Ll "
E . E = Friedrich-Alexander-Universitat
‘ Erlangen-Nirnberg
L /"“

https://go-nhr.de/CLPE ‘ .

Core-LeveI Performance Engineering

Jan Laukemann, Georg Hager

Erlangen National High Performance Computing Center (NHR@FAU)

at CGO 2026, Sydney

https://go-nhr.de/CLPE
https://go-nhr.de/CLPE
https://go-nhr.de/CLPE

Outline

= Analytical performance modeling

= Basic x86 processor and core architecture

= Code execution on Out-of-order processor cores
*= X86 Instruction set intro

= Analysis of simple kernels — demo and hands-on
= |ntroduction to OSACA
= Arm ISA and A64F X intro

= More complex case studies — demo and hands-on

= Summary, caveats, and take-aways

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Analytical Performance Modeling

Peak Hardware Performance

Performance [GFlop/s]

Computational Intensity [Flop/B]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Analytical Performance Modeling

Peak Hardware Performance

Peak Application Performance

(due to data type, used arithmetic functions, data dependencies, ...)

Performance [GFlop/s]

Computational Intensity [Flop/B]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Analytical Performance Modeling

= What is the best performance my code can achieve?

= \What are the relevant hardware bottlenecks?

= Apply simplified model of underlying hardware,
consisting of

Attainable GFlops/sec

. I n -CO re executi O n l;perational Imer:sity (Flops/Byte)
= Data transfer

LD L1-L2 L2-L3 L3-MEM
ST
MUL
ADD
>t [cy]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Analytical Performance Modeling

= What is the best performance my code can achieve?

= \What are the relevant hardware bottlenecks?

= Apply simplified model of underlying hardware,
consisting of

Attainable GFlops/sec

" I n 'Co re exe C u ti 0 n ;perational Inter:sity (Flops/Byte)
= Data transfer

LD
ST
MUL
ADD

L1-L2 L2-L3 L3-MEM

SEgS

>t [cy]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Basic x86 out-of-order core architecture

On the example of a Sapphire Rapids chip

Basic processor and core architecture

FRONT END

BACK END -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Basic processor and core architecture

FRONT END

BACK END -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Basic processor and core architecture

FRONT END

BACK END -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Basic processor and core architecture

FRONT END

BACK END -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Basic processor and core architecture

FRONT END

AU AU | Lo | Loap | store][AU AU | sTAa |[sTAQ || STORE | AU || LoAD

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Basic processor and core architecture

FRONT END

BACK END -

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

10

Basic processor and core architecture

FRONT END

BACK END -

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

11

Basic processor and core architecture

FRONT END

BACK END -

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

11

Basic processor and core architecture

FRONT END

i ADD R,.1 € R,1, MEM[RO,}/’

AU AU LOAD LOAD | STOREl AU AU STAGJ || STAGQJ || STORE LOAD

B|E

BACK END -

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 12

Basic processor and core architecture

FRONT END

b
2
:
£

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

13

Basic processor and core architecture

FRONT END

BACK END -

64 B/c

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 14

Basic processor and core architecture

FRONT END

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

15

Basic processor and core architecture

FRONT END

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

15

Basic processor and core architecture

16 Blcy

32 Bley

MoP MOP MOP MOP MOP MOP

6 uOPs

FRONT END

To
L3

uOP uOP poOP uyOP pOP poOP

AU AU [store | Au AU |[stAaas | sTA@U |[STORE

LDAGJ § LDAGQJ LEA LEA

BACK END

64 B/cy

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

15

Basic processor and core architecture

16 Blcy

32 Bley

MoP MOP MOP MOP MOP MOP

6 uOPs

FRONT END

To
L3

uOP uOP poOP uyOP pOP poOP

[store | Au AU |[stAaas | sTA@U |[STORE
LDAQU J| LDAGU LEA LEA

BACK END

64 B/cy

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

15

Basic processor and core architecture

16 Bl/cy

L1 Instruction Cache

32 Blcy

Predecoder

Mop MOP MOP MOP MOP MOP

Decoder

6 UOPs

LSD

Mt ro-F usion

Allocation Queue

uOP uOP uoP

uoP

uoP uoP

Reorder Buffer / Register Renaming

[staa | sTaa | store || Au || Lo

To

L3
=
= AU AU
N LEA LEA

Brach || Int MU
% L St || intOv
© x Vec ALU |[Vec ALU*

O VA || Fvar
N
N 2 DIV T

64 Blcy

[store | Au AU
LEA LEA
IntMU_ || Branch
Vec AU || snift
FVA

11

11

Load Store Unit (LSU)

L1 Data Cache (48 KB)

LEA LDAGJ

lr

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

16

Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to regl lcy on 2|3]|11
0x04 LOAD from address 0x1f8244de to reg2 lcy on 23|11
0x08 ADD regl and reg2 and save in reg3 lcy on 0|1]|5]6|10
0x0C STORE reg3 to address 0x2010f££08 lcy on 4|9, 1lcy on 7|8

f“I

DIV 1r

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU”
gi FVA || Fwa
o

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

17

Basic processor and core architecture

f“I

DIV 1r

I 0x00 LOAD from address 0x1£8223de to regl lcy on 2|3]|11
0x04 LOAD from address 0x1£8244de to reg2 lcy on 2|3]|11
0x08 ADD regl and reg2 and save in reg3 lcy on 0|1]|5]6|10
0x0C STORE reg3 to address 0x2010f££08 lcy on 4|9, 1lcy on 7|8

["ox00 |
LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA LDAGQJ || LDAGJ LEA LEA LEA LDAGQJ
LIJ Branch || Int MUL IntMUW. || Branch
st || ItV Vec ALU || sift
x Vec ALU ||Vec ALU*
gi FVA || Fvar

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 18

Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to reqgl

lcy on 2|3]|11

I 0x04 LOAD from address 0x1f8244de to reg2

lcy on 2|3]|11

0x08 ADD regl and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010££08

' 0x00 '

0x04

lcy on 0|1]|5]6|10

lcy on 4|9, 1lcy on 7|8

T

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU” FVA
FVA || Fwa
2% DIV 1[
o

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

19

Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to reqgl
0x04 LOAD from address 0x1f8244de to reg2

lcy on 2|3]|11
lcy on 2|3]|11

0x08 ADD regl and reg2 and save in reg3

lcy on 0|1]|5]6|10

0x0C STORE reg3 to address 0x2010££08

' 0x00 '

0x04

0x08

lcy on 4|9, 1lcy on 7|8

DIV 1r

1

I

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU* FVA
&i FVA || Fwa
o

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

20

Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to reqgl
0x04 LOAD from address 0x1f8244de to reg2

0x08 ADD regl and reg2 and save in reg3

lcy on 2|3]|11
lcy on 2|3]|11
lcy on 0|1]|5]6|10

0x0C STORE reg3 to address 0x2010££08

lcy on 4|9, 1lcy on 7|8

' 0x00 '

0x04

0x0C

0x08

0x0C

DIV 1r

1

I

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU* FVA
&i FVA || Fwa
o

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

21

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Code execution on out-of-order CPUs

Terminology and explanation

Code execution on OoO processor cores

Three metrics to estimate the in-core runtime:

rmrP
= Reciprocal Throughput (rTP) —]

R
-

instr. X m :
I
I
I

i
H H
J
|

LT

= Latency (LT) and Critical Path (CP)

= Loop-carried dependencies (LCD)

Simplified runtime estimation: t. = max(t,rp, ti.cp) |

Unit “it”: 1 high-level iteration

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 40

Code execution on OoO processor cores

Three metrics to estimate the in-core runtime:
= Reciprocal Throughput (rTP) | |

rTP
—

i i

e B

i i
! !

(R

= Latency (LT) and Critical Path (CP)

| | 1
| |]

= Loop-carried dependencies (LCD)

Simplified runtime estimation: t. = max(t,rp, ti.cp)

H
|

LT

J

One assembly loop can easily consist of

Unlt uitu_ 1 high-level iteration dozens of high-level iterations, e.q.:

8x vectorized, 4x unrolled
- 1 assembly iteration = 32 it

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026 40

Code execution on OoO processor cores

= Simple HW model:

= Six types of functional units (i.e., types of instructions), each functional unit (FU)
assigned to one port:

@00000®

= Reciprocal throughput for each instruction: 1cy
= Latency for each instruction: 1cy

PO P1 P2 P3 P4 P5

= Port model:

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 41

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |

- L00p1: .0.0 B] [] S .
= No dependencies within loop

No intra-loop dependencies

rTP prediction: 1 cy
CP prediction: 1 cy
LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 42

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= loop1l: @O O O N))) . -

= No dependencies within loop
No intra-loop dependencies

rTP prediction: 1 cy
CP prediction: 1 cy
LCD prediction: -

0000

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 42

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= loop1l: @O O O N))) . -

= No dependencies within loop
= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 42

Code execution on OoO processor cores

(pPo I[Pt 1L P2 || P3 |[P4 |[P5 |
" loopl: @OO® O N D))) e e
= No dependencies within loop
= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 42

Code execution on OoO processor cores

(pPo I[Pt 1L P2 || P3 |[P4 |[P5 |
" loopl: @OO® O N D))) e e
= No dependencies within loop
= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 42

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

- L00p1: ““ B] [] S .
= No dependencies within loop

= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -

1 cylit

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 42

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

- L00p1: ““ B] [] S .
= No dependencies within loop

= No intra-loop dependencies

= TP prediction: 1 cy e

= CP prediction: 1 cy %%”
- LCD prediction: - 2 O

-
(g)
<
=

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 42

Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to regl lcy on 2|3]|11
0x04 LOAD from address 0x1f8244de to reg2 lcy on 2|3]|11
0x08 ADD regl and reg2 and save in reg3 lcy on 0]11516(10
0x0C STORE reg3 to address 0x2010££08 lcy on 4|9, 1cy on 7|8

ALU ALU LOAD | LOAD || STORE| ALU ALU || STAGU|| STAGU| STORE| ALU LOAD

LEA LEA || LDAGU| LD AGU LEA LEA LEA || LDAGU
Branch || Int MUL IntMUL || Branch

Shift || IntDIV
Vec ALU||Vec ALU
VA || FMA*

BACK END

Core-Level Performance Enaineering Tutorial | NHR@FAU

17

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

44

Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to

regl

0x04 LOAD from addre 44de to

reg2

0x08 ADD regl and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010££08

lcy on 0|1|5]6]10
lcy on 4|9, 1cy on 7|8

lcy on 2|3]|11
lcy on 2|3]|11

ALU ALU LOAD | LOAD || STORE| ALU ALU

STAGU| STAGU| STORE

LEA LEA || LDAGU| LD AGU LEA LEA

Branch || Int MUL IntMUL || Branch

Shift || IntDIV
Vec ALU||Vec ALU
VA || FMA*

BACK END

ALU

LOAD

LEA

LD AGU

Core-Level Performance Enaineering Tutorial | NHR@FAU

17

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

44

Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to

regl

0x04 LOAD from addre 44de to

reg2

0x08 ADD regl and reg2|'§nd save in reg3

0x0C STORE reg3 to address 0x2010££08

lcy on 0|1|5]6]10
lcy on 4|9, 1cy on 7|8

lcy on 2|3]|11
lcy on 2|3]|11

ALU ALU LOAD | LOAD || STORE| ALU ALU

STAGU| STAGU| STORE

LEA LEA || LDAGU| LD AGU LEA LEA

Branch || Int MUL IntMUL || Branch

Shift || IntDIV
Vec ALU||Vec ALU
VA || FMA*

BACK END

ALU

LOAD

LEA

LD AGU

Core-Level Performance Enaineering Tutorial | NHR@FAU

17

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

44

Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to regl

0x04 LOAD from addre

0x08 ADD

0x0C STORE reg3 to address 0x2010££08

regl

and reg2

44de to reg2

regﬂ

lcy on 0|1|5]6]10
lcy on 4|9, 1cy on 7|8

lcy on 2|3]|11
lcy on 2|3]|11

ALU || STAGU|| STAGU| STORE

0 ALU |[ALU |[LOAD |[LOAD |[STORE|| ALU
LEA || LEA |[LDAGU| LD AGU EA || LEA

E Branch || IntMUL IntMUL || Branch
Shift_|| IntDIV

\¢ Vec ALU|[Vec ALUA

(J VA || FMA*

<

o0

ALU

LOAD

LEA

LD AGU

Core-Level Performance Enaineering Tutorial | NHR@FAU

17

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

44

Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to regl
0x04 LOAD from addre 44de to reg2
0x08 ADD regl and reg2 =iy reg3

