
Sparse Matrix-Vector Multiplication

𝑦 = 𝐴 𝑥

Prof. Dr. G. Wellein(a,b) , Dr. G. Hager(a)

(a) Erlangen National High Performance Computing Center (NHR@FAU)
(b) Department für Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025

July 10, 2025 2PTfS 2025

Motivation

= + •

Performance Modelling?

Optimal Performance?

Performance Optimizations?

July 10, 2025 3PTfS 2025

Our SpMV plan

▪ Performance Engineering for SpMV – CPU

▪ Data layout considerations – GPUs

Boundary conditions:

▪ Node-level (OpenMP / CUDA)

▪ Application problems / matrices: Standard collection / own work

July 10, 2025 4PTfS 2025

Roofline Model – Sparse Matrix Vector Multiplication

▪ SpMV: 𝑦 = 𝐴 𝑥

Performance engineering of a single SpMV – general structure

▪ How to store and traverse SpMV

▪ Can we use RLM? What is the intenstiy of SpMV?

▪ Is there an maximum code intensity I for SpMV?

▪ Impact of matrix structure / OpenMP parallelization?

▪ CPU vs. GPU: Data layouts and more

Performance Engineering for

Sparse Matrix-Vector Multiplication

July 10, 2025 6PTfS 2025

Sparse Matrix Vector Multiplication (SpMV)

Key ingredient in many sparse matrix solvers / matrix diagonalization algorithms

▪ Lanczos, Davidson, Jacobi-Davidson, CG, GMRES,…..

Minimize memory footprint:

▪ Store only Nnz nonzero elements of matrix with Nr (number of matrix rows) entries

▪ “Sparse”: Nnz ~ Nr (assume square matrices NC=NR)

▪ Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

Right Hand Side

(RHS) Vector

Left Hand Side

(LHS) Vector

July 10, 2025 7PTfS 2025

SpMVM characteristics

▪ For large problems, SpMV is inevitably memory-bound

▪ Intra-socket saturation effect on modern multicores

▪ SpMV is easily parallelizable in shared and distributed memory

▪ Load balancing

▪ Communication overhead

▪ Data storage format is crucial for performance properties

▪ Most useful general format on CPUs:

Compressed Row Storage (CRS)

▪ May depend on compute architecture and problem (sparsity pattern)

July 10, 2025 8PTfS 2025

CRS matrix storage scheme

…

column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

CRS data structure contains:

▪ val[] stores all the nonzeros (length Nnz) → double

▪ col_idx[] stores column index of each nonzero (length
Nnz) → int

▪ row_ptr[] stores the starting index of each new row in
val[] (length: Nr) → int

July 10, 2025 9PTfS 2025

Case study: Sparse matrix-vector multiply

▪ Strongly memory-bound for large data sets

▪ Mainly streaming data access (matrix data) mixed

with partially indirect access (RHS data):

▪ Usually many spMVs required to solve a problem

▪ Typical dimensions: 𝑁𝑅 ≈ 105, … , 109 & 𝑁𝑁𝑍𝑅 ≈ 10,… , 100

▪ Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

July 10, 2025 10PTfS 2025

Performance characteristics

▪ Strongly memory-bound for large data sets → saturating performance

across cores on the chip

▪ Performance seems to depend

on the matrix

▪ Can we explain this?

▪ Is there a “light speed” for SpMV?

▪ Optimization?

???

???

10-core Ivy

Bridge, static

scheduling

July 10, 2025 11PTfS 2025

SpMV node performance model – CRS (1)

real*8 val(Nnz)

integer*4 col_idx(Nnz)

integer*4 row_ptr(Nr)

real*8 C(Nr)

real*8 B(Nc)

Min. load traffic [B]: (8 + 4) 𝑁𝑛𝑧 + 4 + 8 𝑁𝑟 + 8 𝑁𝑐
Min. store traffic [B]: 8 𝑁𝑟
Total FLOP count [F]: 2 𝑁𝑛𝑧

