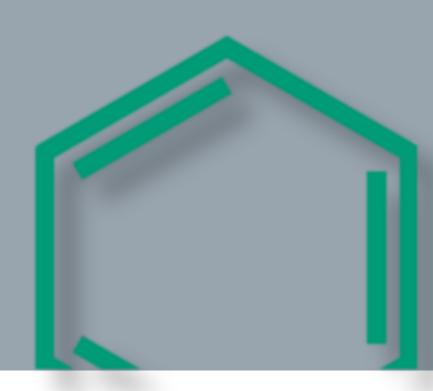


Programming Techniques for Supercomputers: Performance Modelling

Motivation Roofline Model

<u>Prof. Dr. G. Wellein^(a,b)</u>, Dr. G. Hager^(a) ^(a)HPC Services – Regionales Rechenzentrum Erlangen ^(b)Department für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025

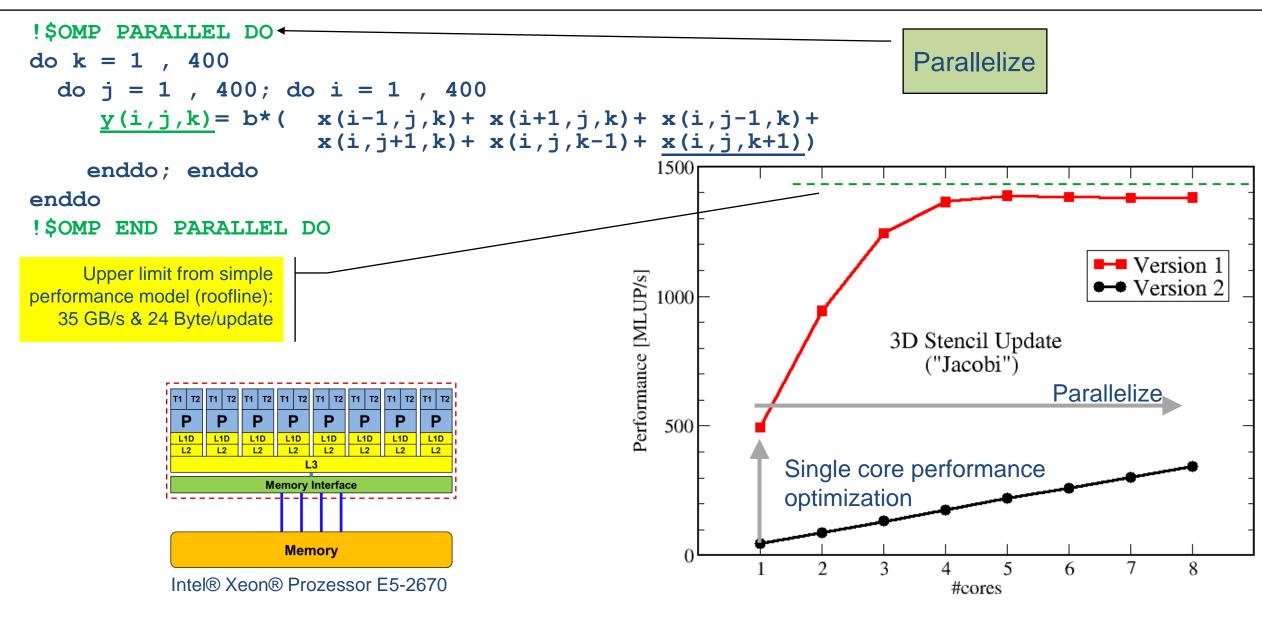


A performance model brings together what you need (application requirements) and what you get (hardware capabilities)

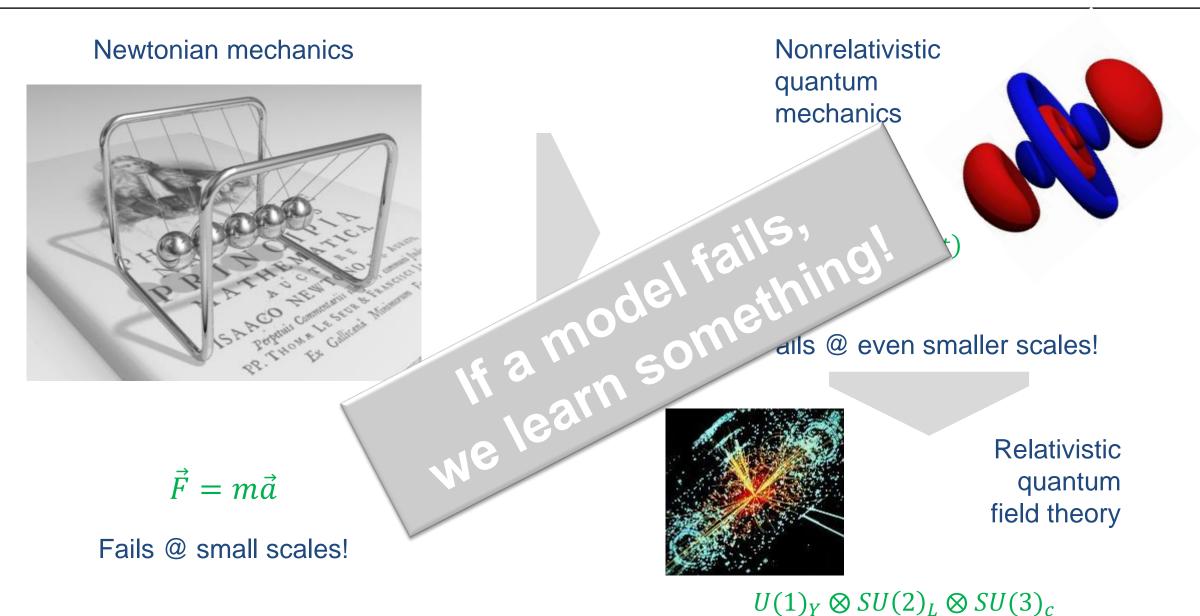
A series of measurements from benchmarks is NOT a performance model*

*Bill Gropp, PASC2015

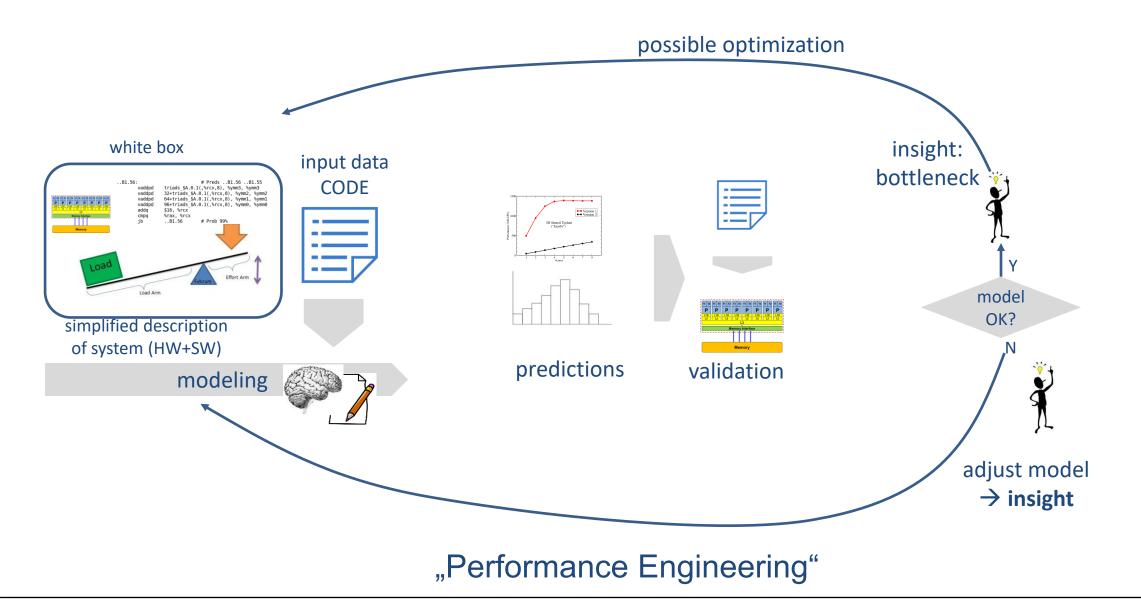
Scope of the lecture – a typical example



How model-building works: Physics



Code optimization/parallelization – no black boxes!