0x0C STORE |reg3| to address 0x2010££08

lcy on 0|1|5]6]10
lcy on 4|9, 1cy on 7|8

lcy on 2|3]|11
lcy on 2|3]|11

ALU ALU LOAD | LOAD || STORE| ALU ALU

STAGU| STAGU| STORE

LEA LEA || LDAGU| LD AGU LEA LEA

Branch || Int MUL IntMUL || Branch

Shift || IntDIV
Vec ALU||Vec ALU
VA || FMA*

BACK END

ALU

LOAD

LEA

LD AGU

Core-Level Performance Enaineering Tutorial | NHR@FAU

17

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

44

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |

= Loopz: @..,O N D O [e

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |

= Loopz: @._,O N D O [e

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy

CP prediction: 3 cy
LCD prediction: - “(;

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |

0 Loopz: @._.O B D I D O .

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

® |

@O
@

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |

0 Loopz: @._.O B D I D O .

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

® |

@O
@

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= |oop 2: “\“ B) O [. .

= Dependencies within loop body
= No loop-carried dependencies

= r'TP prediction: 1 cy
= CP prediction: 3 cy
= LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= |oop 2: “\“ B) O) e .

= Dependencies within loop body
= No loop-carried dependencies

= r'TP prediction: 1 cy
= CP prediction: 3 cy
= LCD prediction: -

k3

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= |oop 2: “\“ B) O) e .

= Dependencies within loop body
= No loop-carried dependencies

= r'TP prediction: 1 cy
= CP prediction: 3 cy
= LCD prediction: -

k3

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= |oop 2: “\“ B) O) e .

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

°e°
°e°
e’

1 cylit

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= | oop 2: “\“ N O [) S

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= | oop 2: “\“ N O [) S

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= | oop 2: “\“ N O [) S

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy e

= CP prediction: 3 cy p”edl.o”
= LCD prediction: - X %
1 cylit

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 45

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 3 cy %O
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m S o e) e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

@O
@

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m) [e e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m T e) e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

O |

oo

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m S o e) e

= Dependencies within loop body

Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

@O
@

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m) [e e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

Q0 |

‘f‘f

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m T e) e

= Dependencies within loop body

Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m S o e) e

= Dependencies within loop body

Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m) [e e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy O
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m T e) e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

278 °%e

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

*e %8 °%e”

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

3 cylit

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
f

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy e CPILCD

4 /]
e L

CP prediction: 3 cy
LCD prediction: 3 cy

3 cylit

o o e o e o o o e e —
<
o o o e e o o e e

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

LpPo JLP1t JL P2 |[P3 |[P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy e CPILCD

4 /]
e L

CP prediction: 3 cy
LCD prediction: 3 cy

3 cylit

o o e o e o o o e e —
<
o o o e e o o e e

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 46

Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |
= Loop 4: M . e e) .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy W‘
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |
= Loop 4: M D o e o . .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy |
CP prediction: 5 cy

LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO JLP1][P2 [P3 |J[P4 |[P5 |
= Loop 4: M I O 0 D .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO I[Pt [P2 |[P3 |[P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy q
LCD prediction: 3 cy

olo-®

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |
= Loop 4: M D o o O .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

PP

@

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

[P0 P11 [Pz (P31 [CPa] [CF5]
O Loop 4- M N) [O

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy W
LCD prediction: 3 cy

0@

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO I[Pt [P2 |[P3 |[P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO I[Pt [P2 |[P3 |[P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO J[LP1T J[P2 | P3 [P4 |[P5 |
= Loop 4: M D o o O .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

[P0 P11 [Pz (P31 [CPa] [CF5]
O Loop 4- M N) [O

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

im
©

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

(PO I[Pt [P2 |[P3 |[P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

ole-®

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

/ i < i
;'I’}‘{/‘/l"ti/llllj

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy 1
LCD prediction: 3cy 1

/ i < i
;'I’}‘{/‘/l"ti/llllj

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy 1
LCD prediction: 3cy 1

]

: '('I’I‘Z/‘// I’/f/lli’J

Other limitations:
= Reorder buffer
= Loop length
= Resources (not enough ports, ...)
= Decoder

Data t

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 47

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #0:
Out-of-Order Execution

=> https://go-nhr.de/CLPE-ex0

https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0

Hands-On: Out-of-Order Execution

Machine model:
LPo | [Pt P2 || P3 | P4][P5]

N) T) .

Dot product

Instructions: @O Q00 @®

each with a reciprocal throughput
and latency of 1 cy

- Moodle, hands-on #0 (both Multiple-Choice and Drag&Drop)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

49

FAU FAU E.dg“ﬁ' werg

FAU EAY Fw

Introduction to the x86 ISA
(Instruction Set Architecture)

Basics of the x86-64 ISA

Instructions have 0 to 5 operands (and possibly more suppressed operands)

= Operands can be registers (%), memory references ((...)) or immediates ($)

Addressing Mode:

= Intel: BASE + INDEX * SCALE + DISPLACEMENT

= AT&T: DISPLACEMENT(BASE, INDEX, SCALE)
C: A[i] equivalentto * (A+i) (a pointer has a type: A+i*8)
Suffixes: AT&T often uses (optional) suffixes based on the operand size

Opcodes (binary representation of instructions) vary from 1 to 15 bytes

There are two assembler syntax forms: Intel (left) and AT&T (right)

= b (byte): 8 bits, w (word): 16 bits, 1 (long): 32 bits, g (quad): 64 bits

Intel syntax
movaps [rdi + rax*8+48], xmm3
add rax, 8
js 1b

movaps
addq

Js

AT&T syntax

$xmm3, 48 (%rdi, %$rax, 8)
$8, %rax
..Bl1.4

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

55

Basics of the x86-64 ISA with extensions

16 general purpose registers (64bit):
rax, rbx, rcx, rdx, rsi, rdi, rsp,
alias with eight 32-bit register set:

eax, ebx, ecx, edx, esi, edi, esp,

rax
rbx
rcv
rdx
rsi
rdi
rsp (stack pointer)

rbp (base pointer)

rbp,

ebp

r8-rl5

e*x, esi, edi, esp (stack pointer), ebp (base pointer)

A
4 A
*x
A
r A
< 8bits
« 32 bits « 1B bls >
ah al
bh bl
ch cl
dh dl

A

v

64 bits

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

56

Basics of the x86-64 ISA with extensions

Floating Point SIMD registers (aliased):
xmmO-xmml5 (...xmm31) SSE (128bit)

ymmO-ymml5 (...ymm31) AVX (256bit)

8 opmask registers (64 bit, AVX512 only):
k0-k7

zmmO0 - zmm31 AVX-512 (512bit)
' 128-bit
et
Zmm A
N (\
4 \
SIMD | j
register : :
\ J
e
256-bit
AVX, AV X2
ymm*

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

57

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)
... and many more

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)

... and many more
Examples:

vmulpd

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)

... and many more
Examples:

vmulpd - Multiply Packed Double-Precision Floating-Point Values

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)
... and many more
Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)
... and many more
Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd - Add Scalar Double-Precision Floating-Point Values

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd - Add Scalar Double-Precision Floating-Point Values
vmovntdg

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd - Add Scalar Double-Precision Floating-Point Values
vmovntdg - Store Packed Integers Using Non-Temporal Hint

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

58

Case Study: Sum reduction (DP)

sum 0.0;

To get object code use

for (int i=0; i<size; i++) { objdump -don ob!ect flle or
_ executable or compile with -s
sum += data[i];

Assembly code w/ -01 (AT&T syntax, Intel compiler):

.label:
addsd 0 (%rdi, %rax,) ,%xmmO
inc srax
cmp ¥rsi, %srax
Jjl .label

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

59

Case Study: Sum reduction (DP)

sum 0.0;

To get object code use

for (int i=0; i<size; i++) { objdump -don ob!ect flle or
_ executable or compile with -s
sum += data[i];

Assembly code w/ -01 (AT&T syntax, Intel compiler):

.label:
addsd 0 (%rdi, %rax,) ,%xmmO
inc srax
- Intel syntax:
o o
cmp PESL, wrax addsd xmm0, [rdi + rax *]
Jjl .label

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

59

Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd
vaddpd
vaddpd
vaddpd
addg
cmpgq
jb

vaddpd

vaddpd

vaddpd
[... SNIP

-]

(%rl3,%rcx,8), %zmm5, %$zmmb

64 (%rl3,%rcx,8), %$zmm4,

% zmmé

128 (%rl3,%rcx,8), %$zmm3, %$zmm3

192 (%rl3,%rcx,8), %$zmm2,

$32, %$rcx
$rbx, %rcx

$zmm4, $zmm5, %$zmmd
$zmm2, %$zmm3, %$zmm2
$zmm2, %$zmm4d, %$zmmb

%$zmm2

vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2

vaddpd
vpermpd
vaddpd
vpermpd
vaddpd
vaddsd

$zmm5, %$zmm2, %zmm3
$78, %$zmm3, %$zmmd
$zmm4, %$zmm3, %zmmb
$177, %$zmm5, $%$zmm6
%zmm6, $zmm5, %$zmm7
$xmml, $xmm7, %$xmml

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

60

Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd

(%rl3,%rcx,8), %zmm5, %$zmmb
vaddpd 64 (%rl3,%rcx,8), %zmm4, %$zmm4
vaddpd 128 (%rl3,%rcx,8), %zmm3, $%$zmm3
vaddpd 192 (%rl3,%rcx,8), %zmm2, $%$zmm2
addgq $32, %rcx
cmpq %rbx, %rcx
jb
vaddpd $zmm4, $zmm5, %$zmmd
vaddpd $zmm2, %$zmm3, %$zmm2
vaddpd $zmm2, %$zmm4, %zmmb

[... SNIP ...]
vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2
vaddpd zmm5, %$zmm2, %zmm3
vpermpd $78, %zmm3, %$zmm4
vaddpd %$zmm4, %$zmm3, %zmmb
vpermpd $177, %zmm5, %$zmmé
vaddpd %zmm6, $zmm5, %$zmm7
vaddsd $xmml, $xmm7, %$xmml

