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Parallel Computers: Shared Memory 
Modern multi- and manycore chips
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Be prepared for more cores with less complexity and slower clock!

Intel Ice Lake
NVIDIA A100
AMD MI100
Fujitsu A64FX (ARM)
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Modern Multicore Processors

Intel Xeon (“Ice Lake”)

TOP1 – 1998 à

Floating Point (FP) Peak Performance of a single chip:

𝑃!"#$ = 𝒏𝒄𝒐𝒓𝒆 $ 𝑃!)*+
𝑃!)*+ = 𝑛,-$+*./ $ 𝑛.01 $ 𝑛2304 $ 𝑓

~ 8,…,40 cores Intel Xeon Platinum 8360Y (“Ice Lake”):

𝑓 = 1.8, … , 2.6 𝐺𝐻𝑧 36 𝑐𝑜𝑟𝑒𝑠; 𝐴𝑉𝑋512

𝒏𝒄𝒐𝒓𝒆 = 𝟑𝟔 ; 𝒏𝒔𝒖𝒑𝒆𝒓𝑭𝑷 = 𝟐; 𝒏𝑭𝑴𝑨 = 𝟐; 𝒏𝑺𝑰𝑴𝑫 = 𝟖

𝑷𝒄𝒉𝒊𝒑 = 𝟐. 𝟏,… , 𝟑. 𝟎 𝑻𝑭𝒔 (double)

From single core to multicore

Put 𝒏𝒄𝒐𝒓𝒆 copies of core with their
local caches on a chip and connect 
to shared cache / memory interface
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Nvidia A100 “Ampere” SXM4 specs
Architecture
§ 54.2 B Transistors
§ ~ 1.4 GHz clock speed
§ ~ 108 “SM” units (cores)

§ 64 SP / 32 DP FMA units each (SIMT)
§ 2:1 SP:DP performance
§ 4 “Tensor Cores” each

§ 9.7 TFlop/s DP peak (FP64)
§ 19.5 TFlop/s DP peak (Tensor) 
§ 40 MiB L2 Cache

§ 40/80 GB (5120-bit) HBM2
§ MemBW ~ 1555 GB/s (theoretical)
§ MemBW ~ 1400 GB/s (measured)

© Nvidia

# SMs FMA 
factor #Flop/inst.

𝑛!"#$ = 108

𝑛%&'( = 32
𝐹𝑙𝑜𝑝
𝑖𝑛𝑠𝑡

𝑛)$*+"# = 64
𝐹𝑙𝑜𝑝
𝑖𝑛𝑠𝑡

𝑛+,-$# = 1.*+)!/
𝑛0'1 = 2
𝑓 = 1.4Gcys

𝑃2345 = 𝑛2678 B 𝑛9:587;< B 𝑛;=> B 𝑛?@=A B 𝑓

1 inst./cy
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AMD MI100 specs
Architecture
§ 50 B Transistors
§ ~ 1.5 GHz clock speed
§ ~ 120 “CU” units (cores)

§ 64 SP / 32 DP FMA units each (SIMT)
§ 2:1 SP:DP performance
§ No DP matrix units

§ 11.5 TFlop/s DP peak (FP64)
§ 8 MiB L2 Cache

§ 32 GB (4096-bit) HBM2
§ 1229 GB/s (theoretical)

𝑛!"#$ = 120

𝑛%&'( = 32
𝐹𝑙𝑜𝑝
𝑖𝑛𝑠𝑡

𝑛+,-$# = 1.*+)!/

𝑛0'1 = 2

𝑓 = 1.5Gcys
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Fujitsu A64FX (FX1000 processor)
Architecture
§ 8.8 B Transistors
§ Up to 2.2 GHz clock speed
§ Up to 12x4 cores + 2-4 assistant cores

§ 2x 512-bit SIMD units each core
(ARM SVE)

§ no SMT
§ 3.4 TFlop/s DP peak (SP 2x)
§ 32 MiB L2 Cache
§ 32 GiB HBM2 Memory

§ MemBW ~ 860 GB/s (measured)L2

Memory Interface
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L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory (HBM2)

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory (HBM2)

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory (HBM2)

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

TOP500: #5 (06/2024) “Fugaku”

1 NUMA Node

f = 2.2 GHz; n!"#$ = 48 ; n%&'$#() = 2; n(*+ = 2; n,-*. = 8 → P!/0' = 3.4 TF/s (double)
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Trading single thread performance for parallelism: GPGPUs vs. CPUs

GPU/A64FX vs. CPU 
light speed estimate
(per device)
MemBW ~ 2-5 x
PeakPerf (DP) ~ 3-4 x