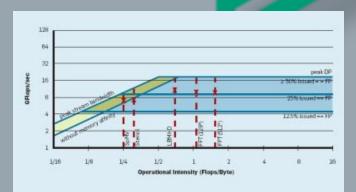


Questions to ask in high performance computing

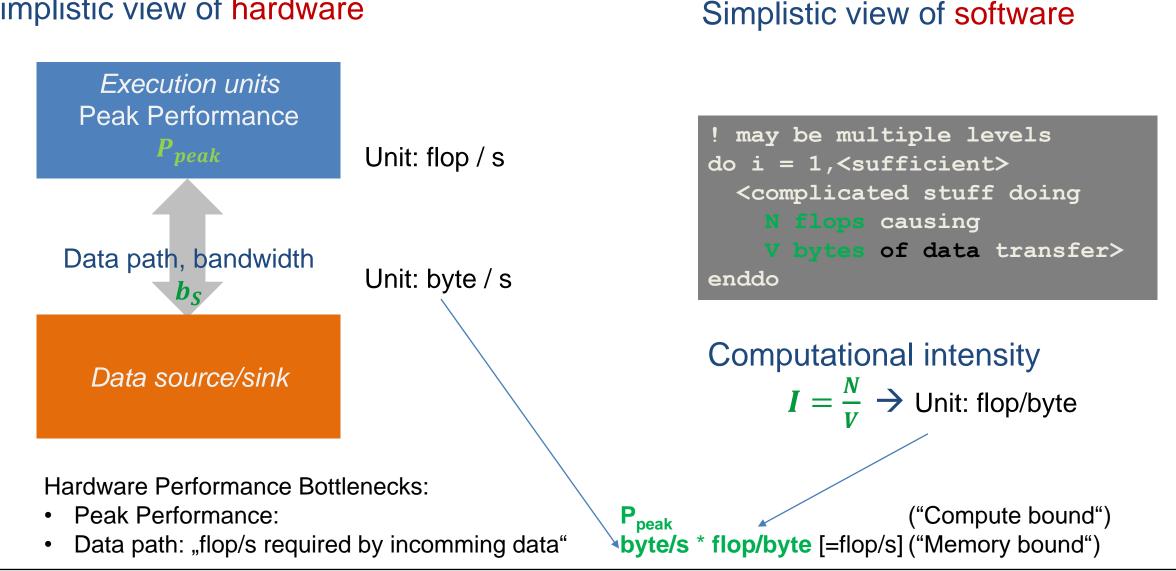
- Do I understand the performance behavior of my code?
 - Does the performance match a model I have made?
- What is the optimal performance for my code on a given machine?
 - High Performance Computing == Computing at the bottleneck
- Can I change my code so that the "optimal performance" gets higher?
 - Circumventing/ameliorating the impact of the bottleneck
- My model does not work what's wrong?
 - This is the good case, because you learn something
 - Performance monitoring / microbenchmarking may help clear up the situation
- Use your brain! Tools may help, but you do the thinking.

"Simple" performance modeling: The Roofline Model

Loop-based performance modeling: Execution vs. data transfer



Simplistic view of hardware



Naïve Roofline Model

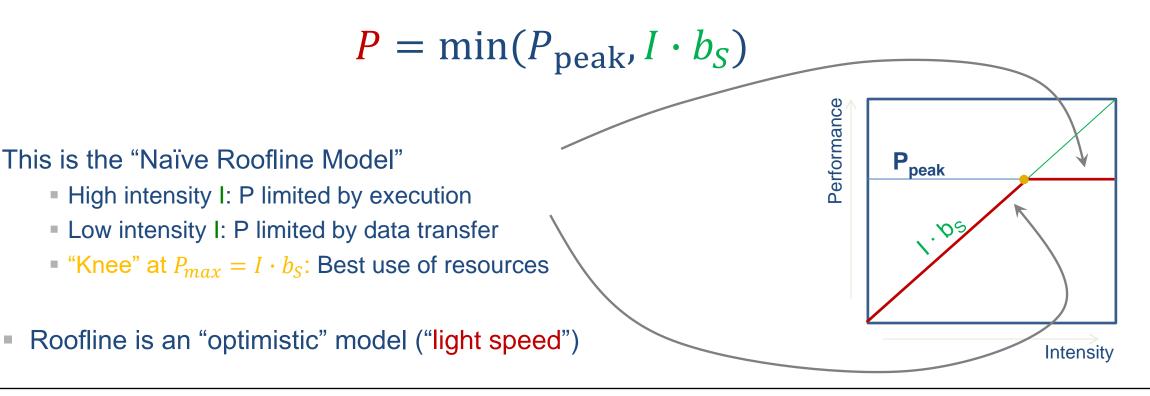
What performance can the software achieve on a given hardware? P [flop/s]

The performance bottleneck is either

The execution of work (flops):

• The data path: (requested flops by incoming data)

[flop/s] ^Ppeak $I \cdot b_S$ [flop/byte x byte/s]



Roofline Model (RLM) – Basics Consider two bottlenecks only



- Hardware \rightarrow Peak performance:
- Hardware \rightarrow Peak memory bandwidth:
- Application/SW \rightarrow Computational Intensity: I

$$P_{peak} \left[\frac{F}{s}\right]$$
$$b_{S} \left[\frac{B}{s}\right]$$
$$I \left[\frac{F}{B}\right]$$

Machine model:

$$P_{peak} = 3 \frac{GF}{s}$$

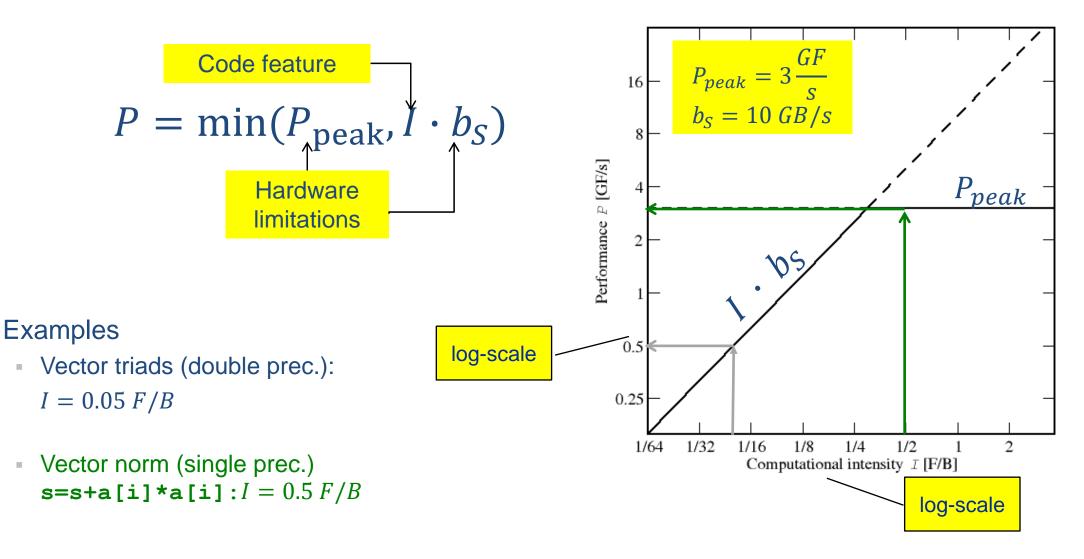
$$b_{s} = 10 \frac{GB}{s}$$

$$P = \min(P_{peak}, I * b_{s}) = \min(3 \frac{GF}{s}, 0.05 * 10 \frac{GF}{s}) = 0.5 \frac{GF}{s}$$

The Roofline Model: A graphical view

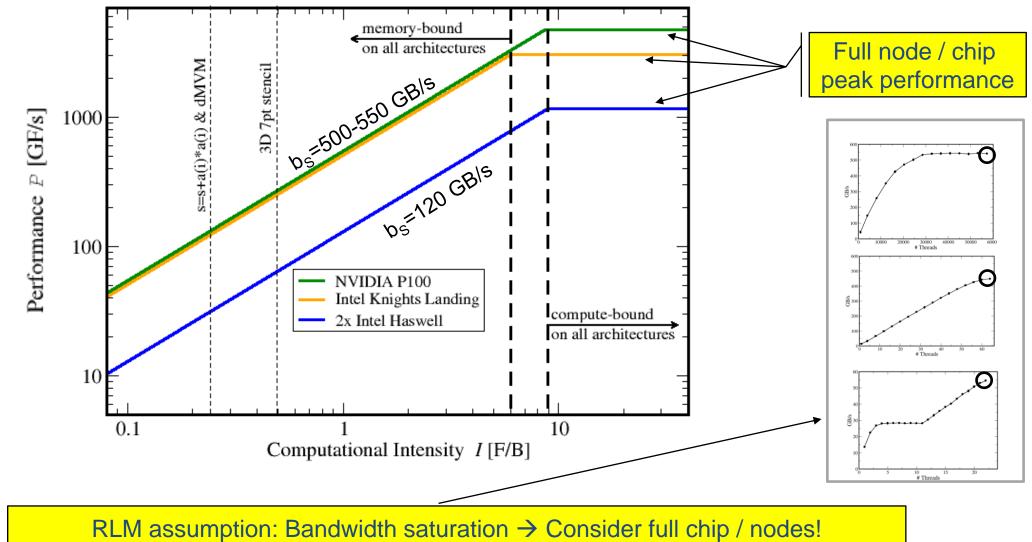
н.