~

>

Bulk loop code
(8x4-way unrolled)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

60

Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd
vaddpd
vaddpd
vaddpd
addg
cmpgq
jb

vaddpd

vaddpd

vaddpd
[... SNIP

(%rl3,%rcx,8), %zmm5, %$zmmb

64 (%rl3,%rcx,8), %zmm4, %$zmm4
128 (%rl3,%rcx,8), %$zmm3, %$zmm3
192 (%rl3,%rcx,8), %$zmm2, %zmm2

$32, %$rcx
$rbx, %rcx

$zmm4, $zmm5, %$zmmd
$zmm2, %$zmm3, %$zmm2
$zmm2, %$zmm4d, %$zmmb

] «—

<«

vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2

vaddpd
vpermpd
vaddpd
vpermpd
vaddpd
vaddsd

$zmm5, %$zmm2, %zmm3
$78, %$zmm3, %$zmmd
$zmm4, %$zmm3, %zmmb
$177, %$zmm5, $%$zmm6
%zmm6, $zmm5, %$zmm7
$xmml, $xmm7, %$xmml

Remainder omitted

~

\

Bulk loop code
(8x4-way unrolled)

Core-Level Performance

Engineering Tutorial | CGO 2026

31 January 2026

60

Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd
vaddpd
vaddpd
vaddpd
addg
cmpgq
jb

vaddpd

vaddpd

vaddpd
[... SNIP

(%rl3,%rcx,8), %zmm5, %$zmmb

64 (%rl3,%rcx,8), %zmm4, %$zmm4

128 (%rl3,%rcx,8), %$zmm3, %$zmm3
192 (%rl3,%rcx,8), %zmm2, $%$zmm2

$32, %$rcx
$rbx, %rcx

$zmm4, $zmm5, %$zmmd
$zmm2, %$zmm3, %$zmm2
$zmm2, %$zmm4d, %$zmmb

] «—

<«

Remainder omitted

vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2

vaddpd
vpermpd
vaddpd
vpermpd
vaddpd
vaddsd

$zmm5, %$zmm2, %zmm3
$78, %$zmm3, %$zmmd
$zmm4, %$zmm3, %zmmb
$177, %$zmm5, $%$zmm6
%zmm6, $zmm5, %$zmm7
$xmml, $xmm7, %$xmml

~

Bulk loop code
(8x4-way unrolled)

Sum up 32

partial sums into
xmml

Core-Level Performance

Engineering Tutorial | CGO 2026

31 January 2026

60

Example for masked execution

Masking is very helpful in cases such as, e.g., remainder loop handling or
conditionals

Available on x86 starting with AVX-512

Example: wvaddps %$zmmO, %$zmml, %zmm2{%kl}

< 16 bits >

(o 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1) k1
1 bit

EA[O] Al1] [A[2] [A[3] [A[4] [A[5] |A[6] | A[7] | A[8] [A[9] [A[10]]|A[11][A[12]|A[13][A[24] A[15]3 Zmmo
s SRR + + + + + + + +

(B[o]|B[1]|B[2]|B[3]|B[4]|B[5]|B[6]|B[7]|B[8]]B[9][B[10][B[11]|B[12][B[13]|B[14](B[15]) zmm1

(clol|cla]]cl2]|c[3]|clal|c[5]|c[6]|c[7]|c8]]|c[9]]|c[1o]|c[1a]{c[12]|C[13]]|C[14]|C[15]) Zzmm2

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

SIMD with masking — sum reduction with condition

double sum =

for (int i=0;

if (
sum +=

0.0;

i<size;
> 0.0)

14

i++) {

..Bl1.38:

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

$rl5,%rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, %k4

%$zmm6, %$zmm5, %$zmm5{%kl}
%$zmm7, %$zmm4, %zmm4d{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}

$32, %rcx
%$rl4d, %rcx
..B1.38

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

62

SIMD with masking — sum reduction with condition

double sum =

for (int i=0;

if (
sum +=

i<size;

0.0;

i++) {
> 0.0)

14

Bulk loop code
(8x4-way unrolled)

..Bl1.38:

Z

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

$rl5,%rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, , %k4
%$zmm6, $zmm5, $zmmb5{%kl}
%$zmm7, %$zmm4d, $zmmd{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}
$32, %rcx

%$rl4d, %rcx

..B1.38

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

SIMD with masking — sum reduction with condition

double sum
for (int i=0;

sum +=

0.0;

i<size; i++) {
> 0.0)

14

Bulk loop code
(8x4-way unrolled)

..Bl1.38:

Z

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

(%$rl5, %rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, , %k4

%$zmm6, %$zmm5, %$zmm5{%kl}
%$zmm7, %$zmm4, %zmm4d{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}

$32, %rcx
%$rl4d, %rcx
..B1.38

SIMD mask
generation

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

SIMD with masking — sum reduction with condition

double sum
for (int i=0;

sum +=

0.0;

i<size; i++) {
> 0.0)

14

Bulk loop code
(8x4-way unrolled)

..B1.38:

Z

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

(%$rl5, %rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, , %k4
%zmm6, %$zmm5, %$zmm5{%kl}
%zmm7, %$zmmd, %$zmmd{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}
$32, %$rcx

%$rl4d, %rcx

..B1.38

G

N

SIMD mask
generation

= masked SIMD

J

ADDs
(accumulates)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026 62

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

STREAM Triad

A pen & paper in-core analysis

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 PO || P10 || P11
ALU | [ALU] [LD LD sT | [ALU| [ALU] [ST ST ST | [ALU | [256b
glLAU][AW | [LD | [LD | [ST |[AU]] IRy 50
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
[N [Be]
= MUL MUL
3 INT o
@ [AvX DIV ALU
W | ALU | [256b
FMA
ALU
FMA
—
DIV_| | FmMA

STREAM TRIAD
a[i] = b[i] + s * c[1]
..B2.42:

vmovups %$rld ,%rdx,8), %zmml
vfmadd213pd (%rl5,%rdx,8), %zmm2, %zmml
vmovupd %$zmml, (%rl2,%rdx, 8)
addg $8, %rdx
cmpg rsi, %Srdx
jb ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

64

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD w AL | [ALU | [LD | [D | [sT | [Aw | [A || ST | [sT || ST |[ALU] [256b
= AGU AGU LD
S[Lea] [LEA | [acu] [AcU] [LEA] [LEA] LEA
i] = b[i * c[i S oL INT | [BR |
al[i] = b[i] + s cl[i] IS MUL MUL
3 INT X
Q [Avx| LDV ALU
W [ALU | [256b =
B2.42: ALY
vmovups %$rld ,%rdx,8), %$zmml DIV FMA
vfmadd213pd (%rl5,%rdx,8), %$zom2, %$zmml
vmovupd $zmml, (%rl2,%rdx,8)
addq $8 , % rdx : : : :.:
cmpgq %$rsi, %rdx ! ! ! ! '
jb ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
S[Lea] [LEA | [acu] [AcU] [LEA]| [LEA | LEA
i] = bl * ol s Cee] [0 NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 INT o
@ [AvX DIV ALU
W | ALU | [256b =
.B2.42; AL
vmovups %$rld,%$rdx,8), %zmml DIV EMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd %$zmml, (%rl2,%rdx, 8)
addg $8, %rdx
cmpg rsi, %Srdx i i
jb ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
i] = bl * ol s Ce] [T NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 NT —
2 [Avx| LDIV ALU
W | ALU | [256b =
..B2.42; AL
vmovups %$rld,%$rdx,8), %zmml DIV EMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8) i i
addgq $8, %rdx
cmpg rsi, %Srdx i i
jb ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
i] = bl * ol s Ce] [T NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 NT —
2 [Avx| LDIV ALU
W | ALU | [256b =
..B2.42; AL
vmovups %$rld ,%rdx,8), %$zmml DIV FMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8) i i
addqg $8, %rdx
cmpg rsi, %Srdx i i
jb ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
i] = bl * ol s Ce] [T NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 NT —
2 [Avx| LDIV ALU
W | ALU | [256b =
..B2.42; AL
vmovups %$rld ,%rdx,8), %$zmml DIV FMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8) i i
addqg $8, %rdx
cmpq rsi, %Srdx i i
ib ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [AvX DIV ALU
W [ALU 2A5L6t5) =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

addqg $8, %rdx
cmpq %$rsi, %rdx
jb ..B2.42

R FVA

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

65

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [AvX DIV ALU
W [ALU isle? =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

PO VA 10 | LD FSTR ADD [SRSE STR I I

addg $8, %rdx ! ! ! ! ! ! !
cmpq brsi, trdx IS7R FVA SN LD | LD STR ADD|
ib ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [AvX DIV ALU
W [ALU isle? =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

S ooz @ ICREEEGEED B o

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [LD | [LD | [ST | |ALU | |[ALU | | ST | [ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [LEA] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [AvX DIV ALU
W [ALU isle? =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

mompd " taemd, oot EY EENEEEETIERCOOED
s SN ooz G OGN SRR 0 i |

1cy/8it)

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

FAU FAU E.dg“ﬁ' werg

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #1:
Dot product

=> https://go-nhr.de/CLPE-ex1

https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1

Hands-On: Benchmarking Dot Product

Dot product

s = s + a[i] * b[i] * B

VAVAVAVAVAVAVY/

- Moodle, hands-on #1

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 71

Dot Product on SPR

PO || Pt || P2||P3||Pa||P5||P6||P7T|]|P8|]|PO|]|Pi0]]Pi1
ALU] [AL] [0 | [to] [sT] [Au] [Au] [ST | [sT] [ST | [ALU] [256D
%:LEAHLEAHAGUHAGUll |:LEAHLEA: AcY AGUL Flea | 22
E
C
S [SHFT] T —
2 [Avx] LDV ALU
W [ALU | [256D
FMA
FMA | LAY
2560
DIV_| [FMA

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

73

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #2:
Dot product (with Compiler Explorer)

=> https://go-nhr.de/CLPE-ex2

https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2

DOt PrOdUCt On SPR - CE V|eW - Moodle, hands-on #2

@ E)?#P R More~ Templates Share~ Other~ Set ASM compiler
C++source #1 2 D | x86-64 icpc 2021.6.0 (Editor #1) & X 0 X compiler and flags
. a vim 2 Cpplnsights @ Quick-bench [C Y - x86-64 icpc 2021.6.0 v @ @ -Ofast -qopenmp-simd -xHost -qopt-zmm-usage=high -fargument-noalias -funroll-l
Add new compiler :