2x Intel Xeon Platinum 
8360Y Fujitsu A64FX NVidia A100 

“Ampere”
Cores@Clock 2 x 36 @ ≥1.8 GHz 48 @ 2.2 GHz 108 SMs @ ~1.4 GHz

DP peak 4.2,…,6 TFlop/s 3.4 TFlop/s 19.5 TFlop/s
Stream BW (meas.) 2 x 170 GB/s 860 GB/s (HBM) 1400 GB/s
Transistors / TDP ~? Billion / 2x250 W 8 Billion / ~200W 54 Billion/400W

Threads to saturate 
bandwidth ~30 ~20 ~20.000
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There is no single driving force for single core performance!
𝑃2345 = 𝑛2678 B 𝑛9:587;< B 𝑛;=> B 𝑛?@=A B 𝑓

AVX-512 (36c): 
Base / Max. Turbo

𝑛!"#$
𝒏𝒔𝒖𝒑𝒆𝒓𝑭𝑷

inst./cy 𝒏𝑭𝑴𝑨
𝒏𝑺𝑰𝑴𝑫

ops/inst Chip 𝒇 [GHz]
𝑷𝒄𝒉𝒊𝒑

[GF/s]

Nehalem 4 2 1 2 Q1/2009 X5570 2.93 46.8

Westmere 6 2 1 2 Q1/2010 X5650 2.66 63.6

Sandy Bridge 8 2 1 4 Q1/2012 E5-2680 2.7 173

Ivy Bridge 10 2 1 4 Q3/2013 E5-2660 v2 2.2 176

Haswell 14 2 2 4 Q3/2014 E5-2695 v3 2.3 515

Broadwell 22 2 2 4 Q1/2016 E5-2699 v4 2.2 774

Skylake 28 2 2 8 Q3/2017 Platinum 8180 2.5 2,240

Ice Lake 36 2 2 8 Q2/2021 Platinum 8360Y 1.8 / 2.6 2,073/2,995

Sapphire Rapids 52 2 2 8 Q1/2023 Platinum 8470 2.0 3,328

AMD Rome 64 2 2 4 Q4/2019 EPYC 7742 2.25 2,304

IBM POWER8 10 2 2 2 Q2/2014 S822LC 2.93 234

Fujitsu A64 FX 48 2 2 8 2.2 3,400
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There is no single driving force for single core performance!
𝑃2345 = 𝑛2678 B 𝑛9:587;< B 𝑛;=> B 𝑛?@=A B 𝑓

Super-
scalarity

FMA
factor

SIMD
factor

Clock
SpeedCores

𝑛!"#$
𝒏𝒔𝒖𝒑𝒆𝒓𝑭𝑷

inst./cy 𝒏𝑭𝑴𝑨
𝒏𝑺𝑰𝑴𝑫

ops/inst Chip 𝒇 [GHz] 𝑷𝒄𝒉𝒊𝒑 [GF/s]

Nvidia P100 56 1 2 32 Q2/2016 1.3 4,660
Nvidia A100 108 1 2 32 2020 1.4 9,700
Nvidia H100 132 2 2 32 2024 GH100 2.0 33,400
AMD MI100 120 1 2 32 1.5 11,500
AMD MI250 2*110 1 2 64 2022 1.7 24,000

Xeon Phi 7250 68 2 2 8 Q2/2016 1.4 3,046
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Parallel computers – Classifications
§ Parallel Computing: A number of compute elements solve a problem in a 

cooperative way

§ Parallel Computer: A number of compute elements connected such way to do 
parallel computing for a large set of applications

§ Classification according to Flynn: Multiple Instruction Multiple Data (MIMD)

SISD MISD

SIMD MIMD

Simple stored program 
computer

SSE capabilities; GPUs 

(Thinking Machines CM2)

Shared
memory

Distributed 
memory



Parallel Computers - Classifications
Classification according to address space organization

§ Shared-Memory Architectures:

Cache-Coherent Single Address Space

§ Distributed-Memory Architectures

No (Cache-Coherent) Single Address Space

Hybrid architectures containing both concepts are state-of-the art
(e.g., “Emmy” / ”Meggie” / “Fritz” cluster @ RRZE)
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Parallel computers – Shared-Memory Architectures

§ Shared memory computers provide 
§ Single shared address space 

for all processors
§ All processors share the same view

of the address space!
§ Two basic categories of shared memory systems

§ Uniform Memory Access (UMA): 
Memory is equally accessible to all processors with 
the same performance (Bandwidth & Latency)

§ cache-coherent Non Uniform Memory Access (ccNUMA):
Memory is physically distributed:
Performance (Bandwidth & Latency) 
is different for local and remote 
memory access

Shared 
Memory

CPU

CPU

CPU

CPU



Parallel computers: Shared-memory: UMA
§ UMA Architecture: switch/bus arbitrates memory access

§ Special protocol ensures cross-CPU cache data consistency
§ Flat memory: Access time to a given memory location is same for all CPUs

Memory

CPU 1 CPU 2 CPU 3 CPU 4 ...