𝐵𝐶,𝑚𝑖𝑛 =
12 𝑁𝑛𝑧 + 20 𝑁𝑟 + 8 𝑁𝑐

2 𝑁𝑛𝑧

𝐵

𝐹
=

Nonzeros per row (𝑁𝑛𝑧𝑟 = ൗ𝑁𝑛𝑧
𝑁𝑟) or column (𝑁𝑛𝑧𝑐 = ൗ𝑁𝑛𝑧

𝑁𝑐)

Lower bound for code balance: 𝐵𝐶,𝑚𝑖𝑛 ≥ 6
B
F

→ 𝐼max ≤
1
6
F
B

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2

𝐵

𝐹

July 10, 2025 12PTfS 2025

SpMV node performance model – CRS (2)

𝐵𝐶,𝑚𝑖𝑛 =
12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2

𝐵

𝐹

𝐵𝐶 (𝛼) =
12 + 20/𝑁𝑛𝑧𝑟 + 𝟖 𝜶

2

𝐵

𝐹

Parameter (𝛼) quantifies
additional traffic for B(:)

(irregular access):

𝛼 ≥ ൗ1 𝑁𝑛𝑧𝑐

𝛼𝑁𝑛𝑧𝑐 ≥ 1
Consider square matrices: 𝑁𝑛𝑧𝑐 = 𝑁𝑛𝑧𝑟 and 𝑁𝑐 = 𝑁𝑟
Note: 𝐵𝐶 ൗ1 𝑁𝑛𝑧𝑟 = 𝐵𝐶,𝑚𝑖𝑛

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

•

July 10, 2025 13PTfS 2025

The “𝜶 effect”

CRS code balance

▪ α quantifies the traffic for loading the Right Hand Side (RHS) vector

▪ 𝛼 = 0 → RHS is in cache (RHS << cache size)

▪ 𝛼 = 1/𝑁𝑛𝑧𝑟 → RHS loaded once

▪ 𝛼 = 1 → no cache

▪ 𝛼 > 1 → Houston, we have a problem!

Can we predict 𝛼?

▪ Not in general

▪ Simple cases (banded, block-structured): Similar to layer condition analysis

→ Determine 𝛼 by measuring the actual memory traffic (→ measured code balance 𝐵𝐶
𝑚𝑒𝑎𝑠)

𝐵𝐶 (𝛼) =
12 + 20/𝑁𝑛𝑧𝑟+ 8 𝛼

2

𝐵

𝐹

= 6 + 4 𝛼 +
10

𝑁𝑛𝑧𝑟

𝐵

𝐹

July 10, 2025 14PTfS 2025

Determine 𝜶 (RHS traffic quantification)

▪ 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-perfctr)

▪ Solve for 𝛼:

Example: kkt_power matrix from the UoF collection (one Intel SNB socket)

▪ 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

▪ 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

→ 𝛼 = 0.36, 𝛼𝑁𝑛𝑧𝑟 = 2.5

→ RHS is loaded 2.5 times from memory

𝐵𝐶 𝛼 = 6+4α+
10

𝑁𝑛𝑧𝑟

B

F
=

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 F
(= 𝐵𝐶

𝑚𝑒𝑎𝑠)

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

10

𝑁𝑛𝑧𝑟

𝐵𝐶 (𝛼)

𝐵𝐶,𝑚𝑖𝑛

= 1.11

11% extra traffic →

optimization potential!

July 10, 2025 15PTfS 2025

Three different sparse matrices

Matrix 𝑁 𝑁𝑛𝑧𝑟 𝐵𝐶,𝑚𝑖𝑛 [B/F] 𝑃𝑜𝑝𝑡 [GF/s]

DLR1 278,502 143 6.1 7.64

scai1 3,405,035 7.0 8.0 5.83

kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scai1 kkt_power

Roofline performance prediction : 𝑃𝑜𝑝𝑡 = 𝐼 ∗ 𝑏𝑆 = ൗ
𝑏𝑆

𝐵𝐶,𝑚𝑖𝑛

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏𝑆 = 46.6 ΤGB s

July 10, 2025 16PTfS 2025

Now back to the start…

▪ 𝑏𝑆 = 46.6 ΤGB s , 𝐵𝑐 = 6 ΤB F

▪ Maximum spMVM performance:

𝑃𝑚𝑎𝑥 = 7.8 ΤGF s

▪ DLR1 causes (almost) minimum CRS code

balance (as expected)

▪ scai1 measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.5 B/F > 𝐵𝐶,𝑚𝑖𝑛 (6% higher than min)

→ good BW utilization, slightly non-optimal 𝛼

▪ kkt_power measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.8 B/F > 𝐵𝐶,𝑚𝑖𝑛 (10% higher than min)

→ performance degraded by load imbalance,

fix by block-cyclic schedule

scai1, kkt_power upper limit

July 10, 2025 18PTfS 2025

Investigating the load imbalance with kkt_power

static,2048

static

→ Fewer overall instructions, (almost)

BW saturation, 50% better

performandce with load balancing

→ CPI value unchanged!

Measurements with likwid-perfctr

(MEM_DP group)

July 10, 2025 19PTfS 2025

SpMV node performance model – CPU

Intel Xeon Platinum 9242

24c@2.8GHz (turbo)

𝑏𝑆 = 122 𝐺𝐵/𝑠

B
a
la

n
c
e
 [
B

/F
] 𝛼𝑁𝑛𝑧𝑐

6
B

F

Matrices taken from: C. L. Alappat et al.: ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX. In print.

Preprint: arXiv:2103.0301

https://arxiv.org/abs/2103.03013

Data layout considerations – GPUs

July 10, 2025 21PTfS 2025

What about GPUs?

▪ GPUs need

▪ Sufficient work per kernel launch in order to leverage their parallelism

▪ Coalesced access to memory (consecutive threads in a warp should access

consecutive memory addresses)

▪ Plain CRS for SpMV on GPUs is not a good idea

1. Short inner loop

2. Different amount of work per thread

3. Non-coalesced memory access

▪ Remedy: Use SIMD/SIMT-friendly storage format

▪ ELLPACK, SELL-C-σ, DIA, ESB,…

0

1

2

3

4

5

6

7

8

9

10

11

W
a
rp

 t
h
re

a
d
s

July 10, 2025 22PTfS 2025

What about GPUs?

▪ Each GPU thread computes one

row, iterates over column indices

▪ This is the best mapping for CRS:

▪ Enough parallelism to saturate

the GPU (unless matrix is

small)

▪ Consecutive threads use

similar data, spatial locality is

used

▪ No reduction among threads,

each thread computes its own

sum

▪ But plain CRS has problems on

GPUs!

July 10, 2025 23PTfS 2025

CRS SpMV in CUDA (y = Ax)

template <typename VT, typename IT>

__global__ static void

spmv_csr(const ST num_rows,

const IT * RESTRICT row_ptrs, const IT * RESTRICT col_idxs,

const VT * RESTRICT values, const VT * RESTRICT x,

VT * RESTRICT y)

{

ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row

if (row < num_rows) {

VT sum{};

for (IT j = row_ptrs[row]; j < row_ptrs[row + 1]; ++j) {

sum += values[j] * x[col_idxs[j]];

}

y[row] = sum;

}

} 𝐵𝑐 𝛼 = 6 + 4 𝛼 +
6

𝑁𝑛𝑧𝑟

𝐵

𝐹

No write-allocate on GPUs for consecutive stores

July 10, 2025 24PTfS 2025

SpMV CRS performance on a GPU
CRS (1 thread per row)

NVIDIA Ampere A100

Memory bandwidth 𝑏𝑆 = 1400 GB/s

▪ Strong “𝛼 effect” – large deviation from

optimal 𝛼 for many matrices
▪ Many cache lines touched b/c every thread

handles one row → bad cache usage

▪ Mediocre memory bandwidth usage

(≪ 1400 GB/s) in many cases
▪ Non-coalesced memory access

▪ Imbalance across rows/threads of warps

July 10, 2025 25PTfS 2025

CRS SpMV on GPUs: scattered loads

▪ Loads are executed in lock step on GPUs too

▪ GPUs prefer compact “coalescable” addresses for

each load (i.e. consecutive access across threads)