116 A~ R Output.~ YFilter.v BLibraries / Overrides |l + Add new... #” Add tool...
117 // repeat measurement often enough o T e — —_
118 for(int k=0; k<NITER; ++k) { 283 cmpl fesi, Xeax Add new ana|y5|s
119 if (s == 1.200088) printf("%lu\n”, &s); 284 il ..B1.48 # Prob 5@%
120 " 285 ..Bl.45: # Preds ..Bl.44 tool
121 // benchmark loop 286 movslg %ried, *rie
H H 122 for(int i=@; i<N; ++i) { 287 movslg %eax, Xrsi
nght CIICk and 123 s =5+ a[i] * b[i]; 288 ..Bl.46: # Preds ..B1.46 ..B1.45 Add new exeCUtor
“Reveal I|nked 124 } compile crlEnier 289 VMOVUPS (%rcx,%r1@,8), Xzmmé #123.24
» 125 W 200 vmovups 64(%rcx,%r1e,8), %zmm7 #123.24
code” can heIp you —T= I Change All Occurrences Culre 201 vmovups 128(%rcx,%r1@,8), Lzmms #123.24
. H 127 a[e] = s; Format Document ShiftAlt+F 292 vmovups 192(%rcx,%rle,8), %zmm9 #123.24
find your region of 128 1 203 vimadd231pd (%r8,%r1@,8), %zom6, %zmm2 #123.24
|nterest 129 ioctl(perf fd, PERF_EVENT_IOC_DISABLE, @); et 204 vfmadd231pd 64(%r8,%rl1@,8), Xzmm7, %zmm3 #123.24
13@ wet_end = getTimeStamp(); Copy 205 vfmadd231pd 128(%r8,%rie,8), %zmmg, %zmms #123.24
31 err = read(perf_fd, &ncycles, sizeof(long long)); Paste 296 vfmadd231pd 192(%r8,%r18,8), %zmm2, %zmmd #123.24
132 NITER = NITER*2; Sesrch on Cppreference J. 297 addq $32, %rie #122.7
133 } while (wct_end-wct_start<1.@); // at least 1008 ms 208 cmpq %rsi, %ria #122.7
134 Command Pelefte o 209 jb ..B1.46 # Prob 82% #122.7 .
135 NITER = NITER/2; 300 ..BL.47: # Preds ..B1.46 Click to see your
136 3e1 vaddpd %zmm3, Xzmm2, %zmm2 #123.13 -
137 err = read(perf_fd, &ncycles, sizeof(long long)); 302 vaddpd %zmm4, %zmmS, %zmm3 #123.13 compller |°g
3 i Z 7 'z H
138 if (err < @) { 3e3 vaddpd Xzmm3, %zmm2, Xzmm2 #123.13 (Warr"ngs and errors)
139 return 1; 304 # Preds ..Bl.44 ..B1.47 .
149 } 305 1(%rax), %esi
141 printf("Size: %.2f kB, ¥d elementsin”, size, N); " _
142 printf("Cycles per high-level iteration: %f\n", (double)(ncycles-ncycles_tmp)/NITER/N); .. RO] RO (2
iji printf("Total walltime: %Ff, NITER: ¥d\n",wct_end-wct_start,NITER); OSACA %86-64 icpe 2021 6.0 (Edilor #1 Compiler #1) 2 X o x
Set executer 145 free(a); A~ [OWraplines | >_ Arguments| @35
. 146 free(b);) =
compiler and flags 1w R —_lines 288-299 —-arch spr Set OSACA runtime
(Separately from Executor x86-64 icpc 2021.6.0 (C++, Editor #1) # X o X parameters
- rap lines ibraries verrides " Compilatidii _ Arguments tdin untime tools ompiler output -
ASM com |Ier A Ow Ji B Librari FO id Sy C ati A] Stdi @ Runti I ®C i P ThroughpL.Jt u'F‘LUnD operation can be hidden behind a past or future STORE instruction
* - Instruction micro-ops not bound to a port
x86-64 icpc 2021.6.0 v [@ -Ofast-qopenmp-simd -xHost -qopt-zmm-usage=high -fargument-noalias -funroll-loop: I X - No throughput/latency information for this instruction in data file
40
Combined Analysis Report
Progiram returned: @
Ppbgram stdout 7 T R
A Port pressure in cycles
£ize: 39.98 kB, 1786 elements
Cycles per high-level iteration: 9.151948 1@ =G fa =myfafs (lafelelz lale o [xale]i]|
Total welltime: 1.953868, NITER: 8388638 B
. I I I I I I I I I I I | | I
Set runtime 289 | I | .50 | 6.50 | | \ I \ I | 6.500 | 1 | [
208 @.5e 8.5e 8.508
parameters | | lesejese| | | | | I | I | I
201 | I | e.22] 8.33 | I I I I I | e.2se | [I I
292 | | | e.ee | .00 | | I | I | | 1.508 | I | I
293 | e8.5@ | | e.ce | e.se | | e.se | | | | I | [|] 9.8 | |
204 | 8.58 | | a.58 | 8.58 | | e.5e | | | | I | | | |
205 | 8.58 | | @.58 | 8.58 | | e.5e | | | | I | | | |
206 | 8.58 | | e.5e | e.s5e | | 8.58 | | | | | | I | 4.8 |
297 | 8.68 | @.58 | | | | 8.8 | B.58 | | | | -8.81 | I | |
O C E56dicpc202160 | -3 2 ‘752 | a.a6 | a.5a | I | | aaa | A.cA | | 1 I -a.e | I 1 \’ e

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 75

FAU EAY

The Open-Source Architecture Code Analyzer
(OSACA)

An introduction

OSACA

= Open Source Architecture Code Analyzer

= Static in-core code analysis
Assumptions
= Steady-state execution (no warm-up/cool-down)
= All data in L1
= Perfect out-of-order scheduling
= (currently) no front-end, i.e., no limit in instruction fetching, decoding, etc...

= Architecture specific model for each pArch

= Python module

pip install osaca

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

77

OSACA — Usage

osaca [-h] [-V] [-—-arch ARCH] [--fixed] [--lines LINES]
[-—ignore-unknown] [--lcd-timeout SECONDS]
[--db-check]

[--import MICROBENCH] [--insert-marker]

[--export-graph GRAPHNAME] [--consider-flag-deps]

[-—out OUT]
FILEPATH

Important flags:

ARCH

[--verbose]

Currently supported: Intel SNB — GNR, AMD ZEN1, ZEN2, ZEN3, ZEN4, ZENS5,
Arm TX2, A72, N1, A64FX, TSV110, M1, V2 (Grace)

L1,L2,L3-1L4,L5:L6 Specify lines to analyze (if no markers are used)

Assume Ocy TP/LAT for unknown instructions

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

78

Marking the region of interest

Comment marker

OSACA-BEGIN
.L22:
vmovapd 0(%rl3,%rax),%ymnmd
vfmadd213pd (%ri4,%rax),%ymml,%ymmo
x86 vmovapd %ymm@, (%ri12,%rax)
addqg $32,%rax
cmpq %rax,%rls
jne .L22
OSACA-END

// OSACA-BEGIN

.L18:
ldr g2, [x20, x0]
ldr g1, [x21, x0]

arm fmla vi.2d, v2.2d, ve.2d

str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

79

Marking the region of interest

Comment marker

OSACA-BEGIN
.L22:
vmovapd 0 (%rl3,%rax),%ymmd
vfmadd213pd (%ri4,%rax),%ymml,%ymmo
x86 vmovapd %ymm@, (%ri12,%rax)
addq $32,%rax
cmpq %rax,%rl5
jne .L22
OSACA-END

// OSACA-BEGIN

.L18:
ldr g2, [x20, x0]
ldr g1, [x21, x0]

arm fmla v1.2d, v2.2d, ve.2d

str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

Insertion tool

osaca --arch ARCH --insert-marker

Blocks found in assembly file:

Possible blocks to be marked:

Choose block to be marked [

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

79

Marking the region of interest

Comment marker

OSACA-BEGIN
.L22:

vmovapd 0(%rl3,%rax),%ymnmd
vfmadd213pd (%rl4,%rax),%ymml,%ymmo
x86 vmovapd %ymm@, (%ri12,%rax)

addq $32,%rax
cmpq %rax,%rl5
jne .L22

OSACA-END

// OSACA-BEGIN
.L18:
ldr g2, [x20, x0]
arm ldr g1, [x21, x0]

fmla v1.2d, v2.2d, ve.2d

str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

Insertion tool

osaca --arch ARCH --insert-marker

Blocks found in assembly file:

Possible blocks to be marked:

Choose block to be marked [

will be marked with byte markers, i.e.:
movl $111,%ebx; .byte 100,103,144; (x86)

movl $222,%ebx; .byte 100,103,144;

mov x1,#111; .byte 213,3,32,31 (aarch64)

mov x1,#222; .byte 213,3,32,31

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026 79

Triad on SPR with OSACA

P0||P1||P2||P3||P4||P5||P6||P7||P8||P9||P10||P11|

||LD||Lo||ST||ALu||ALu|--|_\m|_\256b

=
—
C

= Recap: Manual analysis resulted in 1 cy/8 it zEHE = == b =
5 [Acu]
HESI [
S [SHFT
| ALU 256b
EMA
FMA ADD
FMA ADD
80

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

Triad on SPR with OSACA

P0||P1||P2||P3||P4||P5||P6||P7||P8||P9||P10||P11|

||LD||Lo||ST||ALu||ALu|--|_\m|_\256b

=
—
C

= Recap: Manual analysis resulted in 1 cy/8 it zEHE = == b =
5 [Acu]
HESI [
S [SHFT
| ALU 256b
EMA
FMA ADD
FMA ADD
80

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

Triad on SPR with OSACA

= Recap: Manual analysis resulted in 1 cy/8 it

osaca —--arch triad.s
Open Source Architecture Code Analyzer (OSACA) - 0.6.0
Architecture: SPR

* - Instruction micro-ops not bound to a port
X - No throughput/latency information for this instruction in data file

Port pressure in cycles
7 8

vmovups (%rl4,%rdx,8), %$zmml
vfmadd213pd (%rl5,%rdx,8), %$zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8)
addg $8, %rdx
cmpqg %rsi, %Srdx

* jb ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Triad on SPR with OSACA

= Recap: Manual analysis resulted in 1 cy/8 it

osaca --arch triad.s
Open Source Architecture Code Analyzer (OSACA) - 0.6.0
Architecture: SPR

* - Instruction micro-ops not bound to a port
X - No throughput/latency information for this instruction in data file

Port pressure in cycles
7 8 | LCD |

vmovups (%rl4,%rdx,8), %$zmml
vfmadd213pd (%rl5,%rdx,8), %$zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8)
addg $8, %rdx
cmpqg %rsi, %Srdx

* jb ..B2.42

Loop-Carried Dependencies Analysis Report

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

FAU EAY

Hands-On #3:
Dot Product with OSACA

=> https://go-nhr.de/CLPE-ex3

https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3

Hands-On: Benchmarking Dot Product (DP)

Dot Product

s =s + a[i] * b[i] * =

VAVAVAVAVAVAVY/

- Moodle, hands-on #3

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 83

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #4:
Pl by integration

=> https://go-nhr.de/CLPE-ex4

https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4

Hands-On: PI by integration

Pl

_f14d
= o 1+ x2 x

double delta x
double sum =

1./n;
0.0;

(int 1=0; i<n; 1i++)

X = (i + 0.5) * delta x;
sum += (4.0 / (1.0 + x * x));

- Moodle, hands-on #4

T
—l a :4‘5—Z

1 T
tan(a) = 1= 1 = arctan(1) = 7

= m =4 -arctan(1)

4 1 L4
77 arctan(x) = 1+x2=>n=jO 1+x2dx

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

86

FAU FAU L%"ﬁ' werg

AG64F X core architecture and
AArch64 Arm ISA

Node architecture of A64FX — FX700

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2

)
[

Memory Interface

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
\ L2

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2

™

Memory Interface

Memory Interface

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2 J

Memory Interface

48 cores

per node

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

90

Node architecture of A64FX — FX700

— e o o o o o o o E o

-~
L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D \
L2

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2
~

Memory Interface

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
\ L2 L2 J

[[
Memory Interface Memory Interface 4 8 CO re S

e e

\\
' ! 1 Core Memory
1 Group (CMG)

Memory Interface

—-— e e e e e o o E—

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 90

Node architecture of A64FX — FX700

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D

1 Core Memory

l
| |
L2 | |
: Group (CMG)
[. I
Memory Interface I Memory Interface
|
|
|
' 4 CMGs
per node
L2 L2
I I 48 cores
Memory Interface Memory Interface
T R R
Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 90

Port model for the Ab4FX

Fetch & Decode

Reservation
Stations (RSs)

Int ALU | [Predicate| [Int ALU | [IntALU | [IntALU]
FP arith | L™2"PU (lnt MUL | [FP arith | [IntDiV | [LD |
FMA [IntST || MUL |

FP DIV

Crypto Load / Store Units

FP ST
addr calc

i

Execution Units

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

91

Port model for the Ab4FX

[0}

©

(o]

O

(0]

0

o

e

&

(0}

L
Frontend

c?

