
Programming Techniques for Supercomputers:

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions

OpenMP synchronization

OpenMP basic overheads

OpenMP affinity

Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)

(a) Erlangen National High Performance Computing Center (NHR@FAU)
(b) Department für Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions

OpenMP synchronization

OpenMP basic overheads

OpenMP affinity

Operations on data across threads

▪ Recurring problem: Operations across thread-local instances of a variable

▪ Solution: reduction clause

int i,N;

double a[N], b[N];

...

s=0.;

#pragma omp parallel firstprivate(s)

{

#pragma omp for

for(i=0; i<N; ++i)

s = s + a[i] * b[i];

// How to sum up the different s?

}

June 17, 2025PTfS 2025 3

June 17, 2025PTfS 2025

Reduction clause on parallel region or workshared loop

At synchronization point:

▪ reduction operation is performed

▪ result is transferred to master copy

▪ restrictions similar to firstprivate Reduction variable must be

shared in enclosing context!

int i,N;

double a[N], b[N];

...

s=0.;

#pragma omp parallel

{

// s is still shared here

#pragma omp for reduction(+:s)

for(i=0; i<N; ++i)

s = s + a[i] * b[i];

// s is shared again here

}

ti
m

e

s

T0 T1 T2 T3

s

s

s0=0 s1=0 s2=0 s3=0

s0 s1 s2 s3s

persists

(inaccessible)

s

shared private

4

June 17, 2025PTfS 2025

Reduction operations: general considerations

Oper-

ation
Initial value

+ 0

- 0

* 1

& ~0

| 0

^ 0

&& 1

|| 0

max MINVAL(type)

min MAXVAL(type)

Consistency required!

X = expr – X is not allowed

Don’t lie.

F
o
rt

ra
n

h
a
s

a
n
 a

n
a
lo

g
o
u
s

s
e

t

float x, y, z;

#pragma omp for reduction(+:x, y, z)

#pragma omp for reduction(+:x, y) \

reduction(*:z)

Multiple reductions:

5

June 17, 2025PTfS 2025

Reduction operations: Example

double s, a[size*size], x[size], y[size];

...

s=0.;

#pragma omp parallel

{

#pragma omp for schedule(???)

for(int m=0; m<size; m++){

for(int n=m; n<size; n++){

y[m] += a[m*size+n] * x[n];

}

}

...

#pragma omp for reduction(+:s)

for(int m=0; m<size;m++) {

s += x[m] * y[m];

}

...

}

6

dense triangular MVM

scalar product

+= *

m

n

*s+=∑

June 17, 2025PTfS 2025

Reductions on arrays

▪ Elementwise reductions on arrays (or slices thereof)

!$omp parallel do reduction(+:y)

do c = 1 , C

do r = 1 , R

y(r) = y(r) + A(r,c) * x(c)

enddo

enddo

!$omp end parallel do

7

#pragma omp parallel for reduction(+:y[0:rows])

for(int c=0; c<cols; ++c)

for(int r=0; r<rows; ++r)

y[r] += a[r+c*rows] * x[c];

C/C++: Array slice

syntax is mandatory

Fortran: No slice

necessary on full array

reduction

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions

OpenMP synchronization: Ensuring consistency

OpenMP basic overheads

OpenMP affinity

Why synchronization?

Example: variable update (read – modify – write)

private

Shared Memory

a = a + 1;

T

T

T

T

private

private

private

modify
modify

Multiple threads access shared

variable, and at least one writes

to it

→ “race condition”

Synchronization = means to

manage conflicting/uncontrolled

accesses

June 17, 2025PTfS 2025 9

Why synchronization?

Example: variable update (read – modify – write)

private

Shared Memory

a = a + 1;

T0

T3

T1

T2

private

private

private

modify modify

Synchronization: All threads

need to wait until last thread

enters synchronization

T2: read a

T2: a=a+1

T2: write a

SYNCHRONIZATION

T3: read a

T3: a=a+1

T3: write a

SYNCHRONIZATION

June 17, 2025PTfS 2025 10

SYNC SYNC

SYNC SYNC

SYNC SYNC

SYNCSYNC

June 17, 2025 11PTfS 2025

Barrier synchronization

▪ #pragma omp barrier

▪ Each thread blocks upon reaching the barrier until all threads
have reached the barrier

▪ All accessible shared variables are flushed to the memory
hierarchy (similar to volatile attribute in C/C++)

▪ barrier may not appear within work-sharing construct (e.g.,
omp for block) → potential of deadlock

▪ Implicit barrier:

▪ at the beginning and end of parallel regions

▪ at the end of worksharing constructs unless a nowait
clause is present

June 17, 2025 12PTfS 2025

Relaxing synchronization requirements

▪ The nowait clause
▪ removes the implicit barrier at end of worksharing construct

▪ potential performance improvement (especially if load imbalance occurs within
construct)

▪ Programmer is responsible for preventing race conditions!

#pragma omp parallel
{

#pragma omp for nowait
for(int i=0; i<N; ++i) {

a[i] = some_stuff(i);
}

// ... More parallel work (don’t reference a[])

#pragma omp barrier
... = a[i]; // after deferred barrier

}

No barrier here

June 17, 2025 13PTfS 2025

Case study: reducing barrier cost for dense MVM

▪ General advice: Parallelize as far out as possible!

void dmvm(int n, int m, double *lhs,

double *rhs, double *mat){

...

for(int c=0; c<n; ++c)

int offset = m * c;

for(int r=0; r<m; ++r)

lhs[r] += mat[r + offset] * rhs[c];

}

Only one barrier…

… but race condition
on lhs[]

#pragma omp parallel for

June 17, 2025 14PTfS 2025

Reducing barrier cost: dense MVM

▪ Inner loop parallel → correct result

void dmvm(int n, int m, double *lhs,

double *rhs, double *mat){

...

#pragma omp parallel

{

for(int c=0; c<n; ++c)

int offset = m * c;

#pragma omp for

for(int r=0; r<m; ++r)

lhs[r] += mat[r + offset] * rhs[c];

}

}

Only one parallel region

… but n implicit barriers

Result is correct: threads work
on separate parts of lhs[]

June 17, 2025 15PTfS 2025

Reducing barrier cost: dense MVM

▪ Inner loop parallel → correct result, and use nowait to avoid barriers

void dmvm(int n, int m, double *lhs,

double *rhs, double *mat){

...

#pragma omp parallel

{

for(int c=0; c<n; ++c)

int offset = m * c;

#pragma omp for schedule(static) nowait

for(int r=0; r<m; ++r)

lhs[r] += mat[r + offset] * rhs[c];

}

}

Only one parallel region

No implicit barriers on

workshared loop

Result is correct: threads work
on separate parts of lhs[]

Ensure same iteration-to-

thread mapping

One implicit barrier

June 17, 2025 16PTfS 2025

Reducing barrier cost: dense MVM

▪ Barrier overhead may substantially decrease

performance

▪ Performance impact decreases as inner loop

length (work per barrier) increases (see

m=40,000 vs. m=10,000)

▪ Use nowait with due care (correctness)!

▪ Is the performance as expected? What does

the barrier cost?

▪ → homework

Barrier impact

June 17, 2025 17PTfS 2025

The single directive

▪ #pragma omp single [clause[[,]clause]…]

structured-block

▪ Structured block is executed by exactly one thread, which

one is unspecified

▪ Actually a worksharing directive

▪ Remaining threads skip the structured block and continue

execution.

▪ Implied barrier at the exit of the single section!

▪ Do not use within another worksharing construct (deadlock!)

▪ nowait clause suppresses barrier

barrier

June 17, 2025 18PTfS 2025

The master directive

▪ #pragma omp master [clause[[,]clause]…]

structured-block

▪ Only thread zero executes the structured block

▪ Other threads continue without synchronization

▪ Not all threads have to reach the construct

▪ Essentially equivalent to:

#ifdef _OPENMP

if(omp_get_thread_num()==0)

#endif

structured-block;

T0 T1
Tn-1

…

June 17, 2025 19PTfS 2025

Critical region

▪ #pragma omp critical

structured-block

▪ Only one thread at a time can execute the block

▪ … but every thread that encounters it will eventually

execute it

▪ Order of execution is undefined!

▪ All unnamed critical regions are mutually exclusive

across the whole program

▪ Beware of deadlocks!

b
lo

c
k

w
a
it

b
lo

c
k

b
lo

c
k

w
a
it

b
lo

c
k

w
a
it

b
lo

c
k

b
lo

c
k

w
a
it

June 17, 2025 20PTfS 2025

Named critical regions

▪ What if I want several independent

critical regions?

▪ Named critical regions to the

rescue!

▪ Regions with different names are

mutually independent

▪ Name can be chosen freely

▪ No association with data to be

“protected”

▪ Unnamed critical regions share

the same (invisible) name

double func(double v) {

double x;

#pragma omp critical(prand)

x = v + random_func();

return x;

}

...

#pragma omp parallel for private(x)

for(int i=0; i<N; ii+) {

x = sin(2.*M_PI*i/N);

#pragma omp critical(psum)

sum += func(x);

}

Protect lib-call

(random_func)

June 17, 2025 21PTfS 2025

Atomic updates

▪ #pragma omp atomic [clause[[,] clause] ...]

expression-stmt

▪ Ensures that a storage location is accessed atomically, i.e., the full access

cannot be interrupted

▪ Applies only to the statement immediately following it

▪ expression-stmt can be:

▪ Variants of atomic for pure read, pure write, and capture are also available

x++;

x--;

++x;

--x;

x binop= expr;

x = x binop expr;

x = expr binop x;

June 17, 2025 22PTfS 2025

Why atomic?

Can’t I just use a critical region?

1. atomic may be more efficient due to hardware support (no guarantee!)

2. atomic allows for protecting updates to individual data elements

#pragma omp parallel for

for (i=0; i<n; i++) {

double t = func(table[i]);

if(t < 0.) {

#pragma omp atomic

x[table[i]]++;

}

y[i] += other(i);

}

Updates of different x[]

entries do not block each other

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions

OpenMP synchronization

OpenMP basic overheads

OpenMP affinity

June 17, 2025 24PTfS 2025

Basic OpenMP overheads

!$OMP PARALLEL PRIVATE(k)

do k=1,NITER

!$OMP DO SCHEDULE(…)

do i=1,N

A(i)=B(i)+C(i)*D(i)

enddo

!$OMP END DO

enddo

!$OMP END PARALLEL

“Wake up” team

of threads

“Retire” team of

threads

Loop

parallelization

Workload

distribution

Implicit barrier /

sychronization

June 17, 2025 25PTfS 2025

OpenMP overheads: loops and barriers

▪ Benchmarking OpenMP overhead

▪ OpenMP parallel for

▪ OpenMP for (w/o parallel)

▪ OMP barrier

▪ Static scheduling

▪ Compact pinning

(physical cores only)

Intel Xeon “Haswell” E5-2695v3 (2.3GHz) CoD

Intel 17.0up4 gcc 6.2.0

O
v
e
rh

e
a
d
 [
c
y
]

Node topology

June 17, 2025 26PTfS 2025

OpenMP overheads: Barrier implementation (reminder)

𝐓𝐢𝐦𝐞 𝑁 =
𝑐𝑜𝑛𝑠𝑡 × 2 × 𝑙𝑜𝑔2𝑁

Where N is number of

threads/processes

in the barrier

How does a “barrier” scale

(best case)?

June 17, 2025 27PTfS 2025

OpenMP overheads: Barrier cost on Intel Xeon Phi (KNL)

Intel Xeon Phi

(“Knights Landing”):

64 cores@1.3GHz

1,2,4 SMT per core

Shared-memory parallel processing with OpenMP (II)

OpenMP reductions

OpenMP synchronization

OpenMP basic overheads

OpenMP affinity

June 17, 2025 29PTfS 2025

OpenMP affinity: it matters!

▪ Remember all the

hardware bottlenecks!

▪ It does matter where the

threads are running

▪ Yes, it’s up to you

▪ No, the system will not

magically guess what’s

best

≠

June 17, 2025 30PTfS 2025

STREAM benchmark on 2x24-core AMD “Naples”: Anarchy vs. thread pinning

No pinning

“Compact” pinning (physical

cores first, first socket first)

There are several reasons for caring

about affinity:

▪ Eliminating performance variation

▪ Making use of architectural features

▪ Avoiding resource contention

OpenMP-parallel

A(:)=B(:)+s*C(:)

June 17, 2025 31PTfS 2025

OMP_PLACES and Thread Affinity

▪ Processor: smallest entity able to run a thread or task (SMT/hyper-thread)

▪ Place: one or more processors → thread pinning is done place by place

▪ Free migration of the threads on a place between the processors of that place.

Or use explicit numbering, e.g. 8 places, each consisting of 4 processors:

• OMP_PLACES="{0,1,2,3},{4,5,6,7},{8,9,10,11}, … {28,29,30,31}"

• OMP_PLACES="{0:4},{4:4},{8:4}, … {28:4}"

• OMP_PLACES="{0:4}:8:4"

OMP_PLACES Place ==

threads Hardware thread (hyper-thread)

cores All HW threads of a single core

sockets All HW threads of a socket

abstract_name(num_places) Restrict # of places available

abstract name

<lower-bound>:<number of entries>[:<stride>]

Caveat: Actual behavior is implementation defined!

June 17, 2025 32PTfS 2025

OMP_PROC_BIND variable / proc_bind() clause

Determines how places are used for pinning:

If there are more threads than places, consecutive threads are put into

individual places (“balanced”)

Example:

OMP_PROC_BIND Meaning

FALSE Affinity disabled

TRUE Affinity enabled, implementation defined strategy

CLOSE Threads bind to consecutive places

SPREAD Threads are evenly scattered among places

MASTER
Threads bind to the same place as the master thread

that was running before the parallel region was entered

$ OMP_NUM_THREADS=4 OMP_PROC_BIND=close OMP_PLACES=cores ./a.out

June 17, 2025 33PTfS 2025

Some simple OMP_PLACES examples

Intel Xeon w/ SMT, 2x10 cores, 1 thread per physical core, fill 1 socket
OMP_NUM_THREADS=10

OMP_PLACES=cores

OMP_PROC_BIND=close

Intel Xeon Phi with 72 cores, 4-way SMT

32 cores to be used, 2 threads per physical core
OMP_NUM_THREADS=64

OMP_PLACES=cores(32)

OMP_PROC_BIND=close # spread will also do

Intel Xeon, 2 sockets, 4 threads per socket (no binding within socket!)
OMP_NUM_THREADS=8

OMP_PLACES=sockets

OMP_PROC_BIND=close # spread will also do

Intel Xeon, 2 sockets, 4 threads per socket, binding to cores
OMP_NUM_THREADS=8

OMP_PLACES=cores

OMP_PROC_BIND=spread

Always prefer abstract places

instead of hardware thread

IDs!

Wrap-up: beginner’s OpenMP toolbox

▪ Parallel region

▪ Workshared loop construct

▪ Data scoping (shared, private, firstprivate)

▪ Basic reductions with standard operators

▪ Simple synchronization constructs

▪ barrier, nowait

▪ (named) critical, atomic

▪ single (actually worksharing), master

▪ OpenMP affinity as defined in the standard

▪ But wait, there’s more…

June 17, 2025PTfS 2025 34