Plot max. attainable performance *P* as a function of *I* (application) for a given hardware $\{P_{peak}, b_S\}$



The Roofline Model – Basics

Compare capabilities of different machines



The Roofline Model – Basics: Summary

 $P = \min(P_{peak}, I * b_S)$

Determine machine model for full chip/node/device:

- Peak performance $P_{peak} = P_{chip} = n_{core} \cdot n_{super}^{FP} \cdot n_{FMA} \cdot n_{SIMD} \cdot f$
- Peak memory bandwidth: See fact sheet, e.g. $b_S = #Channels \times f_{MEM} \times 8 \frac{B}{cvcle}$

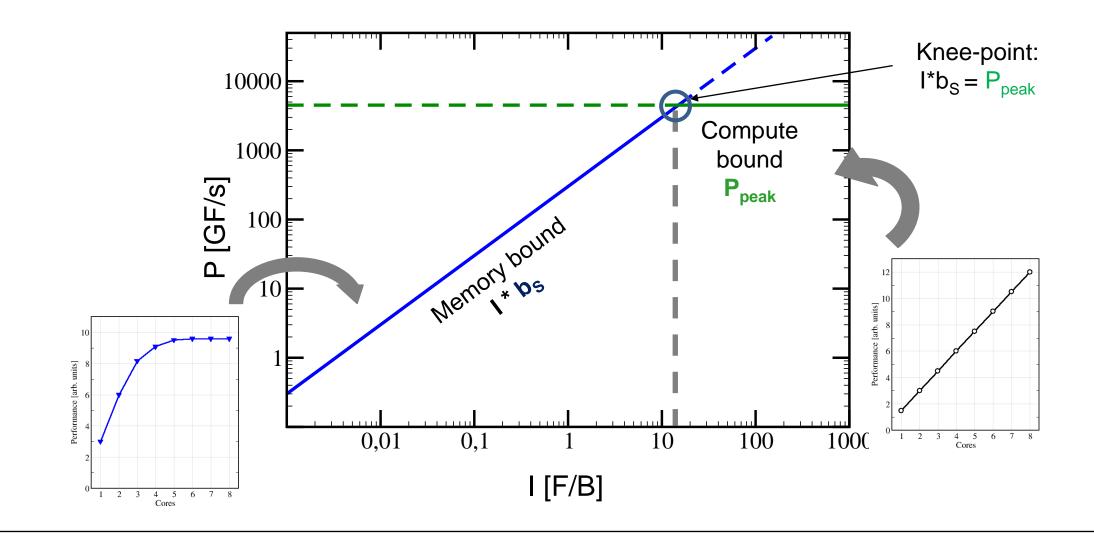
So far the model is very restricted:

- Machine and application models are completely independent
- RLM always provides upper bound but is it realistic?
- Only two bottlenecks are considered
 - Peak Performance
 - Main memory transfers

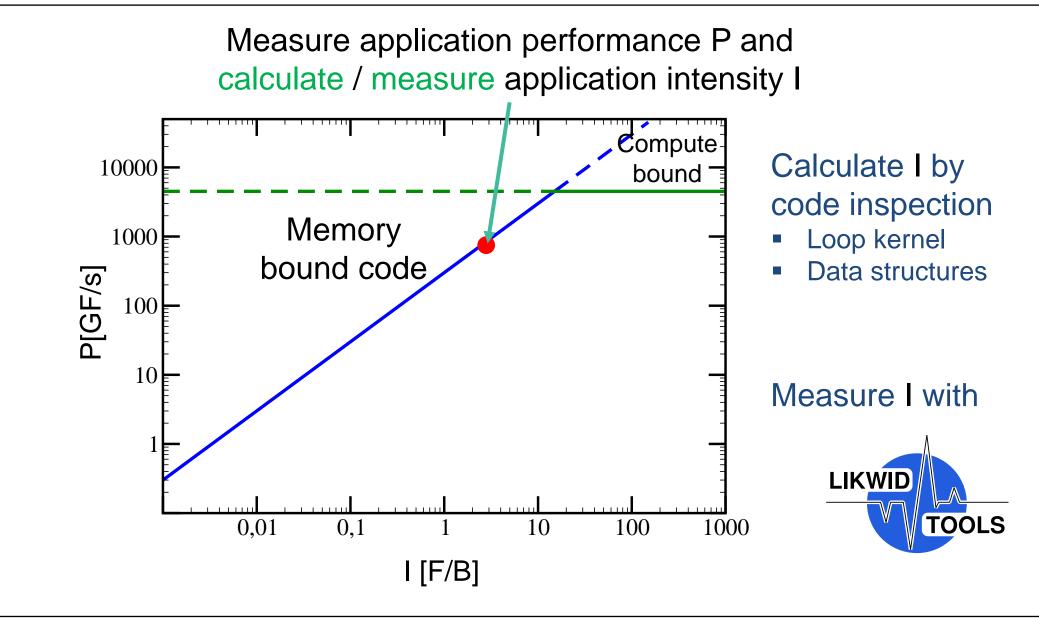
```
double s=0, a[];
for(i=0; i<N; ++i) {
    s = s + a[i];}
```

- What if, e.g. there is no MULT and/or no SIMD vectorization?
 - $\rightarrow P_{peak}$ is not a realistic limit! Implementation may have lower "horizontal roof"

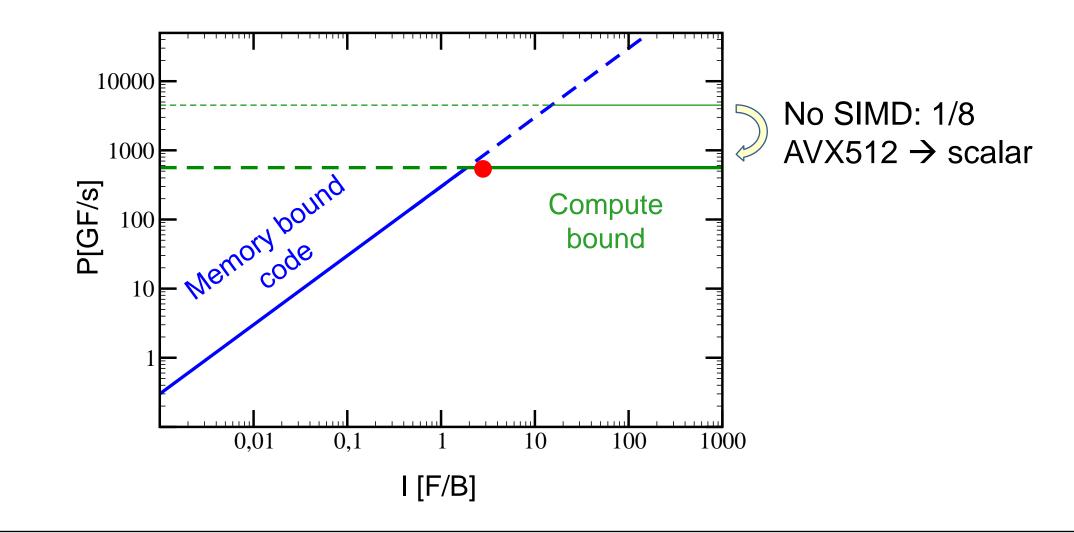
Machine model with P_{peak} =4.5 TF/s and b_s =300 GB/s



