
Programming Techniques for Supercomputers:

Performance Modelling

Motivation

Roofline Model

Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)

(a)HPC Services – Regionales Rechenzentrum Erlangen
(b)Department für Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025

June 24, 2025PTfS 2025

A performance model brings together

what you need (application requirements) and

what you get (hardware capabilities)

A series of measurements from benchmarks

is NOT a performance model*

*Bill Gropp, PASC2015

2

June 24, 2025PTfS 2025

Scope of the lecture – a typical example
!$OMP PARALLEL DO

do k = 1 , 400

do j = 1 , 400; do i = 1 , 400

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core performance

optimization

Upper limit from simple

performance model (roofline):

35 GB/s & 24 Byte/update

Parallelize

Parallelize

Intel® Xeon® Prozessor E5-2670

3

June 24, 2025PTfS 2025

How model-building works: Physics

Newtonian mechanics

Fails @ small scales!

𝑖ℏ
𝜕

𝜕𝑡
𝜓 Ԧ𝑟, 𝑡 = 𝐻𝜓 Ԧ𝑟, 𝑡

Ԧ𝐹 = 𝑚 Ԧ𝑎

Nonrelativistic

quantum

mechanics

Fails @ even smaller scales!

Relativistic

quantum

field theory

𝑈(1)𝑌 ⨂ 𝑆𝑈 2 𝐿 ⨂ 𝑆𝑈(3)𝑐
4

June 24, 2025PTfS 2025

Code optimization/parallelization – no black boxes!

simplified description
of system (HW+SW)

modeling predictions validation

model
OK?

N

Y

input data
CODE

insight:
bottleneck

adjust model
→ insight

white box

possible optimization

„Performance Engineering“

5

Questions to ask in high performance computing

▪ Do I understand the performance behavior of my code?

▪ Does the performance match a model I have made?

▪ What is the optimal performance for my code on a given machine?

▪ High Performance Computing == Computing at the bottleneck

▪ Can I change my code so that the “optimal performance” gets higher?

▪ Circumventing/ameliorating the impact of the bottleneck

▪ My model does not work – what’s wrong?

▪ This is the good case, because you learn something

▪ Performance monitoring / microbenchmarking may help clear up the situation

▪ Use your brain! Tools may help, but you do the thinking.

Loop-based performance modeling:

Execution vs. data transfer

“Simple” performance modeling:

The Roofline Model

PTfS 2025 June 24, 2025 8

A simple performance model for loops

Simplistic view of hardware

! may be multiple levels

do i = 1,<sufficient>

<complicated stuff doing

N flops causing

V bytes of data transfer>

enddo

Execution units

Peak Performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path, bandwidth

𝒃𝑺

Simplistic view of software

Computational intensity

𝑰 =
𝑵

𝑽
→ Unit: flop/byte

Unit: flop / s

Unit: byte / s

Hardware Performance Bottlenecks:

• Peak Performance: Ppeak (“Compute bound“)

• Data path: „flop/s required by incomming data“ byte/s * flop/byte [=flop/s] (“Memory bound“)

Naïve Roofline Model

What performance can the software achieve on a given hardware? 𝑷 [flop/s]

The performance bottleneck is either

▪ The execution of work (flops): 𝑃peak [flop/s]

▪ The data path: 𝐼 ∙ 𝑏𝑆 [flop/byte x byte/s]

(requested flops by incoming data)

This is the “Naïve Roofline Model”

▪ High intensity I: P limited by execution

▪ Low intensity I: P limited by data transfer

▪ “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆: Best use of resources

▪ Roofline is an “optimistic” model (“light speed”)

𝑃 = min(𝑃peak, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e
rf

o
rm

a
n
c
e

Ppeak

Roofline Model (RLM) – Basics

Consider two bottlenecks only

The Roofline Model – Basics

▪ Hardware → Peak performance: 𝑃𝑝𝑒𝑎𝑘 [
𝐹

𝑠
]

▪ Hardware → Peak memory bandwidth: 𝑏𝑆 [
𝐵

𝑠
]

▪ Application/SW → Computational Intensity: 𝐼 [
𝐹

𝐵
]