£¢

qJ'-:

3

HOP uOP uOP nOP HOP d P uOP

«» IntALU |Predicate[IntALU | [IntALU | [IntALU | | AGU | | AGU | | BR |

£ [FParin Manipul| (10t MUL | [FP arith | [IntDIV | [LD |
Backend c [IntST |[MUL |

= [FPDIV

§ Crypto Load / Store Units

-

FP ST
addr calc

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Port model for the Ab4FX

) L1 Instruction Cache . .

g _ 32 byte/cy Instruction Buffer (48; 8x6 entries)

S 64 KiB, 4-Way

g MOP MOP MOP MOP MOP MOP

S

E 4-Way Decode

\Decoder | |Decoder \ \Decoder \ \Decoder \
Frontend uOP uOP HOP uOP

3

5%

Q é RSEO RSE1 RSAQ RSAT RSBR

& % 20 entries 20 entries 10 entries 10 entries 19 entries
HOP uOP uOP uOP HOP uOP HOP uOP
A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4
FLA PR EXA FLB EXB EAGA EAGB BR

« [INtALU Predipat|e||ntA|_u | [IntALU | [IntALU | | AGU | | AGU | | BR |

I MaNPY | [lnt MUL | [FP arith] [IntDIV | [LD |

Backend c [IntST | [MUL |

E

® Load / Store Units

=

FP ST
addr calc

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

AArche4 ISA — differences to x86

= Opcodes are always 32 bits
= Similar to Intel (left) syntax with STORE (STR/STP) as exception
= add

ldr
1dp
str
stp

x1l, x1,
x0, [x1]
x0, x1,
x0, [x1]

x0, x1,

8 #
#
[x2] #
#
[x2] #

x]l € x1 + 8

x0 € mem at x1

x0, x1 € mem at x2

mem at x1 € x0

mem at x2 €< xO0,

= 31 general purpose registers (64 bits):
= x0-x30 (aliases with 32-bit GPRs wO-w30)
= 32n register is stack pointer and zero register

x1

x0

x1

x29
x30

SP/XZR

A

< 32 bits

64 bits

\A4

w0
wl

w29
w30

WSP/WZR

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

92

AArcho4 ISA — differences to x86

= 32 SIMD and FP registers (NEON, 128 bits) 128-bit 32:bit ;’gt
. v0-v31 . N f_jﬁ
= can be optionally specified with SIMD/FP : i]
shapes and lanes vn . <LANES><SHAPE> register IK ' L y
= a single element can be indexed via brackets [1i] 6}_/bit ?sbej
v0.2d E & h
v0.4s : : : v0.b[1]
:::::::/
| | | | | | | | 128 bits

= 32 scalable vector registers (128—-2048 bits):
= z0-z31, extending v registers, multiples of 128 bits

= size defined in OS
= 16 predicate registers (16—256 bits)

= p0-pl5, multiples of 16 bits
= optional with predication operation /z, /m, /x (zeroing, merging, don’t care)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

93

AArche4 ISA — differences to x86

= Addressing Modes:

Simple ([BASE])

Offset ([BASE, OFFSET])
Modified Offset

Pre-indexed ([BASE, OFFSET]!)
Post-indexed ([BASE], OFFSET)

ldr
ldr
ldr
ldr
ldr

x0,
x0,
x0,
x0,

x0,

[x1]
[x1,
[x1,
[x1,
[x1],

#64]
x2, 1sl 3]
#6471

#64

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

94

AArcho4 ISA — differences to x86

= Addressing Modes:

- Simple ([BASE]) 1dr x0, [x1]

= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]

= Modified Offset 1dr %0, [x1, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]!

= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64

l1dr x0, [x1]

x1

Memory

!
!
BT

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

95

AArcho4 ISA — differences to x86

= Addressing Modes:

= Simple ([BASE]) ldr x0, [x1]
= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]
= Modified Offset 1dr x0, [x1l, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]"!
= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64
1dr x0, [x1l, #64]
-i-j
Memory

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

96

AArcho4 ISA — differences to x86

= Addressing Modes:

= Simple ([BASE]) 1dr x0, [x1]
= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]
= Modified Offset 1dr x0, [x1l, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]"!
= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64
l1dr x0, [x1, x2, 1lsl 3]
. x2

DN +

Memory

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

97

AArcho4 ISA — differences to x86

= Addressing Modes:

- Simple ([BASE]) 1dr x0, [x1]
= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]
= Modified Offset 1dr %0, [x1, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]!
= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64
1dr x0, [x1, #64]!

Memory

m—l—>

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

98

AArcho4 ISA — differences to x86

= Addressing Modes:

- Simple ([BASE]) 1dr x0, [x1]

= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]

= Modified Offset 1dr %0, [x1, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]!

= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64

l1dr x0, [x1],

BT — TN

Memory 1

!

#64

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

99

FAU FAU E.dg“ﬁ' werg

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Case Study: SpMV on A64FX

Sparse Matrix-Vector Multiplication

Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:
ECM modeling and performance tuning of SoMV and Lattice QCD on A64FX.
Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI:

https://doi.org/10.1002/cpe.6512

Motivation

48

— B | |
z 300 —e— TRIAD
= —— SUM
2600 -
<] SpMV
= 400 |-
S
=
S 200 -
b
- 0 g | |

0 12 24

\

o #£ cores

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

104

Motivation

— B | |

z 300 —e— TRIAD

S e SUM

2 600 | -

<] —=— SpMV

% 400 210 GB/s =

E 117 Blcy

f% 200 Ca

3

- O | |
0 12 24 36

— #£ cores

Thread pinning : Compact

48

Clear memory bandwidth
saturation for STREAM TRIAD
(a[i]l = b[i] + s*c[i])

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

104

Motivation

— B | |
% 300 —e— TRIAD
L —— SUM
2z 600 |- .
@) —=— SpMV Clear memory bandwidth
N saturation for STREAM TRIAD
% 400 | 510 cB/s = (alil = b[i] + s*c[i])
E 117 Blcy
< 200 —{ But why not for
= SUM (s += a[i])and
an 0 | | SPMV (b[:1 = A[:,:1*x[i[:]1)7
0 12 24 30 48
\ J
Y cores
CMG s

Thread pinning : Compact

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 104

Motivation

% /
£ 60 n
e)
&)
< 40 | =
=
= 920 |
o
C%g .4
an) 0 |

1

cores

(9

Thread pinning : Compact

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 105

Motivation

% /
£ 60 n
e)
&)
< 40 | =
=
= 920 |
o
C%g .4
an) 0 |

1

cores

(9

Thread pinning : Compact

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 105

Motivation

z _
£ 60| *
0
<)
< 40 *
e
= 20| g
g
c% .///
SaEEN. |

1

cores

O Understanding single-core

performance is the key!

Thread pinning : Compact

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 105

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

b[:]= b[:]+ *

N
General case:
= + o some indirect
>Nr addressing
required!
/

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
bl[i] = b[i] + A[J] * *[col_idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

106

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

b[:]= b[:]+ *

N
General case:
= + o some indirect
>Nr addressing
required!
/

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
bl[i] = b[i] + A[J] * *[col_idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

106

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

b[:]= b[:]+ *

N
General case:
= + o some indirect
>Nr addressing
required!
/

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
bl[i] = b[i] + A[J] * *[col_idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

106

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

b[:]= b[:]+ *

N
General case: i
= + o some indirect '
> Nr addressing L
required! =l
Y r

In Compressed Row Storage (CRS) format

for i = 0O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop

b[i] = b[i] + A[]J] * =[col_idx[]]]

:

h

i

=

;

4

: |
—5—
| | i

I! I
i

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 106

SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, x20, 1lsl 2]
1d1d .d, p0/z, [, x20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d

whilelo p0.d, %20, x14
b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[j] * x[col_idx[j]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 107

SpMV

Assembly of the short inner-loop

.L6:

4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8
fmla .d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Lona outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
[i] = b[1] + A[J] * x[col idx[j]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107

SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [, z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107

SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, x20, 1lsl 2]
1d1d .d, p0/z, [x18, x20, 1lsl 3]
1d1d .d, p0/z, [x30, z0.d, 1sl 3]
add x20, x20, 8
fmla .d, p0/m, .d, .d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
[1] = b[1i] + A[J] * =x[col idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 108

SpMV

Assembly of the short inner-loop

.L6:
ldisw z0.d, p0/z, [x17, x20, 1lsl 2] z1.d
1did .d, p0/z, [x18, x20, 1lsl 3]
lald -.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d

whilelo p0.d, x20, x14
b.any .L6

faddv d4, pl, zl1l.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop

b[i] = b[i] + A[J] *

[col idx[j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

108

SpMV

Assembly of the short inner-loop

.L6:
ldisw z0.d, p0/z, [x17, x20, 1lsl 2] z1.d
1did .d, p0/z, [x18, x20, 1lsl 3]
lald -.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d

whilelo p0.d, x20, x14
b.any .L6

faddv d4, pl, zl1l.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop

b[i] = b[i] + A[J] *

[col idx[j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

108

SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] FMA: Update z1.d
1d1d z2.d, p0/z, [x18, x20, 1sl 3]
ldld - .d, p0/z, [x30, z0.d, lsl
add x20, x20, 8
fmla zl.d, p0/m, .d, .d

whilelo p0.d, x20, x14
b.any .L6

faddv d4, pl, zl1l.d
\ Horizontal add of
912-bit reqister
latency = 49 cycles
In Compressed Row Storage (CRS) format
for i = O:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

108

SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] FMA: Update z1.d
1d1d z2.d, p0/z, [x18, x20, 1sl 3]
ldld - .d, p0/z, [x30, z0.d, lsl
add x20, x20, 8
fmla zl.d, p0/m, .d, .d

whilelo p0.d, x20, x14
b.any .L6

faddv d4, pl, zl1l.d
\ Horizontal add of
912-bit reqister
latency = 49 cycles
In Compressed Row Storage (CRS) format
for i = O:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

