
Programming Techniques for Supercomputers:

Performance Issues on Modern Multicore Architectures

Resource Scalability

Cache Coherence

Topology and Pinning

Dynamic Clock Speeds

Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)

(a) Erlangen National High Performance Computing Center (NHR@FAU)
(b) Department für Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025

Performance Issues on Modern Multicore Architectures

Resource Scalability

Cache Coherence

Topology and Pinning

Dynamic Clock Speeds

Scalable data paths on multicores?!

Run a copy of vector triads on each core

Intel Xeon E5-2660 v2: 10 cores@2.2 GHz

“Parallel” resources:

▪ Dedicated / core-local L2 cache scales linearly

“Shared” resources:

▪ Shared L3 caches scales linearly

▪ Shared memory interface saturates

Memory bandwidth saturation (read-only)

Fujitsu A64FX AMD Zen3

Milan

Intel Ice Lake 32c

SNC=off

AMD MI210

GPU

NVIDIA A100

GPU

Bandwidth

saturation on 1st

ccNUMA domain

Massive thread

parallelism needed

on GPUs to saturate

Parallel/shared resources: Scalable/saturating behavior

▪ Clearly distinguish between “saturating” and “scalable” performance on the chip

level

shared

resources may

show saturating

performance

parallel

resources

show scalable

performance

June 3, 2025PTfS 2025

Compute nodes: Parallel and shared resources

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

▪ Execution/SIMD units

▪ Cores

▪ Inner cache levels

▪ Sockets / ccNUMA domains

▪ Multiple accelerators

Shared resources:

▪ Outer cache level per socket

▪ Memory bus per socket

▪ Intersocket link

▪ PCIe bus(es)

▪ Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does hardware scalability impact your parallel code?

Performance Issues on Modern Multicore Architectures

Resource Scalability

Cache Coherence

Topology and Pinning

Dynamic Clock Speeds

Shared-Memory parallel computers: cache coherence

▪ Cache coherence in shared-memory multi-core/-processor architecture

▪ Copies of same cache line may reside in different caches

(Example: If 2 cores load same CL to L1

there are 5 copies in various caches)

▪ If one core updates data (usually in its L1),

other copies become inconsistent/outdated

▪ Consistency of cache line copies is ensured

by cache coherence protocols

▪ Cache coherence protocols do not alleviate correct parallel programming

for shared-memory architectures!

June 3, 2025PTfS 2025

Parallel computers: Shared Memory: Cache coherency

▪ Data in cache is only a copy of data in memory

▪ Multiple copies of same data on multiprocessor systems

▪ Cache coherence protocol/hardware ensure consistent data view

▪ Without cache coherence: shared cache lines can become clobbered:

(Cache line size = 2 WORD; [A1,A2] are in a single CL)

Memory

C1

P1

A1, A2

C2

P2

P1 P2

Load A1

Write A1=0

A1, A2

Load A2

Write A2=0

A1, A2

Bus

Write-back to memory leads to
incoherent data:

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not be
merged to:

A1, A2

Correct

Code!

June 3, 2025PTfS 2025

Parallel computers: Shared Memory: Cache coherency

▪ Cache coherence protocol must keep track of cache line status

Memory

C1

P1

A1, A2

C2

P2
Load A1

Write A1=0:

P1

Load A2

Write A2=0:

P2

A1, A2 A1, A2

Bus

t

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

A1, A2

1. Request exclusive CL access

2. CL write back+ Invalidate

3. Load CL to C2

4. Modify A2 in C2

A1, A2

A1, A2A1, A2

C2 is exclusive owner of CL

Parallel computers: Shared Memory: Cache coherency

▪ Widespread cache coherence protocol: MESI protocol

▪ A cache line can have four different states:

▪ Modified: Cache line has been modified in this cache, and it resides in no other

cache. Cache line needs to be evicted to ensure memory consistency

▪ Exclusive: Cache line has been read from main memory but not (yet) modified.

There are no (valid) copies in other caches

▪ Shared: Cache line has been read from memory but not modified. There may be

valid copies in other caches

▪ Invalid: This cache line does not reflect any sensible data. Usually this happens

if the cache line was in S state and another processor request exclusive

ownership

Parallel computers: Shared Memory: Cache coherency

▪ Cache coherence can cause substantial overhead

▪ may reduce available bandwidth

▪ Different implementations

▪ Snoop: On modifying a CL, a CPU must broadcast its address to the whole

system

▪ Directory, “snoop filter”: Chipset (“network”) keeps track of which CLs are where

and filters coherence traffic

▪ Directory-based ccNUMA can reduce pain of additional coherence traffic

But always take care:

Multiple processors should never write frequently to the same cache line

(“false sharing”)!

Performance Issues on Modern Multicore Architectures

Resource Scalability

Cache Coherence

Topology and Pinning

Dynamic Clock Speeds

No pinning

(OS decides on thread-core mapping)

Pinning

(user specifies thread-core mapping; here:

first socket first)

Experiment:

Run STREAM benchmark 100 times for

each thread count

→ High performance variation without

pinning

2 x 8-core processor (+SMT)

+ SMT Max. 1 thread/core

June 3, 2025PTfS 2025

Performance on Multicores: Anarchy vs. thread pinning

June 3, 2025PTfS 2025

Performance on Multicores: Scalability, CoD/SNC, Pinning

▪ Performance scalability of STREAM triads on 20 core chip

C
lu

s
te

r
o

n
 D

ie
 (

C
o

D
)

S
u

b
-N

U
M

A
 c

lu
s
te

ri
n
g

(S
N

C
) Compact Pinning

CoD /SNC + Scattered pinning: see full chip

Controlling topology / pinning

▪ Highly OS-dependent system calls
▪ But available on all systems

Linux: sched_setaffinity()

Windows: SetThreadAffinityMask()

▪ Support for “semi-automatic” pinning in some environments
▪ All modern compilers with OpenMP support

▪ Generic Linux: taskset, numactl, likwid-pin (see tutorial)

▪ OpenMP 4.0

Compact Pinning Scattered Pinning

Performance Issues on Modern Multicore Architectures

Resource Scalability

Cache Coherence

Topology and Pinning

Dynamic Clock Speeds

Dynamic Clock Speeds: Basics

▪ Modern multicore processors have a maximum power budget (TDP)

▪ Power consumption of given chip depends on:

▪ Actual workload (#cores, SIMD Units active, clock speed,…)

▪ Chip production quality or environmental conditions (e.g. temperature)

▪ Dark silicon: Parts of the chip run at (substantially) lower clock speed

▪ Turbo Mode: Processor decides dynamically on clock speed:

Increasing ressource utilization / temperature → decreasing clock

▪ Multiple clock speed domains may be possible, e.g. for Intel

▪ Core Clock (Core + L1/L2 cache)

▪ Uncore Clock (L3 + Memory controller)

Thermal Design Power

Dynamic Clock Speeds: Frequencies

▪ Frequency range for each multicore processor series

(e.g. for Intel Xeon E5-2697 v4: 1.2 GHz,…,3.6 GHz)

▪ Two clock speed limits if using all cores of a modern multicore

processor

▪ CPU base frequency (a.k.a. nominal frequency): Minimum guaranteed clock

speed if all cores are active (e.g. 2.3 GHz)

▪ CPU all core turbo: Maximum supported clock speed if all cores are active (e.g.

2.8 GHz)

▪ These clock speeds may may be different for the SIMD instruction set (SSE,

AVX, AVX-512) used (e.g. 2.0 GHz / 2.7 GHz base / all core turbo for AVX code).

▪ Lower core counts: Clock speeds may stay within frequency range

Dynamic Clock Speeds: Overview

▪ Clock speeds when using all cores may dynamically vary by 20% - 30%

▪ Lower clock speeds for AVX (wide) SIMD units

▪ Using few (one) cores may boost clock speed by up to 50%!

J. Hofmann, „ A First-Principles Approach to Performance, Power, and Energy Models for Contemporary

Multi- and Many-Core Processors“, Dissertation, FAU, 2019

Dynamic Clock Speeds: Impact of cores / SIMD

▪ Running LINPACK on one chip (Intel mkl implementation)

▪ Processor adapts clock speeds dynamically to ressource utilization (cores, SIMD

widths)

▪ Base clock speeds are lower bounds

In
te

l
X

e
o
n

 P
la

ti
n
u

m
 8

1
7
0

B
a
s
e

 c
lo

c
k
s
:

2
.1

 G
H

z
 (

A
V

X
:

1
.7

 G
H

z
;
A

V
X

5
1

2
:
1

.3
 G

H
z
)

Base clock speeds

PTfS 2025

Dynamic Clock Speed: Dynamic Adaption

At execution time the processor dynamically overclocks to always give you the full TDP envelope!

Intel Xeon Platinum 8170

Base clocks: 2.1 GHz (AVX: 1.7 GHz; AVX512: 1.3 GHz)

Running multithreaded LINPACK (Intel mkl version; AVX512) on one Intel Skylake

Monitoring clock speeds over time

All 26 cores active

Single threaded phase:

1 core active

June 3, 2025

Dynamic Clock Speed: Chip Quality

▪ LINPACK: Power consumption vs. dynamic clock speed (1456 Intel Xeon E5-2630v4 chips)

TDP: 85 W

Base clock speed: 2.2 GHz

All core turbo: 2.4 GHz

„Bad“ chips

„Good“ chips

J. Hofmann et al., ISC 2017

Dynamic Clock Speeds: Summary

▪ Turbo Mode may speed up your application execution

▪ Turbo Mode may introduce (strong) performance fluctuations: Chip quality,

environment temperature,…

▪ Performance measurements should be done with fixed clock speed (e.g.

using likwid) to CPU base frequency (default in PTfS)

▪ Information about clock speeds:

▪ likwid-setFrequencies

▪ https://en.wikichip.org/wiki/WikiChip

▪ https://ark.intel.com/content/www/de/de/ark.html#@Processors

Lecture plan until July

▪ 3.6.2024: Lecture (Topologies & Clock Speeds)

▪ 4.6.2024: Lecture (OpenMP)

▪ 5.6.2024: Lecture (OpenMP)

▪ 10.6.2024: No Lecture

▪ 11.6.2024: Lecture (GPU – Sebastian Kuckuk)

▪ 12.6.2024: Lecture (GPU – Sebastian Kuckuk)

▪ 17.6.2024: Lecture (Roofline)

▪ 18.6.2024: Lecture (Roofline)

▪ 19.6.2024: No Lecture

▪ 24.6.2024: Lecture (Roofline - Case Studies)

▪ 25.6.2024: Lecture (Roofline - Case Studies)

▪ 26.6.2024: No Lecture