Roofline Model: Application information

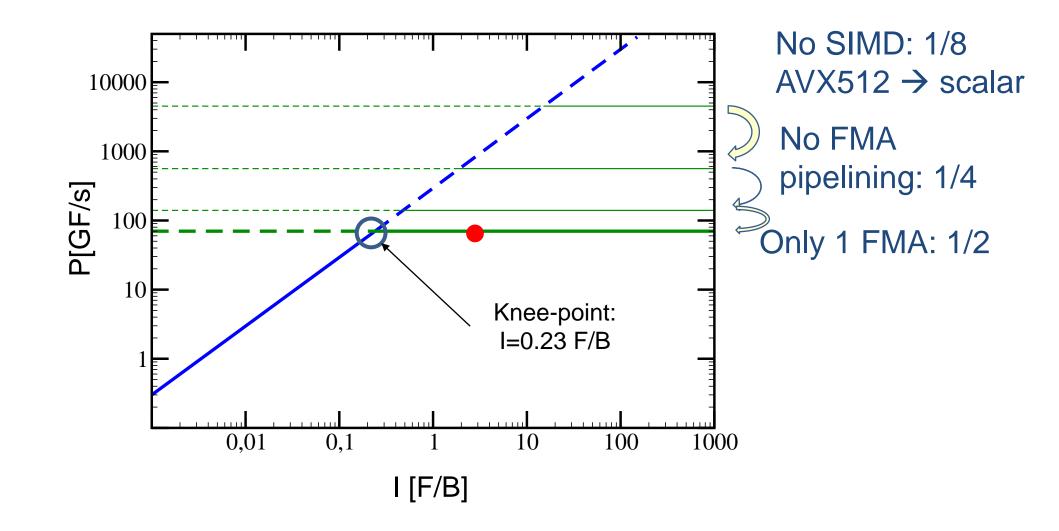


More realistic bounds for "bad" implementations

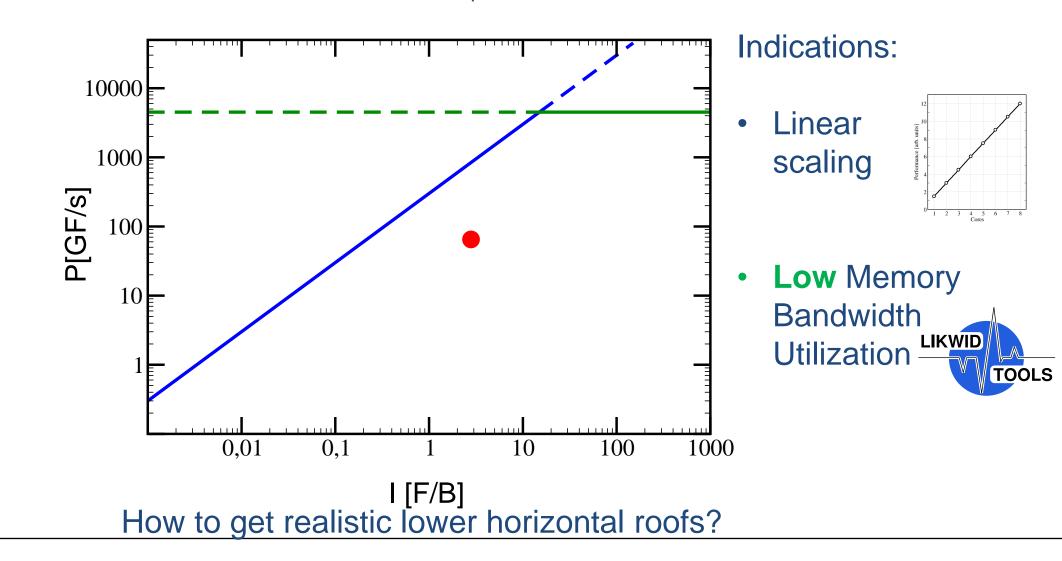




No SIMD, no pipelining, 1 FMA only \rightarrow 64 x decrease in P_{Peak}



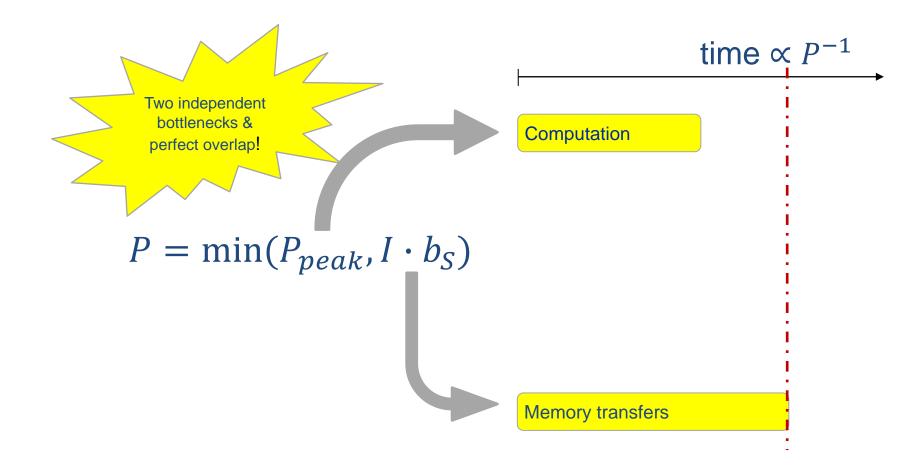
Reality: Lower horizontal roofs (P_{peak}) are typically not known



The Roofline model: Extending more bottlenecks

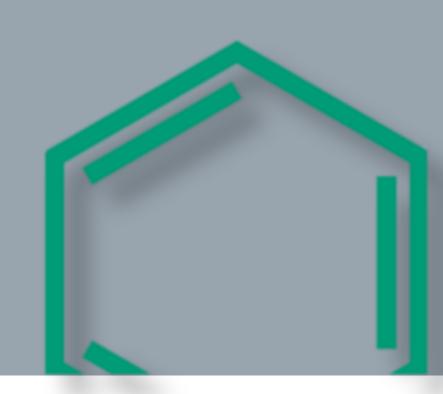
Choose time based view:

Hardware bottlenecks impose upper (lower) performance (runtime) limits



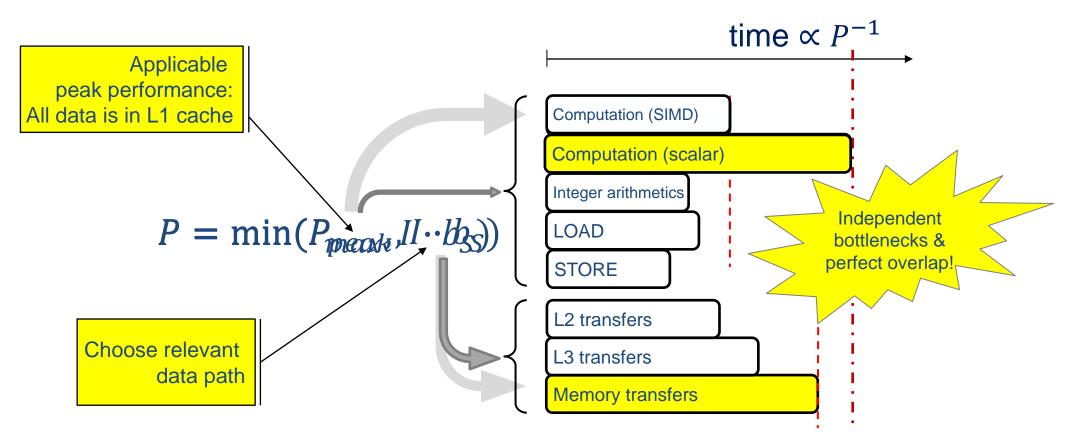
*Williams, Waterman, Patterson (2009), DOI: <u>10.1145/1498765.1498785</u>

Roofline Model (RLM) – Refined Consider multiple independent bottlenecks



The Roofline model: Extending more bottlenecks

Extend towards mutiple (independent) bottlenecks



 \rightarrow Model very successfull if bottleneck can be saturated \rightarrow full CPU chip

*Williams, Waterman, Patterson (2009), DOI: <u>10.1145/1498765.1498785</u>

The Roofline Model – refined

- P_{max} = Applicable peak performance of a loop, assuming that data comes from the level 1 cache (this is not necessarily P_{peak})
 → e.g., P_{max} = 176 GFlop/s
- 2. *I* = Computational intensity ("work" per byte transferred) over the slowest data path utilized (code balance $B_{\rm C} = I^{-1}$) → e.g., *I* = 0.167 Flop/Byte → $B_{\rm C}$ = 6 Byte/Flop
- 3. $b_{\rm S}$ = Applicable (saturated) peak bandwidth of the slowest data path utilized \rightarrow e.g., $b_{\rm S}$ = 56 GByte/s Expected performance:

$$P = \min(P_{\max}, I \cdot b_S) = \min\left(P_{\max}, \frac{b_S}{B_C}\right)$$
 [Byte/Flop]

R.W. Hockney and I.J. Curington: f_{1/2}: A parameter to characterize memory and communication bottlenecks.

Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: <u>Scientific Supercomputing: Architecture and Use of Shared and Distributed</u> <u>Memory Parallel Computers</u>. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

The Roofline Model – getting it right

Applicable peak performance: $P_{max} = n_{core} * P_{max}^{core}$

P^{core}_{max} : single core maximum performance from L1: determine according to slides 22-41@03b_05_13-2025_PTfS.pdf

Computational intensity: I

• Determine data transfer volume over slowest data path – for main memory: $I = 1/B_c^{mem}$ (for B_c see 05_05_20-2025_PTfS.pdf)

Applicable (saturated) peak bandwidth: b_S

- Determine with appropriate benchmark, e.g. for main memory choose the STREAM benchmark test that best matches your access pattern
 - See later for STREAM
- Or write own microbenchmark if relevant access pattern not available, e.g. read-only

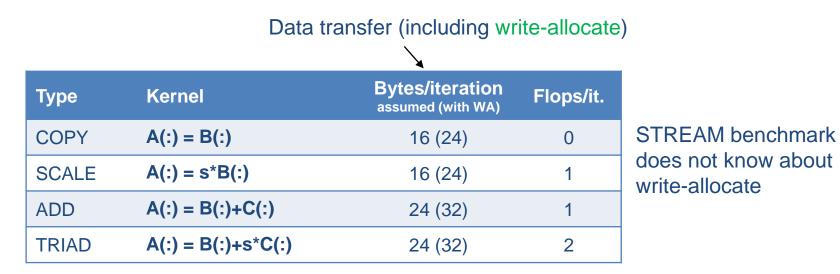
Realistic baseline for memory bandwidth: STREAM

- Assumption: STREAM (or similar, like vector triad) kernel benchmarks achieve an upper bandwidth limit from main memory
 - i.e., no code can draw more bandwidth
 - Theoretical BW limits are usually not achievable
 - Use STREAM as BW limit rather than the theoretical numbers!
- STREAM: <u>http://www.cs.virginia.edu/stream/</u>
 - Set of 4 standard benchmarks

COPY: A(:) = C(:) SCALE: A(:) = s * C(:) ADD: A(:) = B(:) + C(:) TRIAD: A(:) = B(:) + s * C(:)

- In practice, COPY & SCALE (ADD & TRIAD) draw the same bandwidth
- Advantage of STREAM: Many results published, well-defined benchmark
- Disadvantage of STREAM: Reported and actual BW numbers may differ

STREAM: write-allocate and efficiency



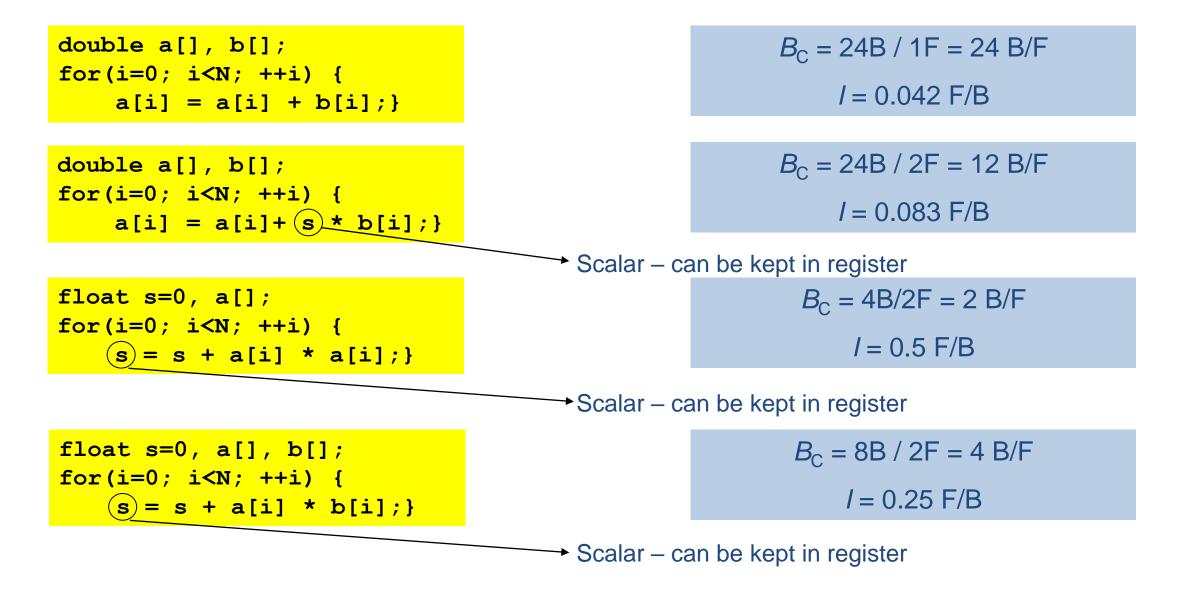
		with write-allocate			w/o write			
	Туре	reported	actual	$b_S/b_{\rm max}$	reported	$b_S/b_{\rm max}$		
	COPY	34079 <u>x3/2</u>	→ 51119	0.75	47281	0.69	14-core (non-CoD)	
	SCALE	33758 <u>x3/2</u>	→50637	0.74	48025	0.70	z 14 l (no	
	ADD	38174	→50899	0.75	51068	0.75	2.3 GHz Haswell	
	TRIAD	38866 <u>x4/3</u>	→51820	0.76	51107	0.75	Ц С	
gnize the benchmark and avoid the write-allocate								
gnize the benchmark and avoid the write-allocate 70-75% efficie								

