
PTfS-CAM

Project: Modelling 2D steady-state heat equation

Part 1

30/05/2025 2PTfS-CAM project part 1

Overview

• Background

• What are your tasks

• Questions

30/05/2025 3PTfS-CAM project part 1

Scenario: Heat dissipation on a rectangular plate

Boundary
𝑇(𝜑) = 0

Source

𝑓 𝑥, 𝑦 = 2𝑥 + 2𝑦

Find steady state

temperature distribution

inside the plate!

1m

1
m

30/05/2025 4PTfS-CAM project part 1

Steady-state heat equation

−𝑘Δ𝑢 = 𝑓 ∀ 𝑥, 𝑦 ∈ Ω
u 𝑥, 𝑦 = 0 ∀ 𝑥, 𝑦 ∈ 𝜕Ω

⇒ −Δ𝑢 = −
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 𝑓

where Δ𝑢 =
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

Assume (w.l.o.g.) 𝑘 = 1 (“diffusivity” or “conductivity”)

But this is in

the continuous

world… how to

solve for 𝑢 with

a computer?

30/05/2025 5PTfS-CAM project part 1

Discretization

−Δ𝑢 = −
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2 = 𝑓

Use Finite Difference Method (FDM) for

discretization

⇒ −Δ𝑢 = −
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2 (𝑥, 𝑦) ≈

1

ℎ2 (4𝑢 𝑥, 𝑦 − 𝑢 𝑥 − ℎ, 𝑦 − 𝑢 𝑥 + ℎ, 𝑦

൯−𝑢 𝑥, 𝑦 − ℎ − 𝑢 𝑥, 𝑦 + ℎ

h

30/05/2025PTfS-CAM project part 1

Linear system of equations

⇒ −Δ𝑢 ≈
1

ℎ2 4 𝑢 𝑥, 𝑦 − 1 𝑢 𝑥 − ℎ, 𝑦 − 1 𝑢 𝑥 + ℎ, 𝑦 − 1 𝑢 𝑥, 𝑦 − ℎ − 1 𝑢(𝑥, 𝑦 + ℎ) = 𝑓

𝐴 = 𝑢 =

u(0,0)

u(0,h)

u(0,2h)

.

.

.

u(h,0)

u(h,h)

u(h,2h)

.

.

.

𝑓 =

f(0,0)

f(0,h)

f(0,2h)

.

.

.

f(h,0)

f(h,h)

f(h,2h)

.

.

.

6

Instead of a general point (𝑥, 𝑦), we have one equation for every particular choice of 𝑥 and 𝑦

⇒ 𝐴 𝑢 = 𝑓

30/05/2025PTfS-CAM project part 1

Solving the linear system

Solve for 𝑢 ∶ 𝐴 𝑢 = 𝑓

1. Use Conjugate Gradient (CG)

2. Use Preconditioned Conjugate Gradient (PCG) with

symmetric Gauss-Seidel preconditioning

7

Implementations of these

algorithms are already

given, and is not the

focus of this project.

30/05/2025PTfS-CAM project part 1

Solving the linear system
PCG example

r = f – A u

res_norm = <r,r>

z = P r0

𝛼0 = <r,z>
p = z

while((iter<niter) && (res_norm > tol*tol))

v = A p

𝜆 =
𝛼0

<𝑣,𝑝>

u = u + 𝜆 p
r = r - 𝜆 v

…

Matrix-free implementation,

i.e., stencil updates

8

“Iterative method”

i.e. starting with

some 𝑢 = 𝑢0

in
it
ia

liz
a
ti
o
n

it
e
ra

ti
o
n

30/05/2025PTfS-CAM project part 1

Linear system of equations

⇒ −Δ𝑢 ≈
1

ℎ2 4 𝑢 𝑥, 𝑦 − 1 𝑢 𝑥 − ℎ, 𝑦 − 1 𝑢 𝑥 + ℎ, 𝑦 − 1 𝑢 𝑥, 𝑦 − ℎ − 1 𝑢(𝑥, 𝑦 + ℎ) = 𝑓

⇒ 𝐴 𝑢 = 𝑓

𝐴 = 𝑢 =

u(0,0)

u(0,h)

u(0,2h)

.

.

.

u(h,0)

u(h,h)

u(h,2h)

.

.

.

𝑓 =

2d-5pt stencil

f(0,0)

f(0,h)

f(0,2h)

.

.

.

f(h,0)

f(h,h)

f(h,2h)

.

.

.

9

30/05/2025PTfS-CAM project part 1

2d-5pt stencil

for j=1,jmax

for k=1,kmax

Au[j,k] = (1/h2)*(4*u[j,k] – u[j-1,k]

-u[j+1,k]–u[j,k-1]–u[j,k+1])

enddo

enddo

10

Computing 𝐴𝑢 efficiently:

How to take advantage of knowing the pattern of 𝐴 ahead of time?

30/05/2025PTfS-CAM project part 1

Solving the linear system
PCG example

r = f – A u

res_norm = <r,r>

z = P r0

𝛼0 = <r,z>
p = z

while((iter<niter) && (res_norm > tol*tol))

v = A p

𝜆 =
𝛼0

<𝑣,𝑝>

u = u + 𝜆 p
r = r - 𝜆 v

…

Matrix-free implementation,

i.e., stencil updates

𝑃 = 𝐷 + 𝑈 −1𝐷 𝐷 + 𝐿 −1

Think of solving this efficiently, since also not explicitly
stored! See PDE::GS_precon defined in PDE.cpp

11

“Iterative method”

i.e. starting with

some 𝑢 = 𝑢0

in
it
ia

liz
a
ti
o
n

it
e
ra

ti
o
n

30/05/2025PTfS-CAM project part 1

Your tasks

1. Clone the code from Github:
git clone https://github.com/RRZE-HPC/PTfS-CAM-Project.git

2. Build the code using the given Makefile, i.e., just type CXX=icpx make

3. To switch on LIKWID measurement (for part 2) set the LIKWID flag to ‘on’, i.e.,
LIKWID=on CXX=icpx make

4. Check for code correctness using the test executable: ./test

5. To run the actual code use the perf executable:

./perf num_grids_y num_grids_x

6. If all tests pass, parallelize building blocks using OpenMP. Always observe correctness!

7. Are there any possible performance optimizations that you could do in the CG and PCG
solver implemented in SolverClass::(P)CG (Solver.cpp)? If so, implement them!

12

Do these now!

Don’t wait to get

familiar with

code.

30/05/2025PTfS-CAM project part 1

Walkthrough

13

1. No need for separate, manual compilation and linking
- Everything can be done with a simple make

2. Important files

- Grid.cpp (.h)

- PDE.cpp (.h)

- Solver.cpp (.h)

3. “./test” executable for correctness checking, “./perf” executable for… performance

- After making optimizations, tests should always pass!

- ./perf gives us performance w/ and w/out preconditioning

- Also, routine specific timers (part 2). See Grid.cpp

30/05/2025PTfS-CAM project part 1

Things to take care

• Think to use loop fusion wherever necessary.

• For debugging please compile code as: CXX=icpx make EXTRA_FLAGS=-DDEBUG

• Sometimes it’s useful for debugging to visualize your arrays. Use the function
writeGnuplotFile and plot using splot in gnuplot if needed.

• Take particular care with parallelizing the Gauss-Seidel preconditioner.

• Use Fritz (Ice Lake) for getting your performance results.

• Fix clock frequency to 2.2 GHz

• Check if the measurements are reproducible. (Think of pinning, scheduling, and clock

frequency).

• Request a dedicated node for measuring performance.

14

30/05/2025PTfS-CAM project part 1

Reminders

• Clone from git and build code sooner rather than later!

• Office hours

• Fridays 13:00 – 14:00

• Blaues Hochhaus, Room 04.139

• Starting from June 6

15

30/05/2025PTfS-CAM project part 1

Scoreboard (optional)

• Submit your best run on Moodle (see “PTfS-CAM Project Leaderboard”) to see who’s the

fastest!

• See instructions on the submission page

• Final submission: End of semester (Sept 30)

• The best coding project(s) win(s) a prize!

16

Questions?

