54 Billion/400W	
Threads to saturate bandwidth	~30	~20	~20.000	

There is no single driving force for single core performance!

 $P_{chip} = n_{core} \cdot n_{super}^{FP} \cdot n_{FMA} \cdot n_{SIMD} \cdot f$

	n _{core}	n ^{FP} inst./cy	n _{FMA}	n _{SIMD} ops/inst		Chip	<i>f</i> [GHz]	P _{chip} [GF/s]	
Nehalem	4	2	1	2	Q1/2009	X5570	2.93	46.8	
Westmere	6	2	1	2	Q1/2010	X5650	2.66	63.6	
Sandy Bridge	8	2	1	4	Q1/2012	E5-2680	2.7	173	
Ivy Bridge	10	2	1	4	Q3/2013	E5-2660 v2	2.2	176	
Haswell	14	2	2	4	Q3/2014	E5-2695 v3	2.3	515	
Broadwell	22	2	2	4	Q1/2016	E5-2699 v4	2.2	774	
Skylake	28	2	2	8	Q3/2017	Platinum 8180	2.5	2,240	AVX-512 (36c):
Ice Lake	36	2	2	8	Q2/2021	Platinum 8360Y	1.8 / 2.6	2,073/2,995	Base / Max. Turbo
Sapphire Rapids	52	2	2	8	Q1/2023	Platinum 8470	2.0	3,328	
AMD Rome	64	2	2	4	Q4/2019	EPYC 7742	2.25	2,304	
IBM POWER8	10	2	2	2	Q2/2014	S822LC	2.93	234	
Fujitsu A64 FX	48	2	2	8			2.2	3,400	

There is no single driving force for single core performance!

$$P_{chip} = n_{core} \cdot n_{super}^{FP} \cdot n_{FMA} \cdot n_{SIMD} \cdot f$$
Cores
$$\begin{array}{c} \text{Super-} \\ \text{scalarity} \end{array} \quad \begin{array}{c} \text{FMA} \\ \text{factor} \end{array} \quad \begin{array}{c} \text{SIMD} \\ \text{factor} \end{array} \quad \begin{array}{c} \text{Clock} \\ \text{Speed} \end{array}$$

	n _{core}	n ^{FP} inst./cy	n _{FMA}	n _{SIMD} ops/inst		Chip	<i>f</i> [GHz]	P _{chip} [GF/s]
Nvidia P100	56	1	2	32	Q2/2016		1.3	4,660
Nvidia A100	108	1	2	32	2020		1.4	9,700
Nvidia H100	132	2	2	32	2024	GH100	2.0	33,400
AMD MI100	120	1	2	32			1.5	11,500
AMD MI250	2*110	1	2	64	2022		1.7	24,000
Xeon Phi 7250	68	2	2	8	Q2/2016		1.4	3,046

Friedrich-Alexander-Universität Erlangen-Nürnberg

Parallel Computers: Shared Memory Modern multi- and manycore chips Parallel Computers: Basic Classifications Parallel Computers: Shared-memory computers

Parallel computers – Classifications

- Parallel Computing: A number of compute elements solve a problem in a cooperative way
- Parallel Computer: A number of compute elements connected such way to do parallel computing for a large set of applications
- Classification according to Flynn: Multiple Instruction Multiple Data (MIMD)

Parallel Computers - Classifications

Classification according to address space organization

Shared-Memory Architectures:

Cache-Coherent Single Address Space

Distributed-Memory Architectures

No (Cache-Coherent) Single Address Space

Hybrid architectures containing both concepts are state-of-the art (e.g., "Emmy" / "Meggie" / "Fritz" cluster @ RRZE)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Parallel Computers: Shared Memory Modern multi- and manycore chips Parallel Computers: Basic Classifications Parallel Computers: Shared-memory computers

Parallel computers – Shared-Memory Architectures

- Shared memory computers provide
 - Single shared address space for all processors
 - All processors share the same view of the address space!
- Two basic categories of shared memory systems
 - Uniform Memory Access (UMA): Memory is equally accessible to all processors with the same performance (Bandwidth & Latency)
 - cache-coherent Non Uniform Memory Access (ccNUMA): Memory is physically distributed: Performance (Bandwidth & Latency) is different for local and remote memory access

Parallel computers: Shared-memory: UMA

- UMA Architecture: switch/bus arbitrates memory access
 - Special protocol ensures cross-CPU cache data consistency
 - Flat memory: Access time to a given memory location is same for all CPUs

Parallel computers: Shared-memory: UMA / Bus based

- Worst case: bus system single memory path to multiple processors
 - Only "one consumer" at a time can use the bus and access memory at any one time

Parallel computers: Shared Memory: UMA Nodes

Examples:

- Dual-/quad-/hexa-/octo-/.../32-core laptop/desktop/server processor
- IBM Power8/BlueGene processor series
- NEC vector systems
- nVIDIA GPUs
- Intel Xeon Phi (KNC, KNL,...)
- Advantages
 - Cache Coherence (see below) is "easy" to implement → single controller
 - Easy to optimize memory access
 - Incremental parallelization
- Disadvantages
 - Bus-type memory bandwidth limits scalability in terms of consumers
 - (2 30 cores per UMA node)

Parallel shared memory computers: ccNUMA/Node Layout

ccNUMA:

- Single cache coherent address space although multiple physically distributed memory (interfaces/controllers) are used
- Hardware and software layers establish a shared address space and the cache coherency
- Access time to a given memory location may depend on the CPU/core requesting the data (topology)
- Example: AMD "Naples" dual-socket system (2 sockets, 48 cores) with 8 Memory Interfaces ("NUMA Domains")

Parallel shared memory computers: ccNUMA/Node Layout

Parallel shared memory computers: ccNUMA/Node Layout

ccNUMA:

- Advantages:
 - Aggregate memory bandwidth is scalable within node (multiple memory controller)
 - Systems with >1024 cores are available
 - Example: 2 socket AMD Rome/Milan (64c) compute node ("Alex"): 8 Memory Interfaces connected by Infinity fabric
- Disadvantages:
 - Cache Coherence hard to implement / expensive
 - Performance depends on topology, i.e. access to local or remote memory
- All modern multi-socket compute nodes

ccNUMA in a single multicore processor!

AMD Magny-Cours+ & Intel Cluster on Die mode

 Intel: Cluster on Die (CoD) mode since Haswell (sub-NUMA Cluster / SNC for Skylake+)

BIOS boot-time option: single chip UMA or ccNUMA

ccNUMA in a single multicore processor

- AMD / Intel processors may support NUMA-modes in a single multicore processor chip
 - Boot time option \rightarrow BIOS
 - AMD: Single chip ccNUMA since Magny Cours
 - AMD Rome/Milan 64 cores (c) supports 4 options ("NPS mode")
 - NPS = 1 UMA mode (no NUMA characteristics): 64 c + 4 memory interfaces (MI)
 - NPS = 2 2 NUMA domains with 32 c + 2 MI each
 - NPS = 4 4 NUMA domains with 16 c + 1 MI each

How to determine NUMA configuration of node / chip \rightarrow LIKWID topology Where does my data end up? \rightarrow OpenMP programming lectures

Multicore nomenclature: 2 x AMD Rome 64c (NPS=4)

