
Programming Techniques for Supercomputers:

Basics – Parallelism, Scalability and parallel efficiency

Basic limitations of parallel computing

Prof. Dr. G. Wellein(a,b) ,  Dr. G. Hager(a)

(a) Erlangen National High Performance Computing Center (NHR@FAU)
(b) Department für Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 2025



Basics: Motivation

▪ Identify basic limitations of implementations or algorithms for parallel processing

▪ Assumptions:

▪ Underlying hardware is perfectly scalable (no saturation effects etc.)

▪ Basic workload may have pure serial and pure parallel contributions

▪ N „workers“ have to perform either

▪ Fixed amount of work as fast as possible → Amdahl‘s law

▪ Increasing amount of work ( ~N) in constant time → Gustfson‘s law

▪ Metrics:

▪ Parallel speed-up

▪ Parallel efficiency



Basics: Motivation

▪ Absoulte runtime based view: N workers need 𝑇𝑖𝑚𝑒(𝑁)
▪ Absolute time to execute (𝑁 = 1) workload on one worker: 𝑇𝑖𝑚𝑒 1

▪ Basic assumption: workload consists of pure serial (𝑠) and perfectly parallelizable (𝑝) „timefraction“

𝑇𝑖𝑚𝑒 1 = 𝑇𝑖𝑚𝑒𝑠 1 + 𝑇𝑖𝑚𝑒𝑝 1

▪ Relative runtime („fraction“) based view: 

▪ All runtimes are measured realtive to 𝑇𝑖𝑚𝑒 1 → 𝑇 𝑁 =
𝑇𝑖𝑚𝑒(𝑁)

𝑇𝑖𝑚𝑒(1)
→ 𝑇 1 = 1

▪ Serial fraction 𝑠 =
𝑇𝑖𝑚𝑒𝑠(1)

𝑇𝑖𝑚𝑒(1)
- parallel fraction: p =

𝑇𝑖𝑚𝑒𝑝(1)

𝑇𝑖𝑚𝑒(1)

𝑇 1 = 1 = 𝑠 + 𝑝

Can not be parallelized Can be perfectly parallelized

Can not be parallelized Can be perfectly parallelized



July 15, 2025PTfS 2025

Basic: The ideal world and reality

serial serial

serial serial

seriellserial serial

Ideal world 

All work is perfectly parallelizable

First correction towards reality 

Purely serial parts limit maximum speedup

Reality 

Communication / synchronization / load imbalance…



Limitations of Parallel Computing:

Metrics to quantify the efficiency of parallel computing

▪ Assume 𝑇(𝑁) is the time to execute „some workload“ with 𝑁 workers

▪ How much faster do I execute the given workload on 𝑁 workers?

→Parallel Speed-Up:  𝑆𝑃 𝑁 =
𝑇(1)

𝑇(𝑁)

▪ How efficient do I use the workers in average?

→Parallel Efficiency:  𝜀𝑃 𝑁 =
𝑆𝑃(N)

𝑁

▪ Warning: These metrics are relative to the time (performance) of a single worker →

These metrics are not performance metrics!



Amdahl’s law (“strong scaling”)

Gustafson’s law (“weak scaling”)

Applying Amdahl’s law

Limitations beyond Amdahl/Gustafson

Basic limitations of parallel computing



→Parallel speedup:

Amdahl's Law 
𝑆𝑃 𝑁 =

𝑇(1)

𝑇(𝑁)
=

1

𝑠 +
1 − 𝑠
𝑁

July 15, 2025PTfS 2025

Limitations of Parallel Computing:

Calculating Speedup in a Simple Model (“strong scaling”)

One worker: T(1) = s + p = 1

purely serial

part s
parallelizable part: p = 1-s

N workers:  T(N) = s + p/N

Purely Serial

Perfectly 

Parallelizable

Assumption:  Constant workload („strong scaling“) 



July 15, 2025PTfS 2025

Limitations of parallel computing:

Amdahl´s Law (“strong scaling”)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

S
(N

)

# CPUs

s=0.01

s=0.1

s=0.2



▪ Benefit of parallelization is strongly limited by serial part (𝑠)

▪ Maximum Speed-Up which can be attained: lim
𝑁→∞

𝑆𝑃 𝑁 =
1

𝑠

▪ Parallel Efficiency:

▪ For large number of workers lim
𝑁→∞

𝜀𝑃 𝑁 = 0

▪ Reality: No task is perfectly parallelizable
▪ Shared resources have to be used serially

▪ Task interdependencies must be accounted for

▪ Communication overhead (but that can be modeled separately)

Limitations of Parallel Computing:

Amdahl's Law (“strong scaling”)

1)1(

1

+−
=

Ns
p



Limitations of Parallel Computing:

Extended Amdahl's Law with Communication

▪ Assume that 𝑐 𝑁 is the communication time when using N processors 
with 𝑐 1 = 0