State of the art compilers recog automatically

PTfS 2025

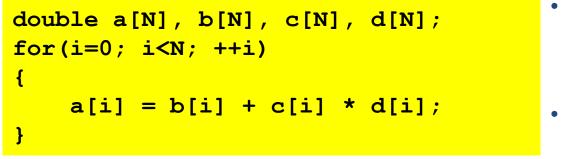
Roofline Model (RLM) – Refined Arithmetic Intensity / Code Balance: Gymnastics

Arithmetic Intensity / Code Balance: Basic Examples



Approaches to determine Computational Intensity

1. Analysis of loop body \rightarrow determine all load / stores that go to memory



- 3 LD (b, c, d) + 1 ST (a) + 1 WA (a) per iteration
 - Each LD / ST / WA is 8 Byte (double)

• 2 FLOP

•
$$I = \frac{2 FLOP}{5*8 Byte} = \frac{1 FLOP}{20 Byte}$$
 $(B_C = \frac{20 Byte}{1 FLOP})$

- Cache vs. Memory Access??!! → DMVM; stencils, SpMV
- 2. Analysis of data structure \rightarrow Assume each element is touched only once

```
double a[N], b[N], c[N], d[N];
for(i=0; i<N; ++i)
{
        a[i] = b[i] + c[i] * d[i];
}</pre>
```

- 4 arrays (of size: N * 8 Byte) + WA on a[] $\rightarrow 2x$ $\rightarrow 5 * N * 8 Byte = 40 * N Byte$
- Total FLOP count: 2 * N FLOP

•
$$I = \frac{2 * N FLOP}{40 * N Byte} = \frac{1 FLOP}{20 Byte} \quad (B_C = \frac{20 Byte}{1 FLOP})$$

• Lower bound for memory traffic \rightarrow Upper bound for *I*

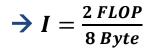
Approaches to determine Computational Intensity

```
double precison A(R,C), x(C), y(R)
...
do c = 1 , C
   tmp=x(c)
   do r = 1 , R
      y(r) = y(r) + A(r,c) * tmp
   enddo
enddo
```

Loop body analysis:

- LD A(r, c) to memory \rightarrow 8 Byte
- $x(c) \leftrightarrow register \rightarrow 0$ Byte
- LD/ST y(r) $\leftarrow \rightarrow$ Cache $\rightarrow 0$ Byte

 \rightarrow 2 FLOP



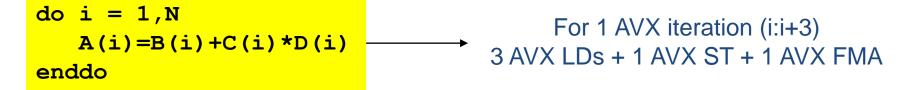
Data structure analysis:

• A(R,C) • X(C) • Y(R): LD/ST $\rightarrow 8 * R * C$ $\rightarrow 8 * R * C$ $\rightarrow 8 * R C$ $\rightarrow 8 * C$ $\rightarrow 2 * 8 * R$ $\rightarrow 2 * 8 * R$ $\rightarrow 2 * R * C$ FLOP $= \frac{2 * R * C FLOP}{(R * C + C + 2 * R) * 8 Byte} = \frac{2 FLOP}{(1 + \frac{1}{R} + \frac{2}{C}) * 8 Byte} \approx \frac{2 FLOP}{8 Byte}$ R,C >> 1

Roofline Model (RLM) – Refined Vector triads

The Roofline Model – refined: Vector triads: P_{max}

Machine: 7 cores of Haswell@2.3GHz ($n_{core} = 7; f = 2.3 \frac{Gcy}{c}$)



AVX performance on 1 core Haswell / Broadwell

Bottlene	Execution Units / Ports					
	AVX ADD					
• 2 AVX ite	AVX MULT	AVX MULT				
• 2 AVX ite	AVX FMA	AVX FMA	AVX ST	AVX LD	AVX LD	
iterations						

AVX LD	AVX LD	AVX ST		
AVX LD	AVX LD		AVX FMA	2 AVX iterations
AVX LD	AVX LD	AVX ST	AVX FMA	

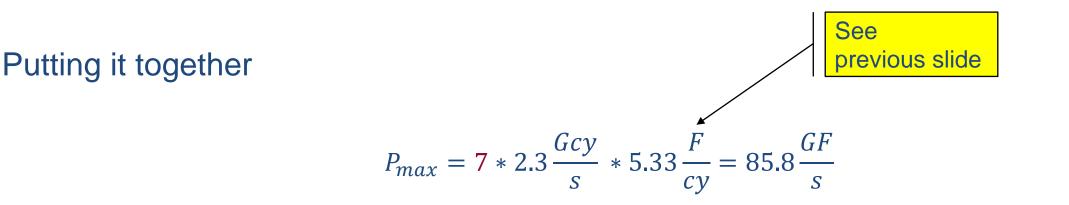
eck: LD

2 AVX iteration:
$$T_{max}^{inst} = 3cy$$

•
$$P_{max}^{core} = {}^{16F}/_{3cy} = 5.33 \ {}^{F}/_{cy}$$

The Roofline Model – refined: Vector triads: $I \cdot b_S \& P$

- Machine: 7 cores of Haswell @2.3 (CoD)
- STREAM triads BW: $b_S = 29 \frac{GB}{s}$
- Computational Intensity (incl. WA; double precision): $I = \frac{2F}{5*8R} = 0.05 \frac{F}{R}$



do i = 1, N

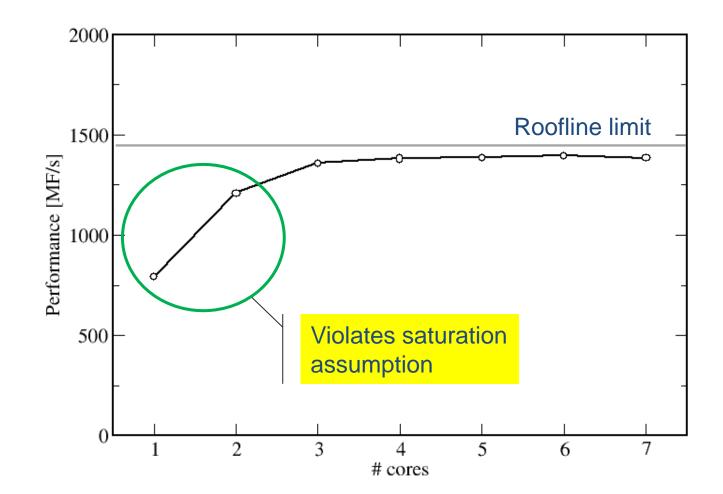
enddo

A(i) = B(i) + C(i) * D(i)

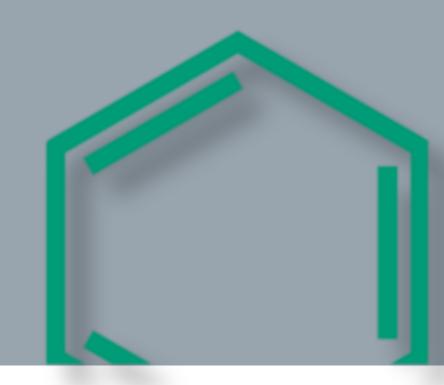
$$P = \min\left(85.8\frac{GF}{s}, 0.05\frac{F}{B} * 29\frac{GB}{s}\right) = \min\left(85.8\frac{GF}{s}, 1.45\frac{GF}{s}\right) = \mathbf{1.45}\frac{GF}{s}$$

The Roofline Model – refined: Validate RLM

7 cores of Haswell @2.3 GHz (CoD)



Roofline Model (RLM) – Refined Dense Matrix Vector Multiplication



The Roofline Model – refined: Dense MVM : P_{max}

Machine: 7 cores of Haswell @2.3GHz ($n_{core} = 7; f = 2.3 \frac{Gcy}{s}$)

```
do c = 1 , C
   tmp=x(c)
   do r = 1 , R
      y(r)=y(r) + A(r,c) * tmp
   enddo
enddo
```