Roofline Performance Model (RLM) - basics:

P = min Ppeak, I ∗ bS = min 3
GF

s
, 0.05 ∗ 10

GF

s
= 0.5

GF

s

Machine model:

𝑃𝑝𝑒𝑎𝑘 = 3
𝐺𝐹

𝑠

𝑏𝑆 = 10
𝐺𝐵

𝑠

Application model:

𝐼 = 𝐵𝐶
−1 = 0.05

𝐹

𝐵

The Roofline Model: A graphical view

▪ Plot max. attainable performance P as a function of I (application) for a given hardware 𝑷𝒑𝒆𝒂𝒌, 𝒃𝑺

▪ Examples

▪ Vector triads (double prec.):

▪ 𝐼 = 0.05 𝐹/𝐵

▪ Vector norm (single prec.)
s=s+a[i]*a[i]:𝐼 = 0.5 𝐹/𝐵

𝑃 = min(𝑃peak, 𝐼 ∙ 𝑏𝑆)

𝑃𝑝𝑒𝑎𝑘

Code feature

Hardware

limitations

𝑃𝑝𝑒𝑎𝑘 = 3
𝐺𝐹

𝑠
𝑏𝑆 = 10 𝐺𝐵/𝑠

log-scale

log-scale

𝑃 = min(𝑃peak, 𝐼 ∙ 𝑏𝑆)

Code feature

Hardware

limitations

RLM assumption: Bandwidth saturation → Consider full chip / nodes!

June 24, 2025PTfS 2025

The Roofline Model – Basics

Compare capabilities of different machines

Full node / chip

peak performance

13

The Roofline Model – Basics: Summary

Determine machine model for full chip/node/device:

▪ Peak performance

▪ Peak memory bandwidth: See fact sheet, e.g. 𝑏𝑆 = #𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑓𝑀𝐸𝑀 × 8
𝐵

𝑐𝑦𝑐𝑙𝑒

So far the model is very restricted:

▪ Machine and application models are completely independent

▪ RLM always provides upper bound – but is it realistic?

▪ Only two bottlenecks are considered

▪ Peak Performance

▪ Main memory transfers

▪ What if, e.g. there is no MULT and/or no SIMD vectorization?

→ 𝑃𝑝𝑒𝑎𝑘 is not a realistic limit! Implementation may have lower „horizontal roof“

double s=0, a[];

for(i=0; i<N; ++i) {

s = s + a[i];}

𝑃 = m𝑖𝑛(𝑃𝑝𝑒𝑎𝑘 , 𝐼 ∗ 𝑏𝑆)

𝑃𝑝𝑒𝑎𝑘 = 𝑃𝑐ℎ𝑖𝑝 = 𝑛𝑐𝑜𝑟𝑒 ∙ 𝑛𝑠𝑢𝑝𝑒𝑟
𝐹𝑃 ∙ 𝑛𝐹𝑀𝐴 ∙ 𝑛𝑆𝐼𝑀𝐷 ∙ 𝑓

Roofline Model

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Machine model with Ppeak=4.5 TF/s and bS=300 GB/s

P
 [
G

F
/s

]

I [F/B]

Compute

bound

Ppeak

Knee-point:

I*bS = Ppeak

Roofline Model: Application information

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Measure application performance P and

calculate / measure application intensity I

P
[G

F
/s

]

I [F/B]

Memory

bound code

Compute

bound

Measure I with

Calculate I by

code inspection
▪ Loop kernel

▪ Data structures

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Compute

bound

No SIMD: 1/8

AVX512 → scalar

More realistic bounds for „bad“ implementations

P
[G

F
/s

]

I [F/B]

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000 No SIMD: 1/8

AVX512 → scalar

No FMA

pipelining: 1/4

More realistic bounds for „bad“ implementations

P
[G

F
/s

]

I [F/B]

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

No SIMD: 1/8

AVX512 → scalar

No FMA

pipelining: 1/4

Only 1 FMA: 1/2

No SIMD, no pipelining, 1 FMA only → 64 x decrease in PPeak

Knee-point:

I=0.23 F/B

P
[G

F
/s

]

I [F/B]

Lower horizontal roofs (Ppeak)

0,01 0,1 1 10 100 1000

1

10

100

1000

10000

Reality: Lower horizontal roofs (Ppeak) are typically not known

Indications:

• Linear

scaling

• Low Memory

Bandwidth

Utilization

How to get realistic lower horizontal roofs?