→ 𝑇 𝑁 = 𝑠 + Τ𝑝 𝑁 + 𝑐(𝑁)

▪ Communication time may depend on many factors:

▪ Network topology

▪ Communication pattern 

▪ Message sizes

▪ …

▪ Typical scaling of communication times:

▪ Global communication, e.g. barrier: 𝑐 𝑁 = k log𝑁

▪ Every process sending message over bus based network or serialization of 
communication in application code: 𝑐 𝑁 = k N (see next slide)



July 15, 2025PTfS 2025

Limitations of parallel computing:

Amdahl with (simple) communication Model: Extended Amdahl

T(1) = s+p = serial compute time

purely serial 

part s
parallelizable part: p = 1-s

Communication model: Constant fraction k for 

each “communication” between each two workersparallel: T(4) = s+p/4+4k

Extended Amdahl model

(for specific communication model):

(k=0 → Amdahl's Law)

Specific choice of 

communication model

(ring shift – bus network)

NksNT

T
S

N
s

k

p
++

==
−1

1

)(

)1(



Limitations of parallel computing:

Amdahl’s Law

Nk
NS Nk

p

1
)( 1⎯⎯ →⎯ 

▪ Large N limits

▪ Amdahl's Law predicts (k=0)

▪ At k≠0, our simplified model of

communication overhead

yields a beaviour of

s
NS p

N

1
)(lim 0 =

→

(independent of N)



July 15, 2025PTfS 2025

Limitations of parallel computing:

Amdahl´s Law

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

S
(N

)

# CPUs

s=0.01

s=0.1

s=0.1 k=0.03



July 15, 2025PTfS 2025

Limitations of parallel computing:

Amdahl´s Law at scale

0,1

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000

S
(N

)

# CPUs

s= 10-5

s= 10-4

s= 10-5 k=10-6



Limitations of parallel computing:

Impact of communication is not always as bad…

▪ Communication is not necessarily purely serial

▪ Non-blocking networks can transfer many messages concurrently – factor Nk in denominator 

becomes k, which can be added to s

(technical measure)

▪ Sometimes, communication can be overlapped with useful work (“asynchronous 

communication”):

▪ But never forget
s

NS p
N

1
)(lim 0 =

→



Amdahl’s law (“strong scaling”)

Gustafson’s law (“weak scaling”)

Applying Amdahl’s law

Limitations beyond Amdahl/Gustafson

Basic limitations of parallel computing



Limitations of parallel computing:

The „weak scaling“ scenario

▪ Increasing problem size often mainly enlarges „parallel“ workload p

▪ Then Speed-up increases with problem size

▪ For some application fields: Solve problems as big as possible

→ Increase (parallel) workload with available workers / processors

→ This is called „weak scaling“

s p

p/Ns

s

s

p

p/N

Scalability in terms of parallel speedup

and parallel efficiency improves when

scaling the problem size!



Limitation of parallel computing:

Increasing Parallel Efficiency (“weak scaling”)

▪ Assume simple and optimistic scenario: Parallel Workload increases linearly with 
N, i.e.  𝑝 → 𝑁 𝑝

→ 𝑇 𝑁 = 𝑠 +
𝑁 𝑝

𝑁
= 𝑠 + 𝑝

→ Runtime stays constant if workload is increased linearly with N

→ Performance increases linearly with N

▪ How long does it take to solve the workload of N processors on 1 processor

→ 𝑇𝑁 1 = 𝑠 + 𝑁 𝑝

→ 𝑆 𝑁 =
𝑇𝑁(1)

𝑇 (𝑁)
=

𝑠+𝑁 𝑝

𝑠+𝑝
=

𝑠+𝑁 𝑝

𝑇𝑆(1)
= 𝑠 + 1 − 𝑠 𝑁

Gustafson's Law 

("weak scaling“ – performance scaling)
Speed-Up increases

linearly with N



Amdahl’s law (“strong scaling”)

Gustafson’s law (“weak scaling”)

Applying Amdahl’s law

Limitations beyond Amdahl/Gustafson

Basic limitations of parallel computing



Limitations of parallel computing:

Applying Amdahl: Serial & Parallel fraction

Always remember model assumptions:

▪ Workload consists of 

▪ purely serial (s) and 

▪ perfectly parallelizable (𝑝 →
𝑝

𝑁
) parts

▪ Scalability is limited by

▪ serial fraction or 

▪ communication overhead (extended Amdahl).

▪ Impact of shared/saturating hardware resources is not modeled 

▪ How to determine model parameters (𝒔, 𝒑)?