For 1 AVX iteration (r:r+3) 2 AVX LDs + 1 AVX ST + 1 AVX FMA

AVX performance on 1 core Haswell / Broadwell

AVX LD

AVX LD

Execution Units / Ports							
	AVX ADD						
	AVX MULT						
AVX LD	AVX LD	AVX ST	AVX FMA	AVX FMA			

AVX ST

AVX FMA

1 AVX

iteration

Bottleneck: LD

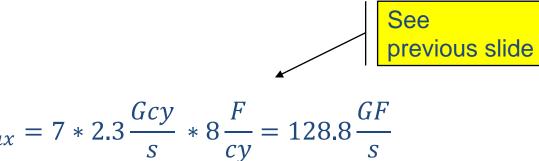
• 1 AVX iteration:
$$T_{max}^{inst} = 1cy$$

 1 AVX iteration → 4 loop iterations → 8 F

•
$$P_{max}^{core} = {}^{8F}/_{1cy} = 8 {}^{F}/_{cy}$$

The Roofline Model – refined: Dense MVM: $I \cdot b_S \& P$

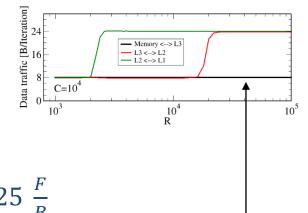
- Machine: 7 cores of Haswell@2.3 GHz
- Read-OnlyBW: $b_S = 32 \frac{GB}{S}$
- Computational Intensity (double precision): $I = 1/B_C^{mem} = \frac{1}{\frac{B}{2F}} = 0.25 \frac{F}{R}$



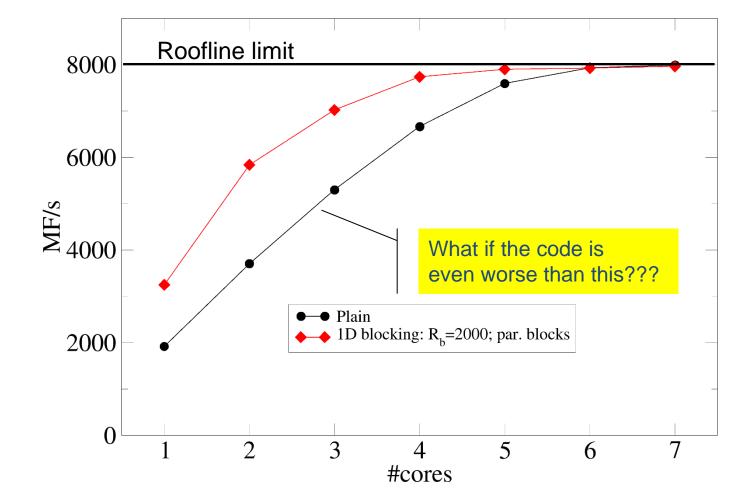
Putting it together

$$P_{max} = 7 * 2.3 \frac{r}{s} * 8 \frac{r}{cy} = 128.8 \frac{r}{s}$$

$$P = \min\left(128.8\frac{GF}{s}, 0.25\frac{F}{B} * 32\frac{GB}{s}\right) = \min\left(128.8\frac{GF}{s}, 8\frac{GF}{s}\right) = 8\frac{GF}{s}$$



The Roofline Model – refined: Dense MVM: Validate

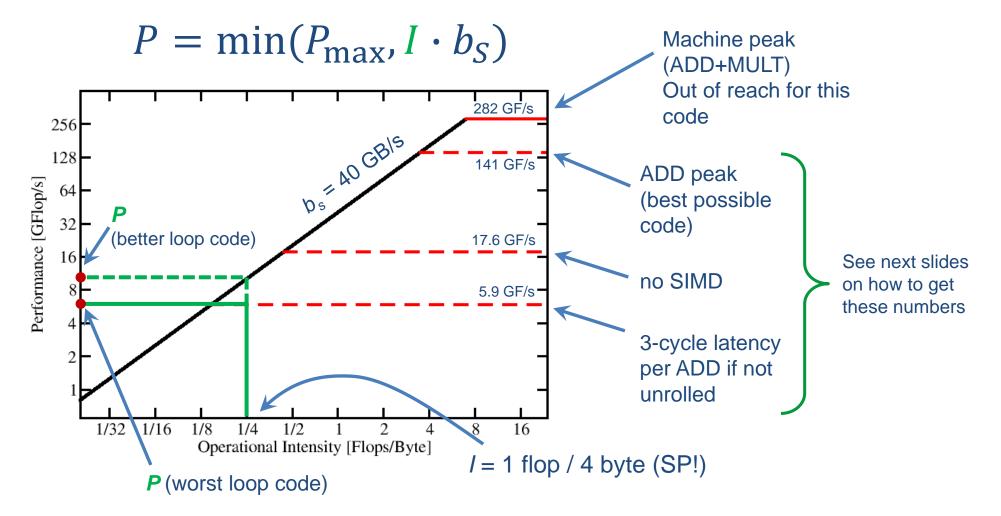


Roofline Model (RLM) – Refined Bad Code Implementation & Lower roofs

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge (3-stage FP add pipeline) socket @ "large" N



Plain scalar code, no SIMD

```
LOAD r1.0 \leftarrow 0

i \leftarrow 1

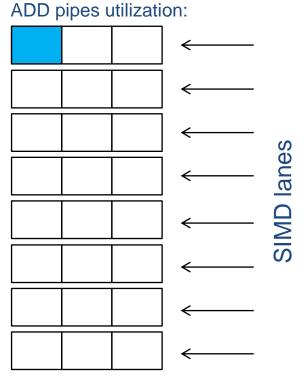
loop:

LOAD r2.0 \leftarrow a(i)

ADD r1.0 \leftarrow r1.0+r2.0

++i \rightarrow? loop

result \leftarrow r1.0
```

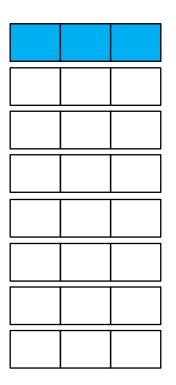


 \rightarrow 1/24 of ADD peak

Applicable peak for the summation loop

Scalar code, 3-way unrolling LOAD r1.0 \leftarrow 0 LOAD r2.0 \leftarrow 0 LOAD r3.0 \leftarrow 0 $i \leftarrow 1$ loop: LOAD r4.0 \leftarrow a(i) LOAD r5.0 \leftarrow a(i+1) LOAD r6.0 \leftarrow a(i+2) ADD $r1.0 \leftarrow r1.0 + r4.0$ ADD $r2.0 \leftarrow r2.0 + r5.0$ ADD $r3.0 \leftarrow r3.0 + r6.0$ $i+=3 \rightarrow ?$ loop result \leftarrow r1.0+r2.0+r3.0

ADD pipes utilization:



→ 1/8 of ADD peak

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled

```
LOAD [r1.0,...,r1.7] \leftarrow [0,...,0]
LOAD [r2.0,...,r2.7] \leftarrow [0,...,0]
LOAD [r3.0,...,r3.7] \leftarrow [0,...,0]
i \leftarrow 1
```

loop:

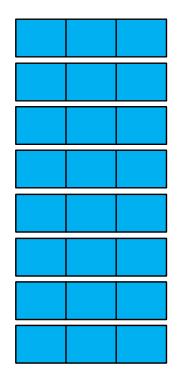
LOAD
$$[r4.0,...,r4.7] \leftarrow [a(i),...,a(i+7)]$$

LOAD $[r5.0,...,r5.7] \leftarrow [a(i+8),...,a(i+15)]$
LOAD $[r6.0,...,r6.7] \leftarrow [a(i+16),...,a(i+23)]$

ADD $r1 \leftarrow r1 + r4$ ADD $r2 \leftarrow r2 + r5$ ADD $r3 \leftarrow r3 + r6$

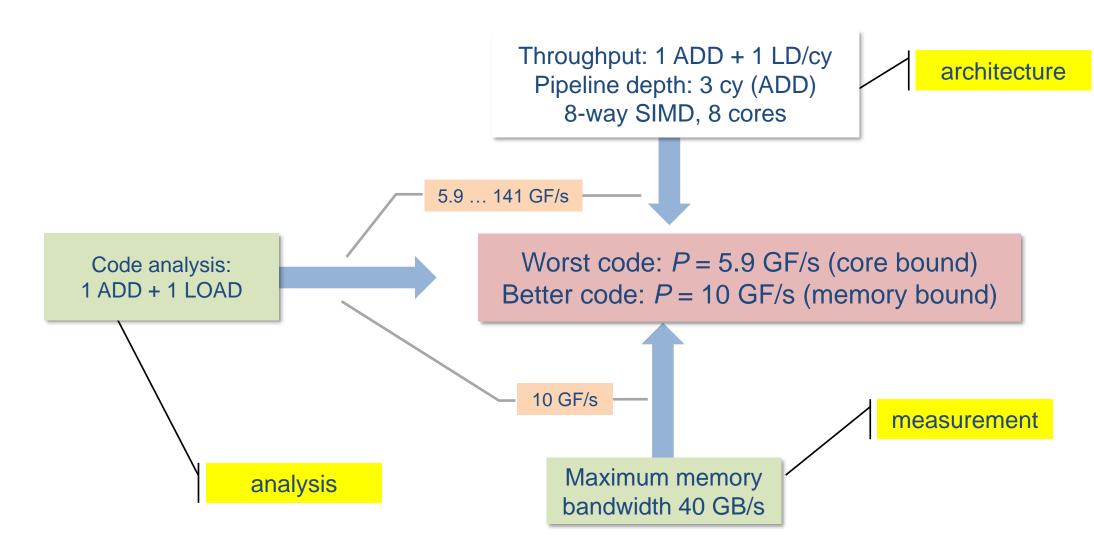
i+=24 →? loop result ← r1.0+r1.1+...+r3.6+r3.7