108

SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] FMA: Update z1.d
1d1d z2.d, p0/z, [x18, x20, 1sl 3]
ldld - .d, p0/z, [x30, z0.4, 1sl
add x20, x20, 8
fmla zl.d, p0/m, .d, z2.d
whilelo p0.d, x20, x14 Loop length : 27
b.any .L6 > HPCG matrix

faddv d4, pl, zl.d
\ Horizontal add of
212-bit register
latency = 49 cycles
In Compressed Row Storage (CRS) format
for i = O:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 108

SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] FMA: Update z1.d
1d1d z2.d, p0/z, [x18, x20, 1sl 3] .
1d1d .d, p0/z, [x30, z0.d, 1lsl Lo geia el 85 cy per inner loop
add x20, %20, 8 traversal
fmla zl.d, p0/m, .d, .d - 100 GB/s per
whilelo p0.d, x20, x14 Loop length : 27 CMG
b.any .L6 > HPCG matrix

—> No saturation

faddv d4, pl, zl1l.d
\ Horizontal add of @
912-bit register
latency = 49 cycles
In Compressed Row Storage (CRS) format
for 1 = 0O:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col idx[]]]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 108

osaca --arch a64fx spmv-inner-loop.s

looo]

Combined Analysis Report

ldlisw z0.d, p0/z, [x17,x20,1sl]
1d1d z2.d, p0/z, [x18,x20,1s1l °]
1d1d z3.d, p0/z, [x30,z0.d,1sl *]
add x20, x20,

fmla z1.d, pO/m, z3.d, z2.d
whilelo p0.d, x20, x14

b.any

Loop-Carried Dependencies Analysis Report

zl.d, p0/m,
x20, x20,

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

osaca --arch a64fx spmv-inner-loop.s

looo]

Combined Analysis Report

ldlisw z0.d, p0/z, [x17,x20,1sl]
1d1d z2.d, p0/z, [x18,x20,1s1l °]
1d1d z3.d, p0/z, [x30,z0.d,1sl *]
add x20, x20,

fmla z1.d, pO/m, z3.d, z2.d
whilelo p0.d, x20, x14

b.any

Loop-Carried Dependencies Analysis Report

zl.d, p0/m,
x20, x20,

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

osaca --arch a64fx spmv-inner-loop.s

looo]

Combined Analysis Report

ldlisw z0.d, p0/z, [x17,x20,1sl]
1d1d z2.d, p0/z, [x18,x20,1s1l °]
1d1d z3.d, p0/z, [x30,z0.d,1sl *]
add x20, x20,

fmla z1.d, pO/m, z3.d, z2.d
whilelo p0.d, x20, x14

b.any

Loop-Carried Dependencies Analysis Report

zl.d, p0/m,
x20, x20,

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b[:] Al:]

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

o

Al:]

|

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

o

Al:]

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

o

Al:]

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

o

Al:]

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

o

Al:]

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

o

Al:]

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

o

Al:]

+
I

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

110

How to choose the parameters?

= C
= n X SIMD width to allow good utilization of SIMD units
= n > 1 useful for hiding ADD pipeline latency

"0
= As small as possible, as large as necessary
= Large o reduces zero padding
= Sorting alters RHS access pattern

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on
modern processors with wide SIMD units. SIAM Journal on Scientific
Computing 36(5), C401-C423 (2014). DOI: 10.1137/130930352,

k y

L C

AN

> C

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

112

http://dx.doi.org/10.1137/130930352

OSACAa

S

SE

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

0.00
0.00
0.00

[S =

O O O O o

4

.00
.00
.00
.00

.00
.00
.00
.00
.00

.00

1.

.00

00

0.
0.
0.

O R KRB R R

4.

00
00
00

.00
.00
.00
.00
.00

00

0.00
0.00
0.00

B R R R R

5.

.00
.00
.00
.00
.00

.00

00

1.
1.
1.

4.

00
00
00

.00

00

LL-32-0 kernel

O O O o

N N M N O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

0

5D

O O O o

N N M DNV O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

| 6

O O O o

N N N M O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

6D

O O O o

N N M M O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

1.

1.

00

00

11.

28.

nalysi

9.

LCD

0

.L4:
1ldlsw
1ldlsw
1ldlsw
1ldlsw

z16.d,
z17.d4d,
z20.d,
z21.d,

po/z
po/z
po/z
pO/z

add x10, x10, 32

add x
add x

1d1d =z19.
z18.
z25.d
z27.d
.d, p0/z,
d
d

1d1d
1did
1ldid
1ldid
1d1d
1d1d

11,
12,

z22

z23.
z24.
1d1d z26.

x11, 128
x12, 256
d, p0/z,
d, p0/z,
, p0/z,
, P0/z,

, P0/z,
, P0/z,
d, p0/z,

whilelo pl.d, x10

fmla z4.d,
fmla z5.d,
fmla z6.d,
fmla z7.d,

p0/m,
p0/m,
p0/m,
p0/m,

mov p0.b, pl.b

b.any .L4

for AG4FX

, [x11]

, [x11, #1,
, [x11, #2,
, [x11, #3,

mul
mul

mul

[x12, #-4, mul
[x12, #-3,
[x12, #-2,
[x12, #-1, mul
[x3, zl1l6.d,
[x3, z17.d,
[x3, z20.d,
[x3, z21.d,

, X9

z19.d,

z18.d,
z25.d,

z27.4d,

mul

mul

z22.d
z23.d
z24.d
z26.d

vl]
vl]
vl]

vl]
vl]
vl]
vl]

1sl 3]
1sl 3]
1sl 3]
1sl 3]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

113

OSACAa

S

SE

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

0.00
0.00
0.00

N

O O O O o

4.

.00
.00
.00
.00

.00
.00
.00
.00
.00

00

1.

.00

00

0.
0.
0.

O R KRB R R

4.

00
00
00

.00
.00
.00
.00
.00

00

0.00
0.00
0.00

B R R R R

5.

.00
.00
.00
.00
.00

.00

00

1.
1.
1.

4.

00
00
00

.00

00

LL-32-0 kernel

O O O o

N N M N O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

0

5D

O O O o

N N M DNV O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

| 6

O O O o

N N N M O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

6D

O O O o

N N M M O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

1.

1.

00

00

11.

28.

nalysi

LCD

.L4:
1ldlsw
1ldlsw
1ldlsw
1ldlsw

z16.d,
z17.d,
z20.d,
z21.d,

po/z
po/z
po/z
pO/z

add x10, x10, 32

add x
add x

1d1d =z19.
z18.
z25.d
z27.d
.d, p0/z,
d
d

1d1d
1did
1d1d
1d1d
1d1d
1d1d

11,
12,

z22

z23.
z24.
1d1d z26.

x11, 128
x12, 256
d, p0/z,
d, p0/z,
, p0/z,
, P0/z,

, P0/z,
, P0/z,
d, p0/z,

whilelo pl.d, x10

for AG4FX

, [x11]

, [x11, #1,
, [x11, #2,
, [x11, #3,

mul
mul

mul

[x12, #-4, mul
[x12, #-3,
[x12, #-2,
[x12, #-1, mul
[x3, zl1l6.d,
[x3, z17.d,
[x3, z20.d,
[x3, z21.d,

, X9

mul

mul

vl]
vl]
vl]

vl]
vl]
vl]
vl]

1sl 3]
1sl 3]
1sl 3]
1sl 3]

fmla z4.d,
fmla z5.d,
fmla z6.d,
fmla z7.d,

p0/m,
p0/m,
p0/m,
p0/m,

z19.d,
z18.d,
z25.d,
z27.4d,

z22.d
z23.d
z24.d
z26.d

9.

0

mov p0.b, pl.b

b.any .L4

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

113

OSACAa

SE

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

0.00
0.00
0.00

N

O O O O o

4.

.00
.00
.00
.00

.00
.00
.00
.00
.00

00

1.

.00

00

0.00
0.00
0.00

.00
.00
.00
.00
.00

O R KRB R R

0.00
0.00
0.00

B R R R R

.00
.00
.00
.00
.00

.00

1.00
1.00
1.00

LL-32-0 kernel

4.00 5.00 4.00 I 12.0

50 | 6 6D |
I I I
0.50 0.50	0.50 0.50
0.50 0.50	0.50 0.50
0.50 0.50	0.50 0.50
0.50 0.50	0.50 0.50
I I I	
I I I	
I I I	
0.50 0.50	0.50 0.50
0.50 0.50	0.50 0.50
0.50 0.50	0.50 0.50
0.50 0.50	0.50 0.50
2.00 2.00	2.00 2.00
2.00 2.00	2.00 2.00
2.00 2.00	2.00 2.00
2.00 2.00	2.00 2.00
I I I	
I I I	
I I I	
I	
! S
I I
I I

12.0 12.0

11.

nalysi

.L4:
1ldlsw
1ldlsw
1ldlsw
1ldlsw

z16.d,
z17.d,
z20.d,
z21.d,

po/z
po/z
po/z
pO/z

add x10, x10, 32

add x
add x

1d1d =z19.
z18.
z25.d
z27.d
.d, p0/z,
d
d

1d1d
1did
1d1d
1d1d
1d1d
1d1d

11,
12,

z22

z23.
z24.
1d1d z26.

x11, 128
x12, 256
d, p0/z,
d, p0/z,
, p0/z,
, P0/z,

, P0/z,
, P0/z,
d, p0/z,

whilelo pl.d, x10

for AG4FX

, [x11]

, [x11, #1,
, [x11, #2,
, [x11, #3,

mul
mul

mul

[x12, #-4, mul
[x12, #-3,
[x12, #-2,
[x12, #-1, mul
[x3, zl1l6.d,
[x3, z17.d,
[x3, z20.d,
[x3, z21.d,

, X9

mul

mul

vl]
vl]
vl]

vl]
vl]
vl]
vl]

1sl 3]
1sl 3]
1sl 3]
1sl 3]

fmla z4.d,
fmla z5.d,
fmla z6.d,
fmla z7.d,

p0/m,
p0/m,
p0/m,
p0/m,

z19.d,
z18.d,
z25.d,
z27.4d,

z22.d
z23.d
z24.d
z26.d

mov p0.b, pl.b

b.any .L4

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

113

SELL-32-0 kernel OSACA analysis for A64FX

Loop-Carried Dependencies Analysis Report

112 | 9.0 | fmla z7.d, p0O/m, z27.d, z26.d | [112]
111 | 9.0 | fmla z6.d, p0O/m, z25.d, z24.d | [111]
110 | 9.0 | fmla z5.d, p0/m, z18.d, z23.d | [110]
109 | 9.0 | fmla z4.d, p0O/m, z19.d, z22.d | [109]
99 | 1.0 | add x12, x12, 256 | [99]
98 | 1.0 | add x11, x11, 128 | [98]
97 | 1.0 | add x10, x10, 32 | [97]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 114

SpMV performance with SELL-C-c (1 CMG)

= SELL-C-c separates HPCG-128°
SIMD from sum 30
reduction
= (C>8 allows for reduction q
of fmla latency impact £
£
(o]
T 10
o
0
0 2 4 6 8 10 12

of active cores

——-FCCCRS -#-FCC SELL-8-1 =-#—=FCC SELL-32-1

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 115

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Case Study: Domain Wall (DW) Kernel

from Quantum Chromodynamics (QCD)

Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:
ECM modeling and performance tuning of SoMV and Lattice QCD on A64FX.
Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI:

https://doi.org/10.1002/cpe.6512

Context

= [attice QCD simulates the strong interaction
= |terative multigrid techniques on regular (4D or 5D) lattices
= Core component: Apply Dirac operator D to quark-field vector ¥

= Domain Wall (DW) formulation: quark field lives on 4D boundary of a 5D
space-time volume V, X L

(Dy)(n, 8)y, =

> 2 AU+ 1)+ s 5)gy + UL 1= (1= 7,)01 = 1,5 |

p=1 p=1 b=1

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 118

DW stencil kernel (simplified)

#define
#define
#define

xpl

X m2

yp 3
#pragma
for{t,z,y,x} =
{ for (int s=0; s<Ls;

{ O[t] [z] [y] [x][s] =

++s)

R(x_p)
R(x _m)
R(y_p)
R(y_m)
R(z_p)
R(z_m)
R(t_p)
R(t _m)

omp parallel for schedule(static)
1:{Lt-2,Lz-2,Ly-2,Lx-2}

- Ulx_pl[t]l[z] [y][x]
- Ulx m] [t] [z] [y] [x]
- Uly_pl[t]l[z] [y] [x]
- Uly_m] [t][z] [y] [x]
- Ulz_pl[t]l[z] [y] [x]
- Ulz_m] [t] [z] [y] [x]
- Ult_pl[t]l[z] [y][x]
- Ult_m] [t][z] [y] [x]

o “Grid” lattice QCD framework
 Uses SVE intrinsics
« Data type: double complex

- P(x_p)
- P(x_m)
- P(y_p)
- P(y_m)
- P(z_p)
- P(z_m)
- P(t_p)
- P(t_m)

- [Tltl[z] [yl [x+1] [s]
- |[Iltl[z] [yl [x-1][s]
- |[Ilt]l[z] [y+1] [x] [s]
~|[Iltl[z] [y-1][x][s]
- |[T[t] [z+1] [y] [x] [s]
- |[T[tl1[z-1]1[y] [x][s]
- |[TIt+11[z] [y] [x] [s]
-|[TIt-111[z] [yl [x] [s]|;

+ 4+ + + + + +

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

Complex numbers data layout choice

AoS (standard) |R I/R I R I R IR
A0SO0A RIRIRRIR RRR T I/I/I I|I|[I|I /R|R:-
N . y

vector length

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 120

Observed performance

= Starting point: AoS layout, ACLE intrinsics, GCC/FCC

= 1320 flops/LUP (theoretical) } byte

= Measured code balance: 1500 byte/LUP be ~ 1'14ﬂ_0p

= A64FX (FX1000): B,,, = 0.25% - expect memory bound

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 121

Observed performance

= Starting point: AoS layout, ACLE intrinsics, GCC/FCC

= 1320 flops/LUP (theoretical) } byte

» Measured code balance: 1500 byte/LUP Be~ 11455

= A64FX (FX1000): B,,, = 0.25% - expect memory bound

FCC | . FCC .
GCC | . GCC | }
\ \ | |

\ \ \ \ | \ \
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800
Memory traffic [byte/LUP] Performance [Gflop/s]

AT

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 121

In-core analysis (complex-AoS)

osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

Port pressure in cycles
- 5D cp LCD|

1sl w2, wl3, 3

1d1d zl6.d, p0/z, [x11]

add x18, sp, 160

1d1d z18.d, p0/z, [x11l, #-4, mul vl]
sxtw x2, w2

1d1d z19.d, p0/z, [x11, #-3, mul vl]

stld z2.d, p0, [x0, #4, mul vl]
. . stld z13.d, pO0, [x0, #5, mul vl]
0.00 1.00 cmp wl4, wil3
bne .1L41

680 500 30 30 118.5 98.5 118.5 98.5

Loop-Carried Dependencies Analysis Report

add wl3, wl3, | [1360]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

In-core analysis (complex-AoS)

Operation type

m complex arithmetic mload mstore mprefix ops ®FP arithmetic © INT arithmetic ®permutations ®m Compare/Branch
1]

add x18, sp, 160

0.50 0.50 0.50 0.50 1d1d z18.d, p0/z, [x11l, #-4, mul vl]
sxtw x2, w2

0.50 0.50 0.50 0.50 1dld z19.d, p0/z, [x11, #-3, mul vl]

1.00 stld z2.d, p0, [x0, #4, mul vl]
. 1.00 stld z13.d, pO0, [x0, #5, mul vl]
1.00 cmp wl4, wil3
bne .L41
680 500 30 118.5 98.5 118.5 98.5

Loop-Carried Dependencies Analysis Report

add wl3, wl3, | [1360]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

In-core analysis (complex-AoS)

Operation type

m complex arithmetic mload mstore mprefix ops ®FP arithmetic © INT arithmetic ®permutations ®m Compare/Branch

FCMLA Zd, Pg, 42n, Zm, cC 2cy on PO, 1lcy on P2
FCADD 7Zd, Pg, 4n, Zm, cC lcy on PO, 1lcy on P2

1369]| . |
1370]| |
680 118.5 98.5 118.5 98.5

add wl3, wl3, | [1360]

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 122

In-core analysis (complex-AoS)

Operation type

m complex arithmetic mload mstore mprefix ops ®FP arithmetic © INT arithmetic ®permutations ®m Compare/Branch

FCMLA Zd, Pg, 4n, Zm, 2cy on PO, 1lcy on P2
FCADD 7d, Pg, 24n, Zm, lcy on PO, 1lcy on P2

1369]| . |
1370]| |
680 - 8.5 118.5 98.5

add w13, wl3, | [1360] FMLA 7d, Pg, Zn, lcy on PO OR P2
FADD 7d, Pg, Zn, lcy on PO OR P2

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 122

In-core analysis (complex-AoSoA)

osaca --arch a64fx rrii-ol-gcc.s

[...]

Combined Analysis Report

Port pressure in cycles
- 5D cp LCD|

madd x0, x1, x0, x19
str x0, [sp, 1896]
add x1, x1, xO0

str x1, [sp, 1936]
cmp x0, x1

0.00 0.00 1.00 1.00 1dr x0, [sp, 1784]
0.00 1.00 prfd pldl2strm, p0, [x0]

b .L64
.L38:

0.00 . 0.50 0.50 add x1, x1, 1

0.00 . 0.00 1.00 mov x19, O
b .L66

567 . 247 247 488.5 275.5 488.5 275.5

Loop-Carried Dependencies Analysis Report

31 January 2026

Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoSoA)

Port utilization

x1l, x0, x19
1896]

1936]
m AoS

HAoSoA

Active cycles for one
iteration across all ports

3000

2000

1000

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 123

In-core analysis (complex-AoSoA)

Port utilization

x1l, x0, x19
1896]

1936]
m AoS

HAoSoA

Active cycles for one
iteration across all ports

3000
~2X

2000

1000

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 123

In-core analysis (complex-AoSoA)

Port utilization

x1l, x0, x19
1896]

1936]
m AoS

HAoSoA

Active cycles for one
iteration across all ports

3000
~2X

2000

1000

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 123

In-core analysis (complex-AoSoA)

Port utilization

Perfor@nce gain

x1l, x0, x19

6 P6D

[sp, 1896]
x1, xO0
[sp, 1936]
mAoS
HAoSoA
Active cycles for one
iteration across all ports
3000
~2X
2000
I I I 1000
l N
PO P1 P2 P3 P4 P5 P5D P

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 123

DW kernel optimizations

DW kernel

= A A AN
N B~ OO 00 O

Performance [Gflop/s]
o

SO N B~ O O

GCC
®m AoS baseline ® A0S prefetch+O1 m AoSoA prefetch+01

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 124

Summary of optimizations for DW

= AoSoA (RRII) data layout
= Prevents use of complex arithmetic instructions £cmla/fcadd

= Removes imbalance between FLA and FLB ports in the core

= Some register spills occur, but still better than AoS (RIRI)
- More instructions but better performance

= Software prefetching decreases L2 data volume

= -01 makes compiler obey the ordering hints in the computational kernel
(more efficient OoO execution)

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 131

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #5:
2D Gauss-Seidel analysis

=> https://go-nhr.de/CLPE-ex5

https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5

Hands-On: Gauss-Seidel Method

« Limited by loop-carried dependency

 Create code with -Ofast, -funroll-loops

* Analyze for SPR for (int it=0; it<NITER; ++it) {
for (int i=1; i<NI-1; ++i) {
for (int k=1; k<NK-1; ++k) {
phi[i][k] = 0.25 * (
phi[i] [k-1] + phi[i+1][k] +
phi[i] [k+1] + phi[i-1] [k]
) ;
}

}
- Moodle, hands-on #5 }

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 133

Hands-On: Gauss-Seidel Method

« Limited by loop-carried dependency

 Create code with -Ofast, -funroll-loops

* Analyze for SPR for (int it=0; it<NITER; ++it) {
for (int i=1; i<NI-1; ++i) {
for (int k=1; k<NK-1; ++k) {
phi[i][k] = 0.25 * (
phi[i] [k-1] + phi[i+1][k] +
phi[i] [k+1] + phi[i-1] [k]
) ;
}

}
- Moodle, hands-on #5 }

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 133

Hands-On: Gauss-Seidel Method

« Limited by loop-carried dependency

 Create code with -Ofast, -funroll-loops

* Analyze for SPR for (int it=0; it<NITER; ++it) {
for (int i=1; i<NI-1; ++i) {
for (int k=1; k<NK-1; ++k) {
phi[i][k] = 0.25 * (
phi[i] [k-1] + phi[i+1][k] +
phi[i] [k+1] + phi[i-1] [k]
) ;
}

}
- Moodle, hands-on #5 }

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 133

Hands-On: Gauss-Seidel Method

« Limited by loop-carried dependency

 Create code with -Ofast, -funroll-loops

* Analyze for SPR for (int it=0; it<NITER; ++it) {
for (int i=1; i<NI-1; ++i) {
for (int k=1; k<NK-1; ++k) {
phi[i][k] = 0.25 * (
phi[i] [k-1] + phi[i+1][k] +
phi[i] [k+1] + phi[i-1] [k]
) ;
}

}
- Moodle, hands-on #5 }

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 133

Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port presgure in cycles
I I

.00

.00

.00

.00

.00
.00

'Y
w
~
oo

6.

O OO0OO0O0O OO0OO0OO0O OO0OO0OO0O oOoOooo

- 1ov | 2
0.00 | 0.00 .
.50 0.33 | 0.33 0
.50 0.33 | 0.33 0
75 0
.00
0.50
.50 0.33 | 0.33 0
.50 0.33 | 0.33 0
.75 0.33 | 0.33 0
.00
0.50
.50 0.33 | 0.33 0
.50 0.33 | 0.33 0
75 0.33 | 0.33 0
.00
0.50
.50 0.33 | 0.33 0
.25 0.33 | 0.33 0
.00 0.33 | 0.33 1
.00
0.50
.00
0
00 3.67 3.67 2.00 6.