P
[G

F
/s

]

I [F/B]

June 24, 2025PTfS 2025

The Roofline model: Extending more bottlenecks

Choose time based view:

Hardware bottlenecks impose upper (lower) performance (runtime) limits

time ∝ 𝑃−1

Two independent

bottlenecks &

perfect overlap!

*Williams, Waterman, Patterson (2009), DOI: 10.1145/1498765.1498785

Memory transfers

𝑃 = min(𝑃𝑝𝑒𝑎𝑘 , 𝐼 ∙ 𝑏𝑆)

Computation

21

http://dx.doi.org/10.1145/1498765.1498785

Roofline Model (RLM) – Refined

Consider multiple independent bottlenecks

June 24, 2025PTfS 2025

The Roofline model: Extending more bottlenecks

Extend towards mutiple (independent) bottlenecks

→ Model very successfull if bottleneck can be saturated → full CPU chip

time ∝ 𝑃−1

*Williams, Waterman, Patterson (2009), DOI: 10.1145/1498765.1498785

Computation (SIMD)

Memory transfers

𝑃 = min(𝑃𝑝𝑒𝑎𝑘 , 𝐼 ∙ 𝑏𝑆)
STORE

Integer arithmetics

L2 transfers

L3 transfers

LOAD

Computation (scalar)

Computation (SIMD)

Computation (scalar)

Choose relevant

data path

Applicable

peak performance:

All data is in L1 cache

23

𝑃 = min(𝑃𝑚𝑎𝑥, 𝐼 ∙ 𝑏𝑆)
Independent

bottlenecks &

perfect overlap!

http://dx.doi.org/10.1145/1498765.1498785

The Roofline Model – refined

1. Pmax = Applicable peak performance of a loop, assuming that data comes from the level 1 cache

(this is not necessarily Ppeak)

→ e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the slowest data path utilized (code

balance BC = I -1)

→ e.g., I = 0.167 Flop/Byte → BC = 6 Byte/Flop

3. bS = Applicable (saturated) peak bandwidth of the slowest data path utilized

→ e.g., bS = 56 GByte/s

Expected performance:

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.

Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

The Roofline Model – getting it right

Applicable peak performance: 𝑃𝑚𝑎𝑥 = 𝑛𝑐𝑜𝑟𝑒 ∗ 𝑃𝑚𝑎𝑥
𝑐𝑜𝑟𝑒

▪ 𝑃𝑚𝑎𝑥
𝑐𝑜𝑟𝑒 : single core maximum performance from L1: determine according to slides 22-

41@03b_05_13-2025_PTfS.pdf

Computational intensity: 𝐼

▪ Determine data transfer volume over slowest data path – for main memory:

𝐼 = 1/𝐵𝐶
𝑚𝑒𝑚 (for 𝐵𝐶 see 05_05_20-2025_PTfS.pdf)

Applicable (saturated) peak bandwidth: 𝑏𝑆
▪ Determine with appropriate benchmark, e.g. for main memory choose the STREAM

benchmark test that best matches your access pattern

▪ See later for STREAM

▪ Or write own microbenchmark if relevant access pattern not available, e.g. read-only

Realistic baseline for memory bandwidth: STREAM

▪ Assumption: STREAM (or similar, like vector triad) kernel benchmarks achieve an

upper bandwidth limit from main memory

▪ i.e., no code can draw more bandwidth

▪ Theoretical BW limits are usually not achievable

▪ Use STREAM as BW limit rather than the theoretical numbers!