CRS vs. GPU

▪ Row-wise storage format but access pattern

orthogonal! → Scattered loads within warp

▪ Scattered loads need more cycles

▪ Scattered values occupy more cache lines

▪ Higher latencies and redundant data transfers

in linear
memory

July 10, 2025 26PTfS 2025

CRS SPMV on GPUs – Problems: Idle threads

▪ Threads are grouped in warps

▪ Threads in a warp execute in lockstep, similar

to SIMD

▪ Problem: loop over column indices can have

different trip count for each vector

▪ Threads in a warp that have completed the

loop are masked off

▪ All threads in a warp have to wait for the

thread with most non-zeros

July 10, 2025 27PTfS 2025

SELL-C-𝜎

Idea

▪ Sort rows according to length within sorting scope 𝜎

▪ Store nonzeros column-major in zero-padded chunks of height 𝐶

zero padding

“Chunk occupancy”:

𝛽 =
𝑁𝑛𝑧

σ
𝑖=0
𝑁𝑐 𝐶 ⋅ 𝑙𝑖

𝑙𝑖: width of chunk 𝑖

M. Kreutzer et al.: A Unified Sparse Matrix

Data Format For Efficient General Sparse

Matrix-vector Multiplication On Modern

Processors With Wide SIMD Units, SIAM

SISC 2014, DOI: 10.1137/130930352

https://dx.doi.org/10.1137/130930352

July 10, 2025 28PTfS 2025

SELL-C-𝜎 SpMV in CUDA (y=Ax)
template <typename VT, typename IT> __global__ static void

spmv_scs(const ST C, const ST n_chunks, const IT * RESTRICT chunk_ptrs,

const IT * RESTRICT chunk_lengths, const IT * RESTRICT col_idxs,

const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y)

{

ST row = threadIdx.x + blockDim.x * blockIdx.x;

ST c = row / C; // the no. of the chunk

ST idx = row % C; // index inside the chunk

if (row < n_chunks * C) {

VT tmp{};

IT cs = chunk_ptrs[c]; // points to start indices of chunks

for (ST j = 0; j < chunk_lengths[c]; ++j) {

tmp += values[cs + idx] * x[col_idxs[cs + idx]];

cs += C;

}

y[row] = tmp;

}

}

0

1

2

3

4

5

W
a
rp

 t
h
re

a
d
s

July 10, 2025 29PTfS 2025

Code balance of SELL-C-σ (y=Ax)

When measuring 𝐵𝐶
𝑚𝑒𝑎𝑠, take care to use the “useful”

number of flops (excluding zero padding) for work

𝐵𝑆𝐸𝐿𝐿 𝛼, 𝛽, 𝑁𝑛𝑧𝑟 =
1

𝛽

8 + 4

2
+
8𝛼 + 𝛽(8 + 4/𝐶)/𝑁𝑛𝑧𝑟

2

bytes

flop

=
6

𝛽
+ 4𝛼 +

𝛽(4 + 2/𝐶)

𝑁𝑛𝑧𝑟

bytes

flop

LHS update (write only)

chunk index

Matrix data &

column index

Optimal 𝛼 =
𝛽

𝑁𝑛𝑧𝑟

July 10, 2025 30PTfS 2025

How to choose the parameters 𝐶 and 𝜎 on GPUs?

▪ 𝐶

▪ 𝑛 × warp size to allow good utilization of GPU threads

and cache lines

▪ 𝜎

▪ As small as possible, as large as necessary

▪ Large 𝜎 reduces zero padding (brings 𝛽 closer to 1)

▪ Sorting alters RHS access pattern → 𝛼 depends on 𝜎

July 10, 2025 31PTfS 2025

SpMV node performance model – GPU
CRS (1 thread per row) SELL-32-128

NVIDIA Ampere A100

𝑏𝑆 = 1400 GB/s

July 10, 2025 32PTfS 2025

SELL-C-𝜎 kernel on CPUs

Example 𝑪 = 𝟒 without further unrolling

𝐶 = 4→ AVX instructions

Choice of C for CPUs:

• (Multiple of) SIMD length

July 10, 2025 33PTfS 2025

SpMV node performance model – CPU
CRS SELL-32-128

Intel Ice Lake 8360 Y

𝑏𝑆 = 356 GB/s

Different matrices!!!