Loop-Carried Dependencies Analysis Report

416 | 1.0 |
419 | 36.0 |
437 | 1.0

inc
vaddsd %$xmml,
| addg $32, %rsi #143.11

$rdx #143.11

I
$xmmd , $xmml #144.15‘

00

L Lo | e |
FNTNTS
wRRP
Jwoo
d e

oo

.50
.50

.00

420,

.50

.50

.50

.50

.00

422, 423,

.50

.50

.50

.50

.00

424,

425,

427,

.50
.50

oo

(ool oOoOOo [elele)

oOOoOOo

.67

428, 429,

OBNNN BN &N BN O

45

430,

OO0OO0OO0O0O OO0OO0O0O OO0OO0OO0O OoOoOOoO o

SN BN BN BN
OO0OO0O0O OO0OO0OO0O OO0OO0OO oo

36

432,

433,

OSl |ACA

..B1.72: # Preds ..B1.72 ..Bl1.71
vmovsd 8 (%$rsi, %$rl0), %$xmm2

incg %rdx

vaddsd 16 (%rsi,%rl5), %$xmm2, $%$xmm3
vaddsd 8 (%$rsi,%rll), $%$xmm3, $xmmd
vaddsd %xmml, %$xmm4, $xmml

vmulsd $xmml, $xmmO, $%xmm5

vmovsd %xmm5, 8 (%rsi,%$rl5)

vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
vaddsd 16 (%rsi,%rll), %xmm7, %$xmm8
vmulsd $xmm8, $%$xmmO, $xmm9

vmovsd $xmm9, 16 (%rsi,%rl5)

vaddsd 24 (%rsi,%rl0), %$xmm9, $%$xmmlO
vaddsd 32 (%rsi,%rl5), %$xmml0, $xmmll
vaddsd 24 (%rsi,%rll), %$xmmll, $xmml2
vmulsd $xmml2, %$xmmO, $xmml3

vmovsd $xmml3, 24 (%rsi,%rlb5)

vaddsd 32 (%rsi,%rl0), %xmml3, %$xmml4
vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
vaddsd 32 (%rsi,%rll), %$xmml5, $xmmlé6
vmulsd $xmml6, $xmmO, %xmml

vmovsd %$xmml, 32 (%$rsi,%$rlb5)
addg $32, 3%rsi

cmpq %rl3, Srdx

* jb ..B1.72 # Prob 28%

434, 435]

Core-Level Performance Engineering Tutorial | CGO 2026

159
31 January 2026

Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port pressure in cycles OSI A‘ A

| 0O -0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |
414 ..B1.72: # Preds ..B1.72 ..Bl.71
415 0.00 0.00 1.00 5.0 vmovsd 8 (%$rsi, %$rl0), %$xmm2
416 0.00 0.00 1.00 0.00 incq %$rdx
417 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 16 (%$rsi,%rl5), %$xmm2, %$xmm3
418 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 8 (%rsi,%rll), %$xmm3, $%$xmmd
419 0.75 0.25 2.0 2.0 vaddsd %xmml, %$xmm4, $xmml
420 1.00 0.00 4.0 4.0 vmulsd $xmml, $xmmO, $%xmm5
421 0.50 0.50 0.50 0.50 vmovsd $xmm5, 8 (%rsi,%rl5)
422 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
423 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
424 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 16 (%rsi,%rll), %$xmm7, $%$xmm8
425 1.00 0.00 4.0 4.0 vmulsd $xmm8, $%$xmmO, $xmm9
426 0.50 0.50 0.50 0.50 vmovsd %$xmm9, 16 (%rsi,%$rlb5)
427 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rl0), %$xmm9, %xmml0
428 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl5), %$xmml0, %xmmll
429 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rll), %$xmmll, %xmml2
430 1.00 0.00 4.0 4.0 vmulsd $xmml2, %$xmmO, $xmml3
431 0.50 0.50 0.50 0.50 vmovsd $xmml3, 24 (%rsi,%rlb5)
432 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl0), %$xmml3, %xmml4
433 0.25 0.33 0.33 0.75 0.33 2.0 2.0 vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
434 0.00 0.33 0.33 1.00 0.33 2.0 2.0 vaddsd 32 (%rsi,%rll), %$xmml5, %xmmlé6
435 1.00 0.00 4.0 4.0 vmulsd $xmml6, $xmmO, %xmml
436 0.50 0.50 0.50 0.50 0.0 vmovsd $xmml, 32 (%rsi,%rl5)
437 0.00 0.00 0.50 0.50 addg $32, 3%rsi
438 0.00 0.00 0.50 0.50 cmpg %rl3, %rdx
439 * jb ..B1.72 # Prob 28%

00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 45 36

Loop-Carried Dependencies Analysis Report Block Throughput 1.50 cy

416 | 1.0 | incg %rdx #143.11 | [416]
419 | 36.0 | vaddsd %xmml, %$xmmd, Sxmml #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 | 1.0 | addg $32, %rsi #143.11 | [437]

139
Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port pressure in cycles OSI A‘ A

| 0O -0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |

414 ..B1.72: # Preds ..B1.72 ..Bl1.71
415 0.00 0.00 1.00 5.0 vmovsd 8 (%$rsi, %$rl0), %$xmm2
416 0.00 0.00 1.00 0.00 incg %rdx
417 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 16 (%$rsi,%rl5), %$xmm2, %$xmm3
418 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 8 (%rsi,%rll), %$xmm3, $%$xmmd
419 0.75 0.25 2.0 2.0 vaddsd %xmml, %$xmm4, $xmml
420 1.00 0.00 4.0 4.0 vmulsd $xmml, $xmmO, $%xmm5
421 0.50 0.50 0.50 0.50 vmovsd $xmm5, 8 (%rsi,%rl5)
422 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
423 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
424 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 16 (%rsi,%rll), %$xmm7, $%$xmm8
425 1.00 0.00 4.0 4.0 vmulsd $xmm8, $%$xmmO, $xmm9
426 0.50 0.50 0.50 0.50 vmovsd %$xmm9, 16 (%rsi,%$rlb5)
427 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rl0), %$xmm9, %xmml0
428 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%$rl5), %$xmml0, %$xmmll
429 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rll), %$xmmll, %xmml2
430 1.00 0.00 4.0 4.0 vmulsd $xmml2, %$xmmO, $xmml3
431 0.50 0.50 0.50 0.50 vmovsd $xmml3, 24 (%rsi,%rlb5)
432 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%$rl0), %$xmml3, %$xmmld
433 0.25 0.33 0.33 0.75 0.33 2.0 2.0 vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
434 0.00 0.33 0.33 1.00 0.33 2.0 2.0 vaddsd 32 (%rsi,%$rll), %$xmml5, %$xmml6
435 1.00 0.00 4.0 4.0 vmulsd $xmml6, $xmmO, %xmml
436 0.50 0.50 0.50 0.50 0.0 vmovsd $xmml, 32 (%rsi,%rl5)
437 0.00 0.00 0.50 0.50 addg $32, 3%rsi
438 0.00 0.00 0.50 0.50 cmpg %rl3, %rdx
439 * jb ..B1.72 # Prob 28%

00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 36
Loop-Carried Dependencies Analysis Report Block Throughput 1.50 cy
3%8 I 3é'8 I ing grgx #%43%11 4, % 1 #144 15I Eﬁ%g] 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433

. vaadas Xmml, <SXmm&, ‘sXmm . 7 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ r 4 ifi
437 | "1.0 | addq $32, sréi #143.11 | [437] Critical Path 11.25 cy

139
Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port pressure in cycles OSI A‘ A

| 0O -0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |
414 ..B1.72: # Preds ..B1.72 ..Bl.71
415 0.00 0.00 1.00 5.0 vmovsd 8 (%$rsi, %$rl0), %$xmm2
416 0.00 0.00 1.00 0.00 incq %$rdx
417 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 16 (%$rsi,%rl5), %$xmm2, %$xmm3
418 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 8 (%rsi,%rll), %$xmm3, $%$xmmd
419 0.75 0.25 2.0 2.0 vaddsd %xmml, %$xmm4, $xmml
420 1.00 0.00 4.0 4.0 vmulsd $xmml, $xmmO, $%xmm5
421 0.50 0.50 0.50 0.50 vmovsd $xmm5, 8 (%rsi,%rl5)
422 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
423 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
424 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 16 (%rsi,%rll), %$xmm7, $%$xmm8
425 1.00 0.00 4.0 4.0 vmulsd $xmm8, $%$xmmO, $xmm9
426 0.50 0.50 0.50 0.50 vmovsd %$xmm9, 16 (%rsi,%$rlb5)
427 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rl0), %$xmm9, %xmml0
428 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl5), %$xmml0, %xmmll
429 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rll), %$xmmll, %xmml2
430 1.00 0.00 4.0 4.0 vmulsd $xmml2, %$xmmO, $xmml3
431 0.50 0.50 0.50 0.50 vmovsd $xmml3, 24 (%rsi,%rlb5)
432 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl0), %$xmml3, %xmml4
433 0.25 0.33 0.33 0.75 0.33 2.0 2.0 vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
434 0.00 0.33 0.33 1.00 0.33 2.0 2.0 vaddsd 32 (%rsi,%rll), %$xmml5, %xmmlé6
435 1.00 0.00 4.0 4.0 vmulsd $xmml6, $xmmO, %xmml
436 0.50 0.50 0.50 0.50 0.0 vmovsd $xmml, 32 (%rsi,%rl5)
437 0.00 0.00 0.50 0.50 addg $32, 3%rsi
438 0.00 0.00 0.50 0.50 cmpg %rl3, %rdx
439 * jb ..B1.72 # Prob 28%

00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67

Loop-Carried Dependencies Analysis Report

Block Throughput 1.50 cy

416 | 1.0 | incg %rdx #143.11 | [416] |
3%3 I 3%8 I Zggqsg3§:fnuéliéi%mgf1%mml #144.15‘ Eﬁ%g]’ 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, ¢ Critical Path 11.25 cy

Loop-Carried Dep. 9.0 cy

139
Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

Hands-On: Gauss-Seidel Method — standard version

dot pdf dependencies.dot

. 2 .
5. vaddsd |2l 6 vaddsd | 2 | .
I T: wmulsd I—-i 8: vmovsd
4

osaca spr

dependencies.dot gs.s
dep graph.pdf

-vaddsd |2
50 Iwml 2 ill;vu‘ldsdl 2 =12:1r|nu|5d 2 IB I

LCD
2 | | vmovsd (%$rsi, %$r9), %$xmm2
3 | | incqg $rdx
4 | | vaddsd 8 (%rsi,%rl0), %xmm2, %$xmm3
5 vaddsd 16 (%rsi,%r9 $xmm3, $xmmé

, rsi,
24 | | addg $rl3, %rsi
25 | | cmpq srl2, Srdx
36.0

14: vaddsd

5.0
- 21: vaddsd
50 2
. 2
I]G:vaddsdl =17: sd | 2

19: vaddsd

2 I 22: wmulsd H 23: vmavsd I
L

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

136

Hands-On: Gauss-Seidel Method — standard version

dependencies.dot gs.s

osaca spr

dot pdf dependencies.dot dep graph.pdf

4]
5: vaddsd H E:waddsd | 2 2 I 22: wmulsd H" 23: vmovsd
I I? wmulsd I—-i 8: vmovsd 21: vaddsd L I
— 5.0 .@ 5.0 20: vaddsd
20 Z 5.0 I]_r.mlhdl 2 I]G:vaddsdl 2 il‘.“:vmulsd
a4 19: vaddsd

- e - e =
- =

LCD
2 | | vmovsd (