▪ First principles: Complete knowledge of application and hardware parameters required – too 

complex for most applications/kernels

▪ Fit model parameters to speedup measurements 



Limitations of parallel computing:

Applying Amdahl: Serial & Parallel fraction

▪ Naïve approach: Measure performance as a function of cores and fit (extended) 

Amdahl’s law (cf. slide 6/9)

▪ Hypothetical study on Emmy (i.e. 2-sockets 10 core each per node) – extended 

Amdahl

Experimental data 

does not match Amdahl

Socket/node scaling limited 

by bandwidth saturation

Communication

within node

Communication

between nodes

Multiple impact factors which are 

not covered by Amdahl!



Limitations of parallel computing:

Applying Amdahl: Serial & Parallel fraction

▪ Better approach: Separation of concerns! Use well-defined basic building blocks as 

“workers”, which

▪ are perfectly scalable (no shared resource in between)

▪ restrict measured effects to model assumptions, e.g. use full nodes only (one 

communication path, serial fraction still visible)

Socket/node saturation to be

modeled separately by e.g.

ECM model

Amdahl’s modelling serial fraction 

and one communication speed 



Limitations on parallel computing:

Applying Amdahl: A more general view

▪ Amdahl’s law can also be interpreted as follows

▪ A fraction 𝑝 of a given code/workload can be “accelerated” by a factor 𝑁 through some 

“acceleration technique”

▪ The remainder part 𝑠 cannot be accelerated, i.e. 𝑠 + 𝑝 = 1

▪ “Normalized” runtime of baseline code 𝑇𝑏𝑎𝑠𝑒 = 1 (slide 6: 𝑇 1 )

▪ “Normalized” runtime of accelerated code 𝑇𝑎𝑐𝑐 𝑁, 𝑠 = 𝑠 + 𝑝/𝑁 (slide 6: 𝑇 𝑁 )

▪ The speed-up of the acceleration technique is 

𝑆𝑝 𝑁 =
𝑇𝑏𝑎𝑠𝑒

𝑇𝑎𝑐𝑐 𝑁, 𝑠
=

1

𝑠 +
1 − 𝑠
𝑁

▪ Potential “Acceleration factors”

▪ Parallel processing with 𝑁 processes assuming perfect speed-up on fraction 𝑝

▪ Using an accelerator (e.g. GPGPU) which executes the fraction 𝑝 of a code 𝑁 times faster

▪ Implementing a code transformation which speeds up a fraction 𝑝 of a code by 𝑁 times 



Limitations on parallel computing:

Applying Amdahl: A more general view

Application: GPGPU accelerated code

▪ Execution time of original code on host: 𝑇𝑏𝑎𝑠𝑒

▪ ”Accelerated execution” (offload)

▪ A fraction p of the original code can be executed 

on GPGPU N times faster than CPU

▪ The remaining part s is executed on host

→ 𝑆𝑝 𝑁 =
1

𝑠+
1−𝑠

𝑁

▪ Consider data transfer between host and 

accelerator: Extended Amdahl’s law

→ 𝑆𝑝 𝑁, 𝑘 =
1

𝑠+
1−𝑠

𝑁
+𝑘

where 𝑘 = (total data transfer time)/𝑇𝑏𝑎𝑠𝑒

Host

(CPUs+MEM)

Accelerator

(local MEM)

Data exchange (e.g. via PCIe) 

Example:

• 𝑇𝑏𝑎𝑠𝑒 = 150 𝑠
• 75% of that is put on 

GPGPU →𝑝 = 0.75
• GPGPU runs 15x faster 

than host →𝑁 = 15
→ 𝑆0.75 15 = 3,33

• If total data transfer is 15 s

→ 𝑘 =
15

150
= 0.1

→ 𝑆0.75 15,0.1 = 2,5



Amdahl’s law (“strong scaling”)

Gustafson’s law (“weak scaling”)

Applying Amdahl’s law

Limitations beyond Amdahl/Gustafson

Basic limitations of parallel computing



Limitations of parallel computing – beyond Amdahl/G.

Shared/saturated hardware resources

▪ Saturations of shared hardware resources set limits to scalability not covered by Amdahl’s 

/ Gustafson’s law

▪ Technical limit imposed 

by hardware (40 GB/s)

▪ Parallel performance 

assuming perfect 

scalability (p/N)

→Parallel scalability 

limited by saturated 

hardware resource

▪ Other potential HW bottlenecks: QPI, PCIe, networks (see next lecture)

Intel Sandy Bridge

do i= 1 , 10 000 000 

a(i) = b(i) + s * c(i)

enddo

Assume perfect parallelization: s=0 



Limitations of parallel computing – beyond Amdahl/G.

Synchronization points and load imbalance

▪ Load imbalance between “workers”

→ p/N assumption no longer valid (in general)

▪ Hard to model in a general way, but there

are important special cases:

▪ A few “laggers” waste lots of resources

▪ A single (consistent) lagger could be modeled

by increased serial fraction

▪ A few “speeders” may be harmless

→ turning some “laggers” into “speeders” may

boost performance a lot!


