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Scalable data paths on multicores?!

Run a copy of vector triads on each core

Intel Xeon E5-2660 v2: 10 cores@2.2 GHz

“Parallel” resources:

▪ Dedicated / core-local L2 cache scales linearly

“Shared” resources:

▪ Shared L3 caches scales linearly

▪ Shared memory interface saturates
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Parallel/shared resources: Scalable/saturating behavior

▪ Clearly distinguish between “saturating” and “scalable” performance on the chip 

level

shared 

resources may

show saturating 

performance

parallel 

resources 

show scalable 

performance
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Compute nodes: Parallel and shared resources

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

▪ Execution/SIMD units

▪ Cores

▪ Inner cache levels

▪ Sockets / ccNUMA domains

▪ Multiple accelerators

Shared resources:

▪ Outer cache level per socket

▪ Memory bus per socket

▪ Intersocket link

▪ PCIe bus(es)

▪ Other I/O resources

Other I/O
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How does hardware scalability impact your parallel code?
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Shared-Memory parallel computers: cache coherence

▪ Cache coherence in shared-memory multi-core/-processor architecture 

▪ Copies of same cache line may reside in different caches

(Example: If 2 cores load same CL to L1 

there are 5 copies in various caches )

▪ If one core updates data (usually in its L1), 

other copies become inconsistent/outdated 

▪ Consistency of cache line copies is ensured 

by cache coherence protocols

▪ Cache coherence protocols do not alleviate correct parallel programming 

for shared-memory architectures!
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Parallel computers: Shared Memory: Cache coherency

▪ Data in cache is only a copy of data in memory

▪ Multiple copies of same data on multiprocessor systems

▪ Cache coherence protocol/hardware ensure consistent data view

▪ Without cache coherence: shared cache lines can become clobbered: 

(Cache line size = 2 WORD; [A1,A2] are in a single CL)

Memory
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Write-back to memory leads to 
incoherent data:

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not be 
merged to:

A1, A2

Correct

Code!



June 3, 2025PTfS 2025

Parallel computers: Shared Memory: Cache coherency

▪ Cache coherence protocol must keep track of cache line status

Memory
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A1, A2

C2
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Load A1

Write A1=0:
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Load A2

Write A2=0:
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t

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1
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1. Request exclusive CL access

2. CL write back+ Invalidate

3. Load CL to C2

4. Modify A2 in C2
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C2 is exclusive owner of CL



Parallel computers: Shared Memory: Cache coherency 

▪ Widespread cache coherence protocol: MESI protocol

▪ A cache line can have four different states:

▪ Modified: Cache line has been modified in this cache, and it resides in no other 

cache. Cache line needs to be evicted to ensure memory consistency 

▪ Exclusive: Cache line has been read from main memory but not (yet) modified. 

There are no (valid) copies in other caches

▪ Shared: Cache line has been read from memory but not modified. There may be 

valid copies in other caches 

▪ Invalid: This cache line does not reflect any sensible data. Usually this happens 

if the cache line was in S state and another processor request exclusive 

ownership



Parallel computers: Shared Memory: Cache coherency

▪ Cache coherence can cause substantial overhead

▪ may reduce available bandwidth

▪ Different implementations

▪ Snoop: On modifying a CL, a CPU must broadcast its address to the whole 

system

▪ Directory, “snoop filter”: Chipset (“network”) keeps track of which CLs are where 

and filters coherence traffic

▪ Directory-based ccNUMA can reduce pain of  additional coherence traffic

But always take care:

Multiple processors should never write frequently to the same cache line 

(“false sharing”)!
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No pinning

(OS decides on thread-core mapping)

Pinning

(user specifies thread-core mapping; here: 

first socket first)

Experiment:

Run STREAM benchmark 100 times for 

each thread count

→ High performance variation without 

pinning

2 x 8-core processor (+SMT)

+ SMT Max. 1 thread/core
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Performance on Multicores: Anarchy vs. thread pinning
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Performance on Multicores: Scalability, CoD/SNC, Pinning

▪ Performance scalability of STREAM triads on 20 core chip
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Controlling topology / pinning

▪ Highly OS-dependent system calls
▪ But available on all systems

Linux: sched_setaffinity()

Windows: SetThreadAffinityMask()

▪ Support for “semi-automatic” pinning in some environments
▪ All modern compilers with OpenMP support

▪ Generic Linux: taskset, numactl, likwid-pin (see tutorial)

▪ OpenMP 4.0

Compact Pinning Scattered Pinning
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Dynamic Clock Speeds: Basics

▪ Modern multicore processors have a maximum power budget (TDP)

▪ Power consumption of given chip depends on: 

▪ Actual workload (#cores, SIMD Units active, clock speed,…)

▪ Chip production quality or environmental conditions (e.g. temperature)

▪ Dark silicon: Parts of the chip run at (substantially) lower clock speed

▪ Turbo Mode: Processor decides dynamically on clock speed:

Increasing ressource utilization / temperature → decreasing clock

▪ Multiple clock speed domains may be possible, e.g. for Intel 

▪ Core Clock (Core + L1/L2 cache)

▪ Uncore Clock (L3 + Memory controller)

Thermal Design Power



Dynamic Clock Speeds: Frequencies

▪ Frequency range for each multicore processor series

(e.g. for Intel Xeon E5-2697 v4: 1.2 GHz,…,3.6 GHz)  

▪ Two clock speed limits if using all cores of a modern multicore

processor

▪ CPU base frequency (a.k.a. nominal frequency): Minimum guaranteed clock

speed if all cores are active (e.g. 2.3 GHz)

▪ CPU all core turbo: Maximum supported clock speed if all cores are active (e.g. 

2.8 GHz)

▪ These clock speeds may may be different for the SIMD instruction set (SSE, 

AVX, AVX-512) used (e.g. 2.0 GHz / 2.7 GHz base / all core turbo for AVX code).

▪ Lower core counts: Clock speeds may stay within frequency range



Dynamic Clock Speeds: Overview

▪ Clock speeds when using all cores may dynamically vary by 20% - 30%

▪ Lower clock speeds for AVX (wide) SIMD units

▪ Using few (one) cores may boost clock speed by up to 50%! 

J. Hofmann, „ A First-Principles Approach to Performance, Power, and Energy Models for Contemporary 

Multi- and Many-Core Processors“, Dissertation, FAU, 2019



Dynamic Clock Speeds: Impact of cores / SIMD 

▪ Running LINPACK on one chip (Intel mkl implementation)

▪ Processor adapts clock speeds dynamically to ressource utilization (cores, SIMD 

widths)

▪ Base clock speeds are lower bounds
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Dynamic Clock Speed: Dynamic Adaption 

At execution time the processor dynamically overclocks to always give you the full TDP envelope! 

Intel Xeon Platinum 8170

Base clocks:  2.1 GHz (AVX: 1.7 GHz; AVX512: 1.3 GHz)

Running multithreaded LINPACK (Intel mkl version; AVX512) on one Intel Skylake

Monitoring clock speeds over time

All 26 cores active

Single threaded phase: 

1 core active

June 3, 2025



Dynamic Clock Speed: Chip Quality

▪ LINPACK: Power consumption vs. dynamic clock speed (1456 Intel Xeon E5-2630v4 chips)

TDP: 85 W

Base clock speed: 2.2 GHz

All core turbo: 2.4 GHz

„Bad“ chips

„Good“ chips

J. Hofmann et al., ISC 2017



Dynamic Clock Speeds: Summary

▪ Turbo Mode may speed up your application execution

▪ Turbo Mode may introduce (strong) performance fluctuations: Chip quality, 

environment temperature,…

▪ Performance measurements should be done with fixed clock speed (e.g. 

using likwid) to CPU base frequency (default in PTfS)

▪ Information about clock speeds:

▪ likwid-setFrequencies

▪ https://en.wikichip.org/wiki/WikiChip  

▪ https://ark.intel.com/content/www/de/de/ark.html#@Processors



Lecture plan until July

▪ 3.6.2024: Lecture (Topologies & Clock Speeds)

▪ 4.6.2024: Lecture (OpenMP)

▪ 5.6.2024: Lecture (OpenMP)

▪ 10.6.2024: No Lecture

▪ 11.6.2024: Lecture (GPU – Sebastian Kuckuk)

▪ 12.6.2024: Lecture (GPU – Sebastian Kuckuk)

▪ 17.6.2024: Lecture (Roofline)

▪ 18.6.2024: Lecture (Roofline)

▪ 19.6.2024: No Lecture

▪ 24.6.2024: Lecture (Roofline - Case Studies)

▪ 25.6.2024: Lecture (Roofline - Case Studies)

▪ 26.6.2024: No Lecture