▪ STREAM: http://www.cs.virginia.edu/stream/

▪ Set of 4 standard benchmarks

COPY: A(:) = C(:)

SCALE: A(:) = s * C(:)

ADD: A(:) = B(:) + C(:)

TRIAD: A(:) = B(:) + s * C(:)

▪ In practice, COPY & SCALE (ADD & TRIAD) draw the same bandwidth

▪ Advantage of STREAM: Many results published, well-defined benchmark

▪ Disadvantage of STREAM: Reported and actual BW numbers may differ

http://www.cs.virginia.edu/stream/

with write-allocate w/o write-allocate

Type reported actual 𝑏𝑆/𝑏max reported 𝑏𝑆/𝑏max

COPY 34079 51119 0.75 47281 0.69

SCALE 33758 50637 0.74 48025 0.70

ADD 38174 50899 0.75 51068 0.75

TRIAD 38866 51820 0.76 51107 0.75

June 24, 2025PTfS 2025

STREAM: write-allocate and efficiency

Data transfer (including write-allocate)

State of the art compilers recognize the benchmark and avoid the write-allocate

automatically 70-75% efficiency

STREAM benchmark

does not know about

write-allocate

Type Kernel Bytes/iteration
assumed (with WA)

Flops/it.

COPY A(:) = B(:) 16 (24) 0

SCALE A(:) = s*B(:) 16 (24) 1

ADD A(:) = B(:)+C(:) 24 (32) 1

TRIAD A(:) = B(:)+s*C(:) 24 (32) 2

x3/2

x3/2

x4/3

x4/3 2
.3

 G
H

z
 1

4
-c

o
re

H
a
s
w

e
ll

(n
o
n

-C
o
D

)

27

Roofline Model (RLM) – Refined

Arithmetic Intensity / Code Balance: Gymnastics

June 24, 2025PTfS 2025

Arithmetic Intensity / Code Balance: Basic Examples

double a[], b[];

for(i=0; i<N; ++i) {

a[i] = a[i] + b[i];}

BC = 24B / 1F = 24 B/F

I = 0.042 F/B

double a[], b[];

for(i=0; i<N; ++i) {

a[i] = a[i]+ s * b[i];}

BC = 24B / 2F = 12 B/F

I = 0.083 F/B

Scalar – can be kept in register

float s=0, a[];

for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

BC = 4B/2F = 2 B/F

I = 0.5 F/B

Scalar – can be kept in register

float s=0, a[], b[];

for(i=0; i<N; ++i) {

s = s + a[i] * b[i];}

BC = 8B / 2F = 4 B/F

I = 0.25 F/B

Scalar – can be kept in register

29

Approaches to determine Computational Intensity

1. Analysis of loop body → determine all load / stores that go to memory

2. Analysis of data structure → Assume each element is touched only once

double a[N], b[N], c[N], d[N];

for(i=0; i<N; ++i)

{

a[i] = b[i] + c[i] * d[i];

}

• 3 LD (b,c,d) + 1 ST (a) + 1 WA (a) per iteration

• Each LD / ST / WA is 8 Byte (double)

• 2 FLOP

• 𝐼 =
2 𝐹𝐿𝑂𝑃

5∗8 𝐵𝑦𝑡𝑒
=

1 𝐹𝐿𝑂𝑃

20 𝐵𝑦𝑡𝑒
(𝐵𝐶 =

20 𝐵𝑦𝑡𝑒

1 𝐹𝐿𝑂𝑃
)

• Cache vs. Memory Access??!! → DMVM; stencils, SpMV

double a[N], b[N], c[N], d[N];

for(i=0; i<N; ++i)

{

a[i] = b[i] + c[i] * d[i];

}

• 4 arrays (of size: 𝑁 ∗ 8 𝐵𝑦𝑡𝑒) + WA on a[]→ 2x

→ 5 ∗ 𝑁 ∗ 8 𝐵𝑦𝑡𝑒 = 𝟒𝟎 ∗ 𝑵 𝑩𝒚𝒕𝒆

• Total FLOP count: 𝟐 ∗ 𝑵 𝑭𝑳𝑶𝑷

• 𝐼 =
2 ∗𝑁 𝐹𝐿𝑂𝑃

40 ∗ 𝑁 𝐵𝑦𝑡𝑒
=

1 𝐹𝐿𝑂𝑃

20 𝐵𝑦𝑡𝑒
(𝐵𝐶 =

20 𝐵𝑦𝑡𝑒

1 𝐹𝐿𝑂𝑃
)

• Lower bound for memory traffic → Upper bound for I

Approaches to determine Computational Intensity

double precison A(R,C), x(C), y(R)

…

do c = 1 , C

tmp=x(c)

do r = 1 , R

y(r)= y(r) + A(r,c)* tmp

enddo

enddo

Loop body analysis:

• LD A(r, c) to memory → 8 Byte
• x(c) →register → 0 Byte
• LD/ST y(r) → Cache → 0 Byte

→ 2 FLOP

→ 𝑰 =
𝟐 𝑭𝑳𝑶𝑷

𝟖 𝑩𝒚𝒕𝒆

Data structure analysis:

• A(R,C) → 8 * R * C Byte
• X(C) → 8 * C Byte
• Y(R): LD/ST → 2*8 * R Byte

→ 2* R * C FLOP

→ 𝑰 =
𝟐 ∗𝑹 ∗𝑪 𝑭𝑳𝑶𝑷

𝑹∗𝑪+𝑪+𝟐∗𝑹 ∗ 𝟖 𝑩𝒚𝒕𝒆
=

𝟐 𝑭𝑳𝑶𝑷

𝟏+
𝟏

𝑹
+
𝟐

𝑪
∗ 𝟖 𝑩𝒚𝒕𝒆

≈
𝟐 𝑭𝑳𝑶𝑷

𝟖 𝑩𝒚𝒕𝒆

R,C >> 1

Roofline Model (RLM) – Refined

Vector triads

The Roofline Model – refined: Vector triads: 𝑷𝒎𝒂𝒙

▪ Machine: 7 cores of Haswell@2.3GHz (𝑛𝑐𝑜𝑟𝑒 = 7; 𝑓 = 2.3
𝐺𝑐𝑦

𝑠
)

do i = 1,N

A(i)=B(i)+C(i)*D(i)

enddo

AVX performance on 1 core Haswell / Broadwell

AVX LD AVX ST AVX FMA AVX FMA

Execution Units / Ports

AVX MULT AVX MULT

AVX ADD

AVX LD

AVX LD AVX LD

2 AVX

iterationsAVX FMAAVX LD AVX LD

AVX ST

AVX FMAAVX LD AVX LD AVX ST

For 1 AVX iteration (i:i+3)

3 AVX LDs + 1 AVX ST + 1 AVX FMA

• Bottleneck: LD

• 2 AVX iteration: 𝑇𝑚𝑎𝑥
𝑖𝑛𝑠𝑡 = 3𝑐𝑦

• 2 AVX iteration → 8 loop

iterations → 16 F

• 𝑃𝑚𝑎𝑥
𝑐𝑜𝑟𝑒 = ൗ16𝐹

3𝑐𝑦 = 5.33 Τ𝐹 𝑐𝑦

▪ Machine: 7 cores of Haswell @2.3 (CoD)

▪ STREAM triads BW: 𝑏𝑆 = 29
𝐺𝐵

𝑠

▪ Computational Intensity (incl. WA; double precision): 𝐼 =
2𝐹

5∗8𝐵
= 0.05

𝐹

𝐵

Putting it together

𝑃𝑚𝑎𝑥 = 7 ∗ 2.3
𝐺𝑐𝑦

𝑠
∗ 5.33

𝐹

𝑐𝑦
= 85.8

𝐺𝐹

𝑠

𝑃 = min 85.8
𝐺𝐹

𝑠
, 0.05

𝐹

𝐵
∗ 29

𝐺𝐵

𝑠
= min 85.8

𝐺𝐹

𝑠
, 1.45

𝐺𝐹

𝑠
= 𝟏. 𝟒𝟓

𝑮𝑭

𝒔

The Roofline Model – refined: Vector triads: 𝐼 ∙ 𝑏𝑆 & 𝑷

do i = 1,N

A(i)=B(i)+C(i)*D(i)

enddo

See

previous slide

June 24, 2025PTfS 2025

The Roofline Model – refined: Validate RLM

Roofline limit

7 cores of Haswell @2.3 GHz (CoD)

Violates saturation

assumption

35

Roofline Model (RLM) – Refined

Dense Matrix Vector Multiplication

The Roofline Model – refined: Dense MVM : 𝑷𝒎𝒂𝒙

▪ Machine: 7 cores of Haswell @2.3GHz (𝑛𝑐𝑜𝑟𝑒 = 7; 𝑓 = 2.3
𝐺𝑐𝑦

𝑠
)

AVX performance on 1 core Haswell / Broadwell

AVX LD AVX ST AVX FMA AVX FMA

Execution Units / Ports

AVX MULT AVX MULT

AVX ADD

AVX LD

AVX LD AVX LD

1 AVX

iteration

AVX FMAAVX ST

For 1 AVX iteration (r:r+3)

2 AVX LDs + 1 AVX ST + 1 AVX FMA

• Bottleneck: LD

• 1 AVX iteration: 𝑇𝑚𝑎𝑥
𝑖𝑛𝑠𝑡 = 1𝑐𝑦

• 1 AVX iteration → 4 loop

iterations → 8 F

• 𝑃𝑚𝑎𝑥
𝑐𝑜𝑟𝑒 = ൗ8𝐹

1𝑐𝑦 = 8 Τ𝐹 𝑐𝑦

do c = 1 , C

tmp=x(c)

do r = 1 , R

y(r)=y(r) + A(r,c)* tmp

enddo

enddo

The Roofline Model – refined: Dense MVM: 𝐼 ∙ 𝑏𝑆 & 𝑷

See

previous slide

▪ Machine: 7 cores of Haswell@2.3 GHz

▪ Read-OnlyBW: 𝑏𝑆 = 32
𝐺𝐵

𝑠

▪ Computational Intensity (double precision): 𝐼 = 1/𝐵𝐶
𝑚𝑒𝑚 =

1
8𝐵

2𝐹

= 0.25
𝐹

𝐵

Putting it together

𝑃𝑚𝑎𝑥 = 7 ∗ 2.3
𝐺𝑐𝑦

𝑠
∗ 8

𝐹

𝑐𝑦
= 128.8

𝐺𝐹

𝑠

𝑃 = min 128.8
𝐺𝐹

𝑠
, 0.25

𝐹

𝐵
∗ 32

𝐺𝐵

𝑠
= min 128.8

𝐺𝐹

𝑠
, 8
𝐺𝐹

𝑠
= 𝟖

𝑮𝑭

𝒔

June 24, 2025PTfS 2025

The Roofline Model – refined: Dense MVM: Validate

Roofline limit

What if the code is

even worse than this???

39

Roofline Model (RLM) – Refined

Bad Code Implementation & Lower roofs

June 24, 2025PTfS 2025

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge (3-stage FP add pipeline) socket @ “large” N

ADD peak

(best possible

code)

no SIMD

3-cycle latency

per ADD if not

unrolled

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

See next slides

on how to get

these numbers

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak

(ADD+MULT)

Out of reach for this

code

P
(better loop code)

41

June 24, 2025PTfS 2025

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0 0

i 1

loop:

LOAD r2.0 a(i)

ADD r1.0 r1.0+r2.0

++i →? loop

result r1.0

ADD pipes utilization:

→ 1/24 of ADD peak

S
IM

D
 l
a
n
e

s

42

June 24, 2025PTfS 2025

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0 0

LOAD r2.0 0

LOAD r3.0 0

i 1

loop:

LOAD r4.0 a(i)

LOAD r5.0 a(i+1)

LOAD r6.0 a(i+2)

ADD r1.0 r1.0 + r4.0

ADD r2.0 r2.0 + r5.0

ADD r3.0 r3.0 + r6.0

i+=3 →? loop

result r1.0+r2.0+r3.0

ADD pipes utilization:

→ 1/8 of ADD peak

43

June 24, 2025PTfS 2025

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.7] [0,…,0]

LOAD [r2.0,…,r2.7] [0,…,0]

LOAD [r3.0,…,r3.7] [0,…,0]

i 1

loop:

LOAD [r4.0,…,r4.7] [a(i),…,a(i+7)]

LOAD [r5.0,…,r5.7] [a(i+8),…,a(i+15)]

LOAD [r6.0,…,r6.7] [a(i+16),…,a(i+23)]

ADD r1 r1 + r4

ADD r2 r2 + r5

ADD r3 r3 + r6

i+=24 →? loop

result r1.0+r1.1+...+r3.6+r3.7

ADD pipes utilization:

→ ADD peak

44

June 24, 2025PTfS 2025

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo in single precision

analysis

Code analysis:

1 ADD + 1 LOAD

architecture
Throughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)

Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

45

Roofline Model (RLM) – Refined

Summary

▪ Data transfer and core execution overlap perfectly!

▪ Either the limit is core execution or it is data transfer

▪ Slowest limiting factor “wins”; all others are assumed

to have no impact

▪ If two bottlenecks are “close”, no interaction is assumed

▪ Data access latency is ignored, i.e. perfect streaming mode

▪ Achievable bandwidth is the limit

▪ Chip must be able to saturate the bandwidth bottleneck(s)

▪ Always model for full chip

Prerequisites for the Roofline Model

June 24, 2025PTfS 2025

Factors to consider in the roofline model

Bandwidth-bound (simple case)

▪ Accurate traffic calculation (write-allocate, strided

access, …) → Intensity calculation

▪ Attainable ≠ theoretical BW

▪ Erratic access patterns may violate model assumptions

Core-bound (may be complex)

▪ Multiple bottlenecks: LD/ST, arithmetic, pipelines,

SIMD, execution ports

▪ Limit is linear in # of cores (or clock speed)

48

June 24, 2025 49PTfS 2025

Tracking code optimizations in the Roofline Model

1. Hit the BW bottleneck by

good serial code
(e.g., Ninja C++ → Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., spatial loop blocking)

3. Increase intensity and go from

memory bound to core bound
(e.g., temporal blocking)

4. Hit the core bottleneck by

good serial code
(e.g., -fno-alias, SIMD intrinsics)

Core bound

June 24, 2025PTfS 2025

Monitoring jobs running on Fritz in the Roofline diagram

Which is the “good”

and the “bad” job?

50

Two cluster jobs…

https://github.com/ClusterCockpit

Rooflines: P = min (Ppeak , I * bS)

• LIKWID determines P and I regularly on each node

• ClusterCockpit collects data and presents is

JOB1 JOB2

Shortcomings of the roofline model

▪ Saturation effects in multicore chips are not explained

▪ Reason: Intra-Cache and memory transfers do (frequently) not overlap on a single core

→ Overlapp only between cores

▪ Increase “pressure” on memory interface until it saturates → bottleneck: 𝑏𝑠
▪ It is not sufficient to measure single-core

STREAM to make it work

▪ In-cache performance is not correctly

predicted

▪ The ECM performance model gives more

insight:

A(:)=B(:)+C(:)*D(:)

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power properties of modern multicore

chips via simple machine models. Concurrency and Computation: Practice and Experience (2013).

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

Roofline Model (RLM) – Refined

Code Balance and Machine Balance

Machine balance for hardware characterization

▪ For quick comparisons the concept of machine balance is useful

▪ Machine Balance = How much input data can be delivered for each FP operation?

(“Memory Gap characterization”)

▪ Assuming balanced MULT/ADD

▪ Rough estimate: 𝐵𝑚 ≪ 𝐵𝑐 → strongly memory-bound code

▪ Typical values (main memory):

Intel Haswell 14-core 2.3 GHz

Bm = 60 GB/s / (14 x 2.3 x 16) GF/s ≈ 0.12 B/F

Intel Sandy Bridge 8-core 2.7 GHz ≈ 0.23 B/F

Nvidia P100 ≈ 0.10 B/F

Intel Xeon Phi Knights Landing (HBM) ≈ 0.16 B/F

𝐵𝑚 =
𝑏𝑆

𝑃peak

June 24, 2025PTfS 2025

Machine balance over time

Higher is better!

→ more balanced

NEC

Tsubasa

54

Tall & Skinny Matrix-Transpose Times

Tall & Skinny Matrix (TSMTTSM)

Multiplication

RLM Case Study

TSMTTSM Multiplication

▪ Block of vectors → Tall & Skinny Matrix (e.g. 107 x 101 dense matrix)

▪ Row-major storage format

▪ Block vector subspace orthogonalization procedure requires, e.g. computation of

scalar product between vectors of two blocks

▪ TSMTTSM Mutliplication 𝐾 ≫ 𝑁,𝑀

Assume: 𝛼 = 1; 𝛽 = 0

M

N K

TSMTTSM Multiplication

▪ General rule for dense matrix-matrix multiply: Use vendor-optimized

GEMM, e.g. from Intel MKL1:
𝐶𝑚𝑛 =

𝑘=1

𝐾

𝐴𝑚𝑘𝐵𝑘𝑛 , 𝑚 = 1. .𝑀, 𝑛 = 1. . 𝑁

System Ppeak [GF/s] bS [GB/s] Size Perf. Efficiency

Intel Xeon E5 2660 v2

10c@2.2 GHz
176 GF/s 52 GB/s

SQ 160 GF/s 91%

TS 16.6 GF/s 6%

Intel Xeon E5 2697 v3

14c@2.6GHz
582 GF/s 65 GB/s

SQ 550 GF/s 95%

TS 22.8 GF/s 4%

complex double

double

TS@MKL:

Good or bad?
Matrix sizes:

Square (SQ): M=N= K=15,000

Tall&Skinny (TS): M=N=16 ; K=10,000,000

1Intel Math Kernel Library (MKL) 11.3

TSMTTSM Roofline model

Computational intensity

𝐼 =
#flops

#bytes (slowest data path)

Optimistic model (minimum data transfer) assuming 𝑴 = 𝑵 ≪ 𝑲 and

double precision:

𝐼𝑑 =
2𝐾𝑀𝑁

8 (2𝑀𝑁 + 𝐾𝑀 + 𝐾𝑁)

F

B
≈

2 𝑀𝑁

8 𝑀 + 𝑁

F

B
=
𝑀

8

F

B

complex double:

𝐼𝑧 =
8𝐾𝑀𝑁

16 (2𝑀𝑁 + 𝐾𝑀 + 𝐾𝑁)

F

B
≈

8𝑀𝑁

16 𝑀 + 𝑁

F

B
=
𝑀

4

F

B

M

N K

N = M

Assume: 𝛼 = 1; 𝛽 = 0

TSMTTSM Roofline performance prediction

Now choose 𝑀 = 𝑁 = 16→ 𝐼𝑑 ≈
16

8

F

B
and 𝐼𝑧 ≈

16

4

F

B
, i.e. 𝐵𝑑 ≈ 0.5

B

F
, 𝐵𝑧 ≈ 0.25

B

F

Intel Xeon E5 2660 v2 (𝑏𝑆 = 52
GB

s
) → P = 𝐼𝑑 × 𝑏𝑆 = 104

GF
s

(double)

Measured (MKL): 16.6
GF

s

Intel Xeon E5 2697 v3 (𝑏𝑆 = 65
GB

s
) → P = 𝐼𝑍 × 𝑏𝑆 = 240

GF
s

(double complex)

Measured (MKL): 22.8
GF

s

→ Potential speedup: 6–10x vs. MKL

Can we implement a better TSMTTSM kernel than Intel?

Not shown: Inner Loop boundaries (n,m) known at compile time (kernel generation)

k assumed to be even

Long Loop (k): Parallel

Outer Loop Unrolling

Compiler directives

Most operations

in cache

Reduction on

small result matrix

Thread local copy of small (results) matrix

TSMTTSM MKL vs. “hand crafted” (OPT)

System Ppeak / bS Version Performance RLM Efficiency

Intel Xeon E5 2660 v2

10c@2.2 GHz

176 GF/s

52 GB/s

TS OPT 98 GF/s 94 %

TS MKL 16.6 GF/s 16 %

Intel Xeon E5 2697 v3

14c@2.6GHz

582 GF/s

65 GB/s

TS OPT 159 GF/s 66 %

TS MKL 22.8 GF/s 9.5 %

TS: M=N=16 ; K=10,000,000