ADD pipes utilization:



Input to the roofline model

... on the example of do i=1,N; s=s+a(i); enddo in single precision



Friedrich-Alexander-Universität Erlangen-Nürnberg

Roofline Model (RLM) – Refined Summary

Prerequisites for the Roofline Model

- Data transfer and core execution overlap perfectly!
 - Either the limit is core execution or it is data transfer
- Slowest limiting factor "wins"; all others are assumed to have no impact
 - If two bottlenecks are "close", no interaction is assumed
- Data access latency is ignored, i.e. perfect streaming mode
 Achievable bandwidth is the limit

- Chip must be able to saturate the bandwidth bottleneck(s)
 - Always model for full chip

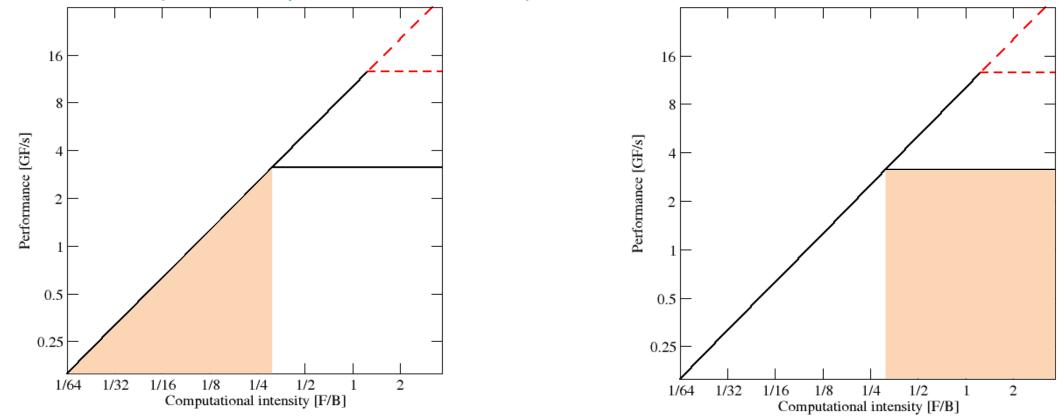
Factors to consider in the roofline model

Bandwidth-bound (simple case)

- Accurate traffic calculation (write-allocate, strided access, ...) → Intensity calculation
- Attainable ≠ theoretical BW

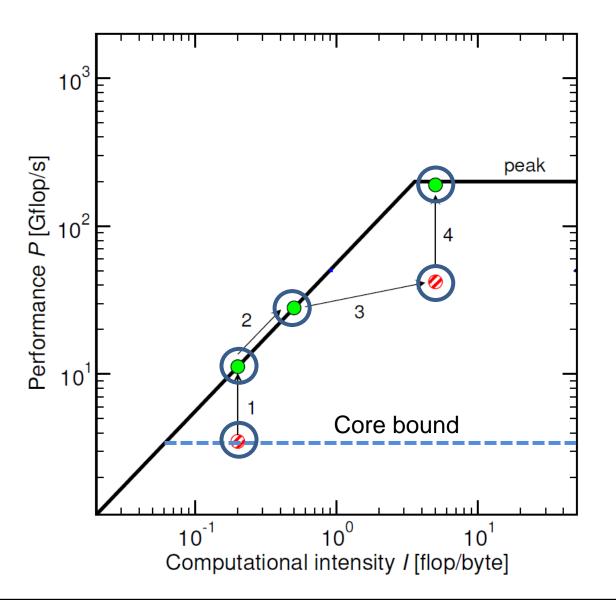
Core-bound (may be complex)

- Multiple bottlenecks: LD/ST, arithmetic, pipelines, SIMD, execution ports
- Limit is linear in # of cores (or clock speed)



Erratic access patterns may violate model assumptions

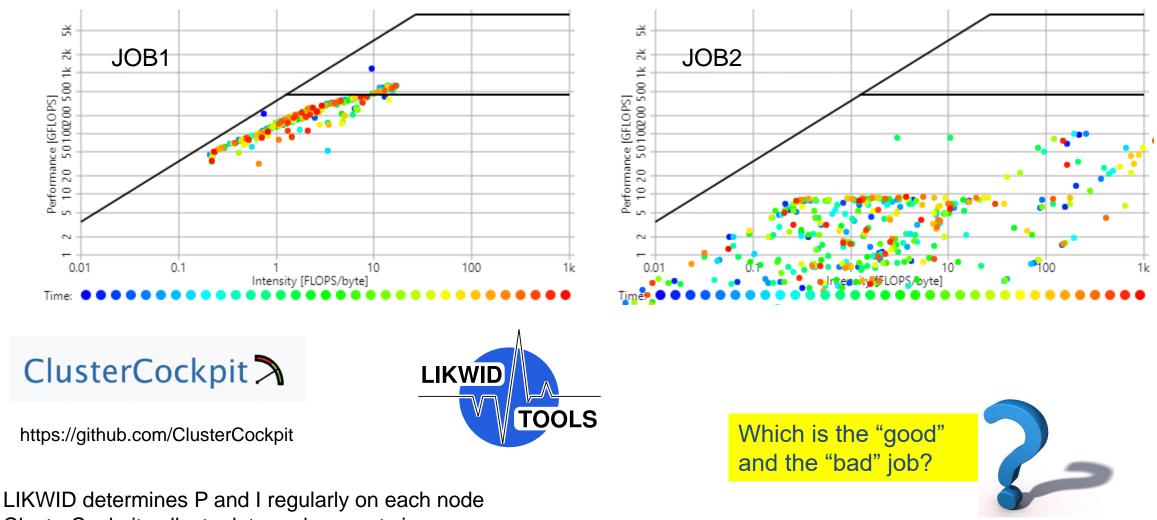
- Hit the BW bottleneck by good serial code (e.g., Ninja C++ → Fortran)
- 2. Increase intensity to make better use of BW bottleneck (e.g., spatial loop blocking)
- 3. Increase intensity and go from memory bound to core bound (e.g., temporal blocking)
- 4. Hit the core bottleneck by good serial code (e.g., -fno-alias, SIMD intrinsics)



Monitoring jobs running on Fritz in the Roofline diagram

Two cluster jobs...

Rooflines: $P = min (P_{peak}, I * b_s)$

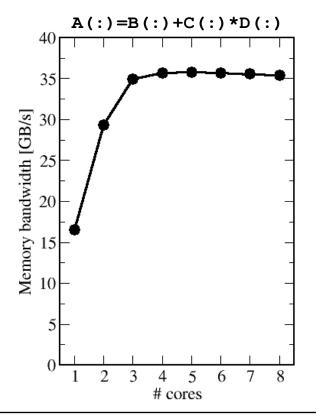


ClusterCockpit collects data and presents is

٠

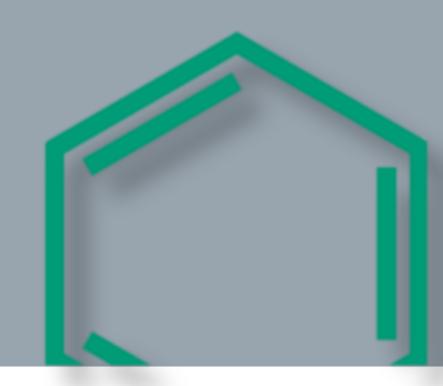
Shortcomings of the roofline model

- Saturation effects in multicore chips are not explained
 - Reason: Intra-Cache and memory transfers do (frequently) not overlap on a single core
 → Overlapp only between cores
 - Increase "pressure" on memory interface until it saturates \rightarrow bottleneck: b_s
 - It is not sufficient to measure single-core STREAM to make it work
- In-cache performance is not correctly predicted
- The ECM performance model gives more insight:



Friedrich-Alexander-Universität Erlangen-Nürnberg

Roofline Model (RLM) – Refined Code Balance and Machine Balance



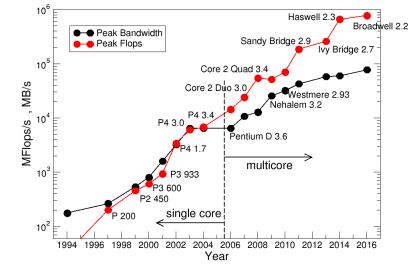
Machine balance for hardware characterization

