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Scalable data paths on multicores?!

Run a copy of vector triads on each core
Intel Xeon E5-2660 v2: 10 cores@2.2 GHz
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“Parallel” resources:

Dedicated / core-local L2 cache scales linearly
“Shared” resources:

Shared L3 caches scales linearly

Shared memory interface saturates
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Memory bandwidth saturation (read-only)
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Parallel/shared resources: Scalable/saturating behavior

Clearly distinguish between “saturating” and “scalable” performance on the chip
level
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Compute nodes: Parallel and shared resources

Parallel and shared resources within a shared-memory node
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Parallel resources: Shared resources:

= Execution/SIMD units a = Quter cache level per socket @

= Cores = Memory bus per socket e

* Inner cache levels

9 = Intersocket Iin@e
= Sockets / ccNUMA domainsa = PCle bus(es)
= Multiple accelerators = Other 1/O resources@

How does hardware scalability impact your parallel code?
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Shared-Memory parallel computers: cache coherence

Cache coherence in shared-memory multi-core/-processor architecture

Copies of same cache line may reside in different caches
(Example: If 2 cores load same CLto L1 e __________ .

there are 5 copies in various caches ) R ,L ,L ||, ||, ,L ,|, ,|, ,|, i

e | | v v e v | e

. . | Lr |

If one core updates data (usually in its L1), | Memory Interface f
other copies become inconsistent/outdated

Consistency of cache line copies is ensured
by cache coherence protocols

Cache coherence protocols do not alleviate correct parallel programming
for shared-memory architectures!




Parallel computers: Shared Memory:. Cache coherency

Data in cache is only a copy of data in memory
Multiple copies of same data on multiprocessor systems
Cache coherence protocol/hardware ensure consistent data view

Without cache coherence: shared cache lines can become clobbered:
(Cache line size = 2 WORD,; [A1,A2] are in a single CL)

P1 P2

P1 P2 Load Al Load A2 Cor;eCt
i - Code!
C1 C2 Write AL=0 Write A2=0
Al A2 Al A2 Write-back to memory leads to
: incoherent data:
Bus Al, A2 Al, A2 Al, A2
Memory C1 & C2 entry can not be
merged to:
Al, A2
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Parallel computers: Shared Memory:. Cache coherency

Cache coherence protocol must keep track of cache line status

P1 P2
P1 P2 Load Al Load A2
C1 C2 Write Al=0:
1. Request exclusive
Al A2 Al A2 access to CL
l I 2. Invalidate CL in C2
Bus 3. Modify Alin C1
L0 A2 Write A2=0:
Memory 1. Request exclusive CL access
t
2. CL write back+ Invalidate
3. Load CLto C2
C2 is exclusive owner of CL 4. Modify A2 in C2
June 3, 2025
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Parallel computers: Shared Memory: Cache coherency

Widespread cache coherence protocol: MESI protocol

A cache line can have four different states:

Modified: Cache line has been modified in this cache, and it resides in no other
cache. Cache line needs to be evicted to ensure memory consistency

Exclusive: Cache line has been read from main memory but not (yet) modified.
There are no (valid) copies in other caches

Shared: Cache line has been read from memory but not modified. There may be
valid copies in other caches

Invalid: This cache line does not reflect any sensible data. Usually this happens
If the cache line was in S state and another processor request exclusive
ownership




Parallel computers: Shared Memory: Cache coherency

Cache coherence can cause substantial overhead
may reduce available bandwidth
Different implementations

Snoop: On modifying a CL, a CPU must broadcast its address to the whole
system

Directory, “snoop filter”: Chipset (“network™) keeps track of which CLs are where
and filters coherence traffic

Directory-based ccNUMA can reduce pain of additional coherence traffic

But always take care:

Multiple processors should never write frequently to the same cache line
(“false sharing”)!
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Performance on Multicores: Anarchy vs. thread pinning
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Performance on Multicores: Scalability, CoD/SNC, Pinning

Performance scalability of STREAM triads on 20 core chip
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Controlling topology / pinning

Highly OS-dependent system calls
But available on all systems

Linux: sched setaffinity()
Windows: SetThreadAffinityMask ()

Support for “semi-automatic” pinning in some environments

All modern compilers with OpenMP support
Generic Linux: taskset, numactl, 1likwid-pin (See tutorial)

OpenMP 4.0

Compact Pinning Scattered Pinning

I
{ Meni[-ory J { MerI.ory }
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Dynamic Clock Speeds: Basics

Modern multicore processors have a maximum power budget (TDP)

Power consumption of given chip depends on:
Actual workload (#cores, SIMD Units active, clock speed,...)
Chip production quality or environmental conditions (e.g. temperature)

Thermal Design Power

Dark silicon: Parts of the chip run at (substantially) lower clock speed

Turbo Mode: Processor decides dynamically on clock speed:

Increasing ressource utilization / temperature - decreasing clock
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Dynamic Clock Speeds: Frequencies

Frequency range for each multicore processor series
(e.q. for Intel Xeon E5-2697 v4: 1.2 GHz,...,3.6 GHz)

Two clock speed limits If using all cores of a modern multicore
processor

CPU base frequency (a.k.a. nominal frequency): Minimum guaranteed clock
speed If all cores are active (e.g. 2.3 GHz)

CPU all core turbo: Maximum supported clock speed if all cores are active (e.qg.
2.8 GHz)

These clock speeds may may be different for the SIMD instruction set (SSE,
AVX, AVX-512) used (e.g. 2.0 GHz / 2.7 GHz base / all core turbo for AVX code).

Lower core counts: Clock speeds may stay within frequency range




Dynamic Clock Speeds: Overview

Clock speeds when using all cores may dynamically vary by 20% - 30%
Lower clock speeds for AVX (wide) SIMD units

Using few (one) cores may boost clock speed by up to 50%!

Microarchitecture Sandy Bridge-EP  Ivy Bridge-EP Haswell-EP Broadwell-EP Zen Power 8
Manufacturer Intel Intel Intel Intel AMD IBM
Chip model Xeon E5-2680  Xeon E5-2690v2  Xeon E5-2695v3  Xeon E5-2697v4  Epyc 7451 —
Release date Q1/2012 Q3/2013 Q3/2014 QL2016 Q4/2017 Q2/2014
Cores/threads 8/16 10/20 14/28 18/36 24/48 10/80
Latest SIMD exct. AVX AVX AVX2, FMA3 AVX2,FMA3  AVX, FMAS3 VSX

C(] d C — - — ). - =) - — .0 - — .U - — ) -
| Basedreg ./ GHz 0O GHz 2oGHz 223G 1z 9 GHz
— — 9 G L ues — —
| All core turbo 31GHz 33 GHz 28GHz 228G 32GHz 35GHz

AVX all core turbg — — 6 GHz / GHz — —
Uncore treq. range — — 2-30GHz 12-28GHz — —

J. Hofmann, , A First-Principles Approach to Performance, Power, and Energy Models for Contemporary
Multi- and Many-Core Processors®, Dissertation, FAU, 2019




Dynamic Clock Speeds: Impact of cores / SIMD

= Running LINPACK on one chip (Intel mkl implementation)

= Processor adapts clock speeds dynamically to ressource utilization (cores, SIMD
widths)

= Base clock speeds are lower bounds
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Dynamic Clock Speed: Dynamic Adaption

Running multithreaded LINPACK (Intel mkl version; AVX512) on one Intel Skylake
Monitoring clock speeds over time
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At execution time the processor dynamically overclocks to always give you the full TDP envelope!
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Dynamic Clock Speed: Chip Quality

LINPACK: Power consumption vs. dynamic clock speed (1456 Intel Xeon E5-2630v4 chips)
TDP: 85 W
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Dynamic Clock Speeds: Summary

Turbo Mode may speed up your application execution

Turbo Mode may introduce (strong) performance fluctuations: Chip quality,
environment temperature,...

Performance measurements should be done with fixed clock speed (e.qg.
using likwid) to CPU base frequency (default in PT{S)

Information about clock speeds:
likwid-setFrequencies
https://en.wikichip.org/wiki/WikiChip

https://ark.intel.com/content/www/de/de/ark.ntml#@Processors




Lecture plan until July

3.6.2024: Lecture (Topologies & Clock Speeds)
4.6.2024: Lecture (OpenMP)
5.6.2024. Lecture (OpenMP)

10.6.2024:
11.6.2024:
12.6.2024:

17.6.2024:
18.6.2024:
19.6.2024:

24.6.2024:
25.6.2024:
26.6.2024:

No Lecture
Lecture (GPU — Sebastian Kuckuk)
Lecture (GPU — Sebastian Kuckuk)

Lecture (Roofline)
Lecture (Roofline)
No Lecture

Lecture (Roofline - Case Studies)
Lecture (Roofline - Case Studies)
No Lecture