July 10, 2025 35PTfS 2025

Roofline analysis for spMVM

▪ Conclusion from the Roofline analysis

▪ The roofline model does not “work” for spMVM due to the RHS traffic uncertainties

▪ We have “turned the model around” and measured the actual memory traffic to determine the

RHS overhead

▪ Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

▪ Do not forget about load balancing!

▪ Sparse matrix times multiple vectors bears the potential of huge savings in data

volume

▪ Consequence: Modeling is not always 100% predictive. It‘s all about learning more

about performance properties!

BACKUP

Applying sparse matrix to multiple vectors

(Sparse Matrix Multiple Vectors: SpMMV)

Unchanged matrix applied to multiple RHS (r) vectors to yield multiple LHS (r) vectors

July 10, 2025 38PTfS 2025

Multiple RHS vectors (SpMMV)

do s = 1,r

do i = 1, Nr

do j = row_ptr(i),row_ptr(i+1)-1

C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)

enddo

enddo

enddo
𝐵𝑐 unchanged, no

reuse of matrix data

do i = 1, Nr

do j = row_ptr(i),row_ptr(i+1)-1

do s = 1,r

C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)

enddo

enddo

enddo

Higher 𝐵𝑐 due to max

reuse of matrix data

do i = 1, Nr

do j = row_ptr(i),row_ptr(i+1)-1

do s = 1,r

C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))

enddo

enddo

enddo

CL-friendly data

structure (row major)

July 10, 2025 39PTfS 2025

SpMMV code balance

One complete inner (s) loop traversal:

▪ 2𝑟 flops

▪ 12 bytes from matrix data

(value + index)

▪
16𝑟

𝑁𝑛𝑧𝑟
bytes from the 𝑟 LHS updates

▪
4

𝑁𝑛𝑧𝑟
bytes from the row pointer

▪ 8𝑟𝛼 𝑟 bytes from the 𝑟 RHS reads

do i = 1, Nr

do j = row_ptr(i),row_ptr(i+1)-1

do s = 1,r

C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))

enddo

enddo

enddo

𝐵𝑐 𝑟 =
1

2𝑟
12 + 8𝑟𝛼 𝑟 +

16𝑟 + 4

𝑁𝑛𝑧𝑟

B

F

=
6

𝑟
+ 4𝛼 𝑟 +

8 + 2/𝑟

𝑁𝑛𝑧𝑟

B

F
OK so what now???

July 10, 2025 40PTfS 2025

SpMMV code balance

Let’s check some limits to see if this makes sense!

𝐵𝑐 𝑟 =
6

𝑟
+ 4𝛼 𝑟 +

8 + 2/𝑟

𝑁𝑛𝑧𝑟

B

F

𝑟 = 1
6+4α+

10

𝑁𝑛𝑧𝑟

B

F

4𝛼 𝑟 +
8

𝑁𝑛𝑧𝑟

B

F

reassuring ☺

Can become very small for

large 𝑁𝑛𝑧𝑟 → decoupling from

memory bandwidth is possible!

M. Kreutzer et al.: Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems.
Proc. IPDPS15, DOI: 10.1109/IPDPS.2015.76

6

𝑟

B

F

http://www.ipdps.org/
http://dx.doi.org/10.1109/IPDPS.2015.76

July 10, 2025 41PTfS 2025

SELL-C-𝜎 kernel on CPUs

Example 𝐶 = 4 without further unrolling

𝐶 = 4

Next lectures

▪ July 10st: SpMV

▪ July 14th: Limits of Parallelisam (Amdahl)

▪ July 16th: GPU lecture

▪ July 21th: Advanced OpenMP (I) – ccNUMA!!!!

▪ July 23rd: Advanced OpenMP (II)

July 10, 2025PTfS 2025 42

