Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Programming Techniques for Supercomputers:
Performance Issues on Modern Multicore Architectures

Resource Scalabllity
Cache Coherence
Topology and Pinning
Dynamic Clock Speeds

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Cache Coherence
Topology and Pinning
Dynamic Clock Speeds

Scalable data paths on multicores?!

Run a copy of vector triads on each core
Intel Xeon E5-2660 v2: 10 cores@2.2 GHz

L1D L1D L1D L1D L1D L1D L1D L1D

L2 L2 L2 L2 L2 L2 L2 L2 -
1 L3 ~ i
1 |
I | Memory Interface :
e -FF-F-F-———————————-
{ Memory]

“Parallel” resources:

Dedicated / core-local L2 cache scales linearly
“Shared” resources:

Shared L3 caches scales linearly

Shared memory interface saturates

GF/s

Fis

L3

ol

\

Memory bandwidth saturation (read-only)

GByte/s

GByte/s

900

800 ¢

700 -

600 -

500 -

400 |

300 -

200 ¢

100 +

180

160 +

140 ¢

120 +

100 +

80 |

60 |-

40 |

20

Fujitsu A64FX

1 NUMA Noda
EEEEEEEEEEER | e

200

GByte/s

PR — 1 80 |

0 5 10 15 20 25

#Threads

#Threads

Intel Ice Lake 32c
SNC=off

180
160

100 -

AMD Zen3
Milan

5 10 15 20 25 30
#Threads

Bandwidth
saturation on 1st
ccNUMA domain

Massive thread
parallelism needed

on GPUs to saturate

35

1600

1400 |

1200

1000

GByte/s

600 -

400 -

200 +

1400

1200 ¢

1000 ¢

GByte/s

60

400

200 -

800 -

NVIDIA A100
GPU

60000 80000 100000 120000
#Threads

800 -

AMD MI210
GPU

60000 80000 100000 120000

#Threads

Parallel/shared resources: Scalable/saturating behavior

Clearly distinguish between “saturating” and “scalable” performance on the chip
level

10 12
10
5 | s
£ £ ¥
S 6 S L
5 >
2 | = 6
s e
= shared = L parallel
< 4 resources may < A resources
&} show saturating o show scalable
) performance i performance
2
0 0
| 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Cores Cores

Compute nodes: Parallel and shared resources

Parallel and shared resources within a shared-memory node

i i ! | @ Other I/O
i ! P : ! PCle link
am GPU #2

{ Memory J [Memory }

Parallel resources: Shared resources:

= Execution/SIMD units a = Quter cache level per socket @

= Cores = Memory bus per socket e

* Inner cache levels

9 = Intersocket Iin@e
= Sockets / ccNUMA domainsa = PCle bus(es)
= Multiple accelerators = Other 1/O resources@

How does hardware scalability impact your parallel code?

PTfS 2025 June 3, 2025

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Resource Scalabllity

Topology and Pinning
Dynamic Clock Speeds

Shared-Memory parallel computers: cache coherence

Cache coherence in shared-memory multi-core/-processor architecture

Copies of same cache line may reside in different caches
(Example: If 2 cores load same CLto L1 e __________ .

there are 5 copies in various caches) R ,L ,L ||, ||, ,L ,|, ,|, ,|, i

e | | v v e v | e

. . | Lr |

If one core updates data (usually in its L1), | Memory Interface f
other copies become inconsistent/outdated

Consistency of cache line copies is ensured
by cache coherence protocols

Cache coherence protocols do not alleviate correct parallel programming
for shared-memory architectures!

Parallel computers: Shared Memory:. Cache coherency

Data in cache is only a copy of data in memory
Multiple copies of same data on multiprocessor systems
Cache coherence protocol/hardware ensure consistent data view

Without cache coherence: shared cache lines can become clobbered:
(Cache line size = 2 WORD,; [A1,A2] are in a single CL)

P1 P2

P1 P2 Load Al Load A2 Cor;eCt
i - Code!
C1 C2 Write AL=0 Write A2=0
Al A2 Al A2 Write-back to memory leads to
: incoherent data:
Bus Al, A2 Al, A2 Al, A2
Memory C1 & C2 entry can not be
merged to:
Al, A2

PTfS 2025 June 3, 2025

Parallel computers: Shared Memory:. Cache coherency

Cache coherence protocol must keep track of cache line status

P1 P2
P1 P2 Load Al Load A2
C1 C2 Write Al=0:
1. Request exclusive
Al A2 Al A2 access to CL
l I 2. Invalidate CL in C2
Bus 3. Modify Alin C1
L0 A2 Write A2=0:
Memory 1. Request exclusive CL access
t
2. CL write back+ Invalidate
3. Load CLto C2
C2 is exclusive owner of CL 4. Modify A2 in C2
June 3, 2025

PTfS 2025

Parallel computers: Shared Memory: Cache coherency

Widespread cache coherence protocol: MESI protocol

A cache line can have four different states:

Modified: Cache line has been modified in this cache, and it resides in no other
cache. Cache line needs to be evicted to ensure memory consistency

Exclusive: Cache line has been read from main memory but not (yet) modified.
There are no (valid) copies in other caches

Shared: Cache line has been read from memory but not modified. There may be
valid copies in other caches

Invalid: This cache line does not reflect any sensible data. Usually this happens
If the cache line was in S state and another processor request exclusive
ownership

Parallel computers: Shared Memory: Cache coherency

Cache coherence can cause substantial overhead
may reduce available bandwidth
Different implementations

Snoop: On modifying a CL, a CPU must broadcast its address to the whole
system

Directory, “snoop filter”: Chipset (“network™) keeps track of which CLs are where
and filters coherence traffic

Directory-based ccNUMA can reduce pain of additional coherence traffic

But always take care:

Multiple processors should never write frequently to the same cache line
(“false sharing”)!

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Resource Scalabllity
Cache Coherence

Dynamic Clock Speeds

Performance on Multicores: Anarchy vs. thread pinning

BO—

L3 Lo L3

__

o
=
|

-]
=
o
—1r—
s
F——-1m
—
T
1 | |
[] |z
Nig
=
Nlg
=
Nlg
=
g
:o 55
T<
15 (1
'a ==
1 N
% o
8
=
Nlg
o=
Nlg
=
Nio
|z
Nig
el 1
Nlg
el 1
Nlg
=
g
] 5|3
|-2_
iz e
@ s
1 N
% o
(2]
|
Nlg
l_:
Nlg
=
Nlg

1 el D

2 X 8-core processor (+SMT)

e

=
| T
—

Bandwidth [GB/s]
I th
(=] =
[T 7 T
——
—H
[

| | Max. 1 thread/core + SMT
20— E No pinning — w- !l | Y
- (OS decides on thread-core mapping) T o = ==
10" — i = ==
N I T T R B B B R _or = o=]
4 8 12 16 20 24 28 32 2oL T)
threads 27 -

Experiment: ER LS -
Run STREAM benchmark 100 times for T * 7
each thread count 2 = Pinning)l
> High performance variation without o= (user specifies thread-core mapping; here: _|

o - | |first scl)cket flirst) |
plnnlng 0 | 4 | 8 12 | 16 | 20 | 24 | 28 | 32
threads

PTfS 2025 June 3, 2025

Performance on Multicores: Scalability, CoD/SNC, Pinning

Performance scalability of STREAM triads on 20 core chip

! 1
100 - - PlPllP|IPIlP P |[P|[P]
1| L1D L1D L1D L1D L1D L1D L1D L1D :
: L2 L2 L2 L2 L2 L2 L2 L2 |1
— \: L3 :
E : | Memory.lnterface | :
A 20 /S & = . TTTTmmmmT TrTrr -~
)
g B { Memory]
e
= - — .
= 60 O Compact Pinning -
g | = '
3 2
e —~ O IR RS TS T T TS :
E 4[}_ Dg T1‘T2 T1‘T2 T1|T2 T1‘T2 T1‘T2 T1‘T2 T1|T2 T1‘T2:
= 8 o 'P|P|[P|PYP |P|P|P]|
E- | N—’ 4(7) L1D L1D L1D L1D L1D L1D L1D L1D :
L) G) E L2 L2 L2 L2 L2 L2 L2 L2 |I
7 - _ ap: . :
20 ¢—¢ Cluster on Die (Compact) c 3 | Memory Interface I
o—o Full Chip o35
0 o
ﬂ | | | | | | | | L_:; 5}) { Me’I‘°ry }
5 10 15 20 |

Number of active cores o .
CoD /SNC + Scattered pinning: see full chip

PTfS 2025 June 3, 2025

Controlling topology / pinning

Highly OS-dependent system calls
But available on all systems

Linux: sched setaffinity()
Windows: SetThreadAffinityMask ()

Support for “semi-automatic” pinning in some environments

All modern compilers with OpenMP support
Generic Linux: taskset, numactl, 1likwid-pin (See tutorial)

OpenMP 4.0

Compact Pinning Scattered Pinning

I
{ Meni[-ory J { MerI.ory }

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Resource Scalabllity
Cache Coherence
Topology and Pinning

Dynamic Clock Speeds: Basics

Modern multicore processors have a maximum power budget (TDP)

Power consumption of given chip depends on:
Actual workload (#cores, SIMD Units active, clock speed,...)
Chip production quality or environmental conditions (e.g. temperature)

Thermal Design Power

Dark silicon: Parts of the chip run at (substantially) lower clock speed

Turbo Mode: Processor decides dynamically on clock speed:

Increasing ressource utilization / temperature - decreasing clock

T1‘T2

T1|T2

T1‘T2

T1‘T2 T1‘T2

T1|T2

T1|T2

Multiple clock speed domains may be possible, e.g. for Intel (5

P

P

P

P

P

L1D

L1D

L1D

L1D

L1D

L1D

L1D

L2

L2

L2

L2

L2

L2

*Lz

L3

Core Clock (Core + L1/L2 cache)

Memory Interface

Uncore Clock (L3 + Memory controller) [

Memory

Dynamic Clock Speeds: Frequencies

Frequency range for each multicore processor series
(e.q. for Intel Xeon E5-2697 v4: 1.2 GHz,...,3.6 GHz)

Two clock speed limits If using all cores of a modern multicore
processor

CPU base frequency (a.k.a. nominal frequency): Minimum guaranteed clock
speed If all cores are active (e.g. 2.3 GHz)

CPU all core turbo: Maximum supported clock speed if all cores are active (e.qg.
2.8 GHz)

These clock speeds may may be different for the SIMD instruction set (SSE,
AVX, AVX-512) used (e.g. 2.0 GHz / 2.7 GHz base / all core turbo for AVX code).

Lower core counts: Clock speeds may stay within frequency range

Dynamic Clock Speeds: Overview

Clock speeds when using all cores may dynamically vary by 20% - 30%
Lower clock speeds for AVX (wide) SIMD units

Using few (one) cores may boost clock speed by up to 50%!

Microarchitecture Sandy Bridge-EP Ivy Bridge-EP Haswell-EP Broadwell-EP Zen Power 8
Manufacturer Intel Intel Intel Intel AMD IBM
Chip model Xeon E5-2680 Xeon E5-2690v2 Xeon E5-2695v3 Xeon E5-2697v4 Epyc 7451 —
Release date Q1/2012 Q3/2013 Q3/2014 QL2016 Q4/2017 Q2/2014
Cores/threads 8/16 10/20 14/28 18/36 24/48 10/80
Latest SIMD exct. AVX AVX AVX2, FMA3 AVX2,FMA3 AVX, FMAS3 VSX

C(] d C — - —). - =) - — .0 - — .U - —) -
| Basedreg ./ GHz 0O GHz 2oGHz 223G 1z 9 GHz
— — 9 G L ues — —
| All core turbo 31GHz 33 GHz 28GHz 228G 32GHz 35GHz

AVX all core turbg — — 6 GHz / GHz — —
Uncore treq. range — — 2-30GHz 12-28GHz — —

J. Hofmann, , A First-Principles Approach to Performance, Power, and Energy Models for Contemporary
Multi- and Many-Core Processors®, Dissertation, FAU, 2019

Dynamic Clock Speeds: Impact of cores / SIMD

= Running LINPACK on one chip (Intel mkl implementation)

= Processor adapts clock speeds dynamically to ressource utilization (cores, SIMD
widths)

= Base clock speeds are lower bounds

4 1 1 1 I I I I I 4 ~

! o—o SSE I~ | lo—o SSE 17T "lo—o SSE -+

™

g AVX512 3.5 - o
o, 1 5 9
o 0 LO
Q — 3 E X
| 22%
g 82 N
= 21250 o (5
o 1l 5ar~
S) O M
c 40 Py - > ..
] £ 2

I | T N T 15 E

4 8 12 4 12716 4 8 12 16 20 24) O]

Number of Cores umber ot Cores Number of Cores (:'

Base clock speeds

Dynamic Clock Speed: Dynamic Adaption

Running multithreaded LINPACK (Intel mkl version; AVX512) on one Intel Skylake
Monitoring clock speeds over time

400'[) T | T | T | T | T | T | T | T | T
Intel Xeon Platinum 8170

Base clocks: 2.1 GHz (AVX: 1.7 GHz; AVvX512: 1.3 GHz) _
3500 Single threaded phase:

11 core active

S(KH) !-?-E______l___l.—,__=__- e T

g |

2. 2500

-

2, vll N mn n - [.
2000 HFUO T T T VIV Iy T ez 1 2 (e |21 26 cores active
1500
1000 |

| | | | | | | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450
runtime [s]

At execution time the processor dynamically overclocks to always give you the full TDP envelope!

PTfS 2025 June 3, 2025

Dynamic Clock Speed: Chip Quality

LINPACK: Power consumption vs. dynamic clock speed (1456 Intel Xeon E5-2630v4 chips)
TDP: 85 W

e

- L o
,Bad” chips %_ (c) Meggie /

E 80 - e
S -
E 70 — All core turbo: 2.4 GHz
o n
60 | + SSE
S b |- AVX \./Y
a®

50 e/ —

- —\ ,Good* chips
40 I l I | l | I

2250 2300 2350 2400

Base clock speed: 2.2 GHz Core Clock [MHz] 5. Hofmann etal., IsC 2017

Dynamic Clock Speeds: Summary

Turbo Mode may speed up your application execution

Turbo Mode may introduce (strong) performance fluctuations: Chip quality,
environment temperature,...

Performance measurements should be done with fixed clock speed (e.qg.
using likwid) to CPU base frequency (default in PT{S)

Information about clock speeds:
likwid-setFrequencies
https://en.wikichip.org/wiki/WikiChip

https://ark.intel.com/content/www/de/de/ark.ntml#@Processors

Lecture plan until July

3.6.2024: Lecture (Topologies & Clock Speeds)
4.6.2024: Lecture (OpenMP)
5.6.2024. Lecture (OpenMP)

10.6.2024:
11.6.2024:
12.6.2024:

17.6.2024:
18.6.2024:
19.6.2024:

24.6.2024:
25.6.2024:
26.6.2024:

No Lecture
Lecture (GPU — Sebastian Kuckuk)
Lecture (GPU — Sebastian Kuckuk)

Lecture (Roofline)
Lecture (Roofline)
No Lecture

Lecture (Roofline - Case Studies)
Lecture (Roofline - Case Studies)
No Lecture