Switch/Bus

...

Cache Cache Cache Cache



Parallel computers: Shared-memory: UMA / Bus based
§ Worst case: bus system single memory path to multiple processors

§ Only “one consumer” at a time can use the bus and access memory at any one time

§ Collisions occur frequently, causing one or more  CPUs to wait for “bus ready” (contention) à
Saturation

§ One consumer / core may not be able 
to saturate the bus

§ Multi-core architectures: 
Bus-type Memory Interface 
àUMA 
àBandwidth saturates when increasing core
count (i.e. utilization)



Parallel computers: Shared Memory: UMA Nodes
§ Examples:

§ Dual-/quad-/hexa-/octo-/…/32-core laptop/desktop/server  processor
§ IBM Power8/BlueGene processor series
§ NEC vector systems
§ nVIDIA GPUs
§ Intel Xeon Phi (KNC, KNL,…)

§ Advantages
§ Cache Coherence (see below) is "easy" to implement à single controller
§ Easy to optimize memory access
§ Incremental parallelization 

§ Disadvantages 
§ Bus-type memory bandwidth limits scalability in terms of consumers

(2 – 30 cores per UMA node)



Parallel shared memory computers: ccNUMA/Node Layout
§ ccNUMA: 

§ Single cache coherent address space although 
multiple physically distributed memory (interfaces/controllers) 
are used

§ Hardware and software layers establish a shared address space
and the cache coherency

§ Access time to a given memory location may 
depend on the CPU/core requesting the data (topology)

§ Example: AMD “Naples” dual-socket system (2 sockets, 48 cores) 
with 8 Memory Interfaces (“NUMA Domains”) 
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Parallel shared memory computers: ccNUMA/Node Layout

Example: AMD “Naples” dual-socket system (8 NUMA domains: 0,…,7)):
STREAM Triad bandwidth measurements [Gbyte/s]

So
ck

et
 0

So
ck

et
 1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

D
at

a 
in

 N
U

M
A 

do
m

ai
n

Socket 0 Socket 1

So
ck

et
 0

So
ck

et
 1

Threads run on NUMA domain

0 1

2 3

4 5

6 7

Data location

Code/threads execution

22



Parallel shared memory computers: ccNUMA/Node Layout
§ ccNUMA: 

§ Advantages:
§ Aggregate memory bandwidth is scalable 

within node (multiple memory controller)
§ Systems with >1024 cores are available
§ Example: 2 socket AMD Rome/Milan (64c) 

compute node (“Alex”):
8 Memory Interfaces connected 
by Infinity fabric 

§ Disadvantages:
§ Cache Coherence hard to implement 

/ expensive
§ Performance depends on topology, i.e. 

access to local or remote memory

§ All modern multi-socket compute nodes



ccNUMA in a single multicore processor!
AMD Magny-Cours+ & Intel Cluster on Die mode 

§ ccNUMA can be found within a single multicore processor chip

§ AMD: single chip ccNUMA since Magny Cours:

“Naples/EPYC” has 4 memory controllers per chip!

§ Intel: Cluster on Die (CoD) mode since Haswell 
(sub-NUMA Cluster / SNC for Skylake+)

BIOS boot-time option: single chip UMA or ccNUMA

§ Standard 2 socket HPC server à always NUMA

§

. . .

. . . . . . Where does my data end up?
à OpenMP programming lectures

Intel with CoD / SNC NOT enabled



ccNUMA in a single multicore processor

§ AMD / Intel processors may support NUMA-modes in a single multicore processor chip

§ Boot time option à BIOS 

§ AMD: Single chip ccNUMA since Magny Cours

§ AMD Rome/Milan 64 cores (c) supports 4 options (”NPS mode”)

§ NPS = 1 – UMA mode (no NUMA characteristics): 64 c + 4 memory interfaces (MI)

§ NPS = 2 – 2 NUMA domains with 32 c + 2 MI  each

§ NPS = 4 – 4 NUMA domains with 16 c + 1 MI each

§

How to determine NUMA configuration of node / chip à LIKWID topology
Where does my data end up? à OpenMP programming lectures
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Multicore nomenclature: 2 x AMD Rome 64c (NPS=4)

C outer-level 
cache group

M ccNUMA
domain

S socket

D die/chip

N node
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