• For quick comparisons the concept of machine balance is useful

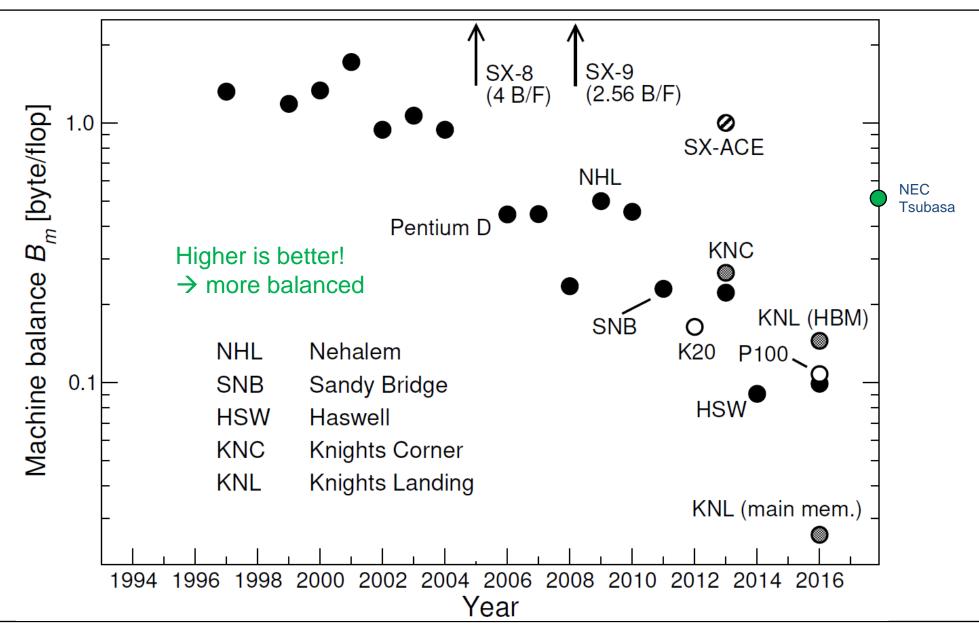
$$B_m = \frac{b_S}{P_{\text{peak}}}$$

- Machine Balance = How much input data can be delivered for each FP operation? ("Memory Gap characterization")
 - Assuming balanced MULT/ADD
- Rough estimate: $B_m \ll B_c \rightarrow$ strongly memory-bound code
- Typical values (main memory):

```
Intel Haswell 14-core 2.3 GHz<br/>B_m = 60 \text{ GB/s} / (14 \times 2.3 \times 16) \text{ GF/s} \approx 0.12 \text{ B/F}Intel Sandy Bridge 8-core 2.7 GHz\approx 0.23 \text{ B/F}Nvidia P100\approx 0.10 \text{ B/F}Intel Xeon Phi Knights Landing (HBM)\approx 0.16 \text{ B/F}
```



Machine balance over time



Friedrich-Alexander-Universität Erlangen-Nürnberg

RLM Case Study

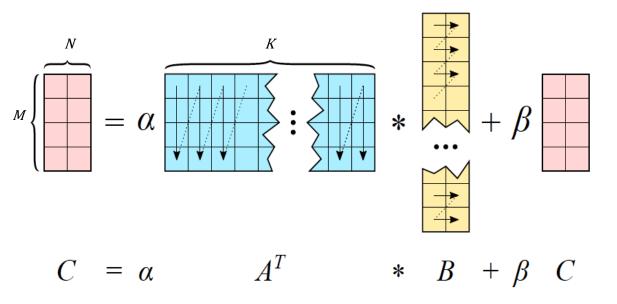
Tall & Skinny Matrix-Transpose Times Tall & Skinny Matrix (TSMTTSM) Multiplication

TSMTTSM Multiplication

- Block of vectors → Tall & Skinny Matrix (e.g. $10^7 \times 10^1$ dense matrix)
- Row-major storage format
- Block vector subspace orthogonalization procedure requires, e.g. computation of scalar product between vectors of two blocks

• TSMTTSM Mutliplication $K \gg N, M$

Assume: $\alpha = 1$; $\beta = 0$



TSMTTSM Multiplication

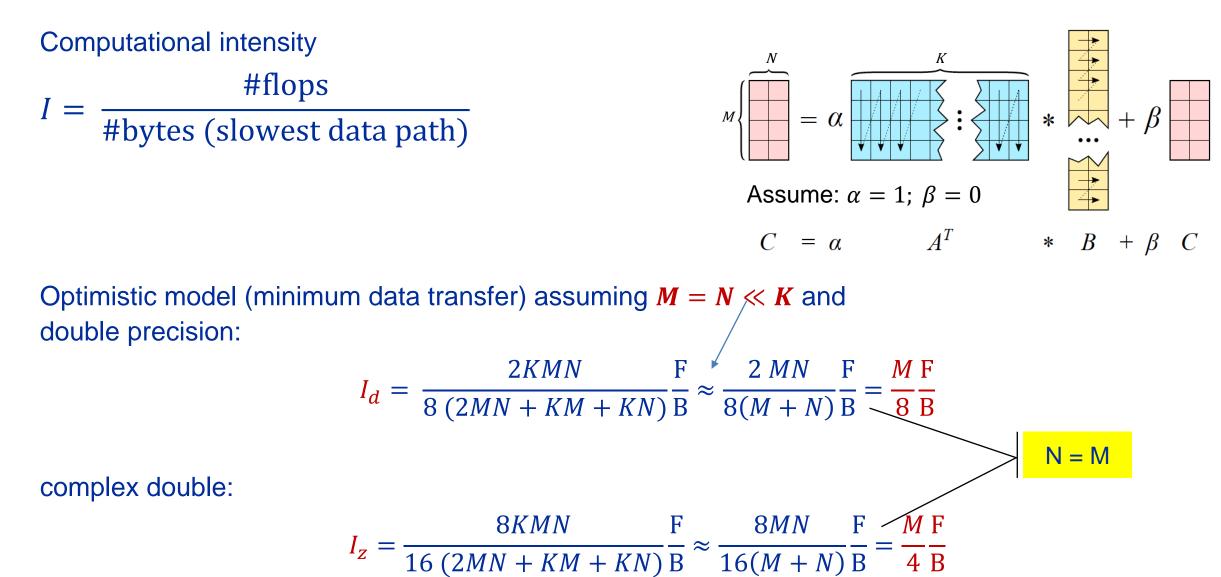
 General rule for dense matrix-matrix multiply: Use vendor-optimized GEMM, e.g. from Intel MKL¹:

$$C_{mn} = \sum_{k=1}^{N} A_{mk} B_{kn}$$
, $m = 1...M, n = 1...N$

double P_{peak} [GF/s] $b_{s}[GB/s]$ Efficiency System Perf. Size SQ 160 GF/s 91% Intel Xeon E5 2660 v2 176 GF/s 52 GB/s 10c@2.2 GHz TS 16.6 GF/s 6% SQ 550 GF/s 95% Intel Xeon E5 2697 v3 582 GF/s 65 GB/s 14c@2.6GHz TS 22.8 GF/s 4% complex double TS@MKL: Matrix sizes: Good or bad? Square (SQ): M=N= K=15,000 Tall&Skinny (TS): M=N=16; K=10,000,000

¹Intel Math Kernel Library (MKL) 11.3

TSMTTSM Roofline model



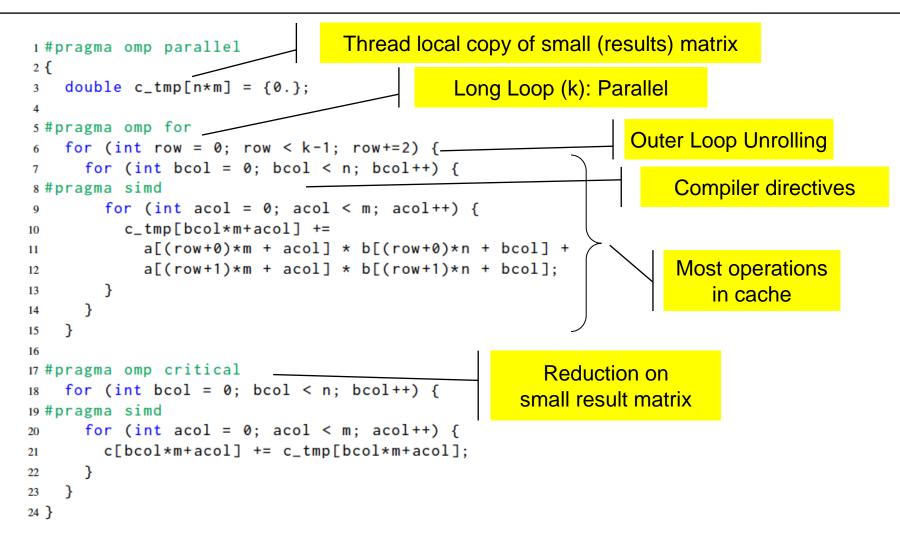
TSMTTSM Roofline performance prediction

Now choose
$$M = N = 16 \Rightarrow I_d \approx \frac{16}{8} \frac{F}{B}$$
 and $I_z \approx \frac{16}{4} \frac{F}{B}$, i.e. $B_d \approx 0.5 \frac{B}{F}$, $B_z \approx 0.25 \frac{B}{F}$
Intel Xeon E5 2660 v2 $(b_S = 52 \frac{GB}{s}) \Rightarrow P = I_d \times b_S = 104 \frac{GF}{s}$ (double)
Measured (MKL): 16.6 $\frac{GF}{s}$

Intel Xeon E5 2697 v3 (
$$b_S = 65 \frac{GB}{s}$$
) $\rightarrow P = I_Z \times b_S = 240 \frac{GF}{s}$ (double complex)
Measured (MKL): 22.8 $\frac{GF}{s}$

→ Potential speedup: 6–10x vs. MKL

Can we implement a better TSMTTSM kernel than Intel?



Not shown: Inner Loop boundaries (n,m) known at compile time (kernel generation) k assumed to be even

TS: M=N=16; K=10,000,000

System	P _{peak} / b _S	Version	Performance	RLM Efficiency
Intel Xeon E5 2660 v2	176 GF/s 52 GB/s	TS OPT	98 GF/s	94 %
10c@2.2 GHz		TS MKL	16.6 GF/s	16 %
Intel Xeon E5 2697 v3	582 GF/s	TS OPT	159 GF/s	66 %
14c@2.6GHz	65 GB/s	TS MKL	22.8 GF/s	9.5 %