

Friedrich-Alexander-Universität Erlangen-Nürnberg

Programming Techniques for Supercomputers Tutorial

Erlangen National High Performance Computing Center

Department of Computer Science

FAU Erlangen-Nürnberg

Sommersemester 2025

Multicore power envelope a) Overclocking

- Assumptions
 - No static power consumption W(0) = 0
 - W_d Dynamic power consumption at $f = f_0$
 - Δf Clock frequency change ($\Delta f = f f_0$)
 - Power consumption of one chip: $W = W_d (1 + \Delta f / f_0)^2$
- What is *W* when $\Delta f/f_0 = 0.4$?

$$W = W_d (1 + 0.4)^2 = W_d \cdot 1.96$$

Multicore power envelope b) Multicore

• Denote $\Delta v = \Delta f/f_0$ $W(m) = m \cdot W_d (1 + \Delta v)^2 = W_d$ $\Rightarrow m = (1 + \Delta v)^{-2}$ $m = (1 - 0.5)^{-2} = 4$ We want to keep W_d fixed!

c) Performance extrema

- Assume m = 4 cores
- Minimum performance gain?
 - Speedup: 1. Memory bound codes would not benefit from additional cores
- Maximum performance gain?
 - Speedup: $m \cdot (-\Delta v) = 4 \cdot 0.5 = 2$. Compute bound codes benefit here

Optimal energy to solution

- *W_d* Dynamic power consumption of a running core
- n cores used (of n_{max} available)
- W_0 Baseline power consumption of the chip (all cores idle): $W(n = 0) = W_0$ Power : $W(n, f) = W_0 + nW_d$
- P(1) Performance of serial program
- *P*_{limit} Maximum performance of parallel program
- P(n) Performance of parallel program on n cores
- T(n) Time to solution on n cores

Time to solution : $T(n) = 1/(\min(nP(1), P_{limit}))$

Energy to solution : $E(n) = W(n, f)T(n) = (W_0 + nW_d)/(\min(nP(1), P_{limit}))$

Balance

- a) Double Precision s = s + a[i];b) Double Precision s = s + a[i]*b[i]; $B_c = 8[B/F]$
- c) Single Precision a[i][j] = b[i][j] + s*c[i][j]; $B_c = 8[B/F]$
- d) Double Precision a[i] = s*a[i]; $B_c = 16[B/F]$
- e) Double Precision, int64 x[i] = x[i] + s*v[index[i]];
 - Case 1:
 - index[i]=const, hence no extra traffic from $\mathbf{v} \Rightarrow \mathbf{B}_{c} = 24[B]/2[F] = 12[B/F]$
 - Case 2:
 - index[i]=i, means that \mathbf{v} incurs 8 [B] $\Rightarrow \mathbf{B}_c = 32[B]/2[F] = \mathbf{16}[\mathbf{B}/\mathbf{F}]$
 - Case 3:
 - index[i]=rand(), v incurs one, 64 [B] CL $\Rightarrow B_c = 88[B]/2[F] = 44[B/F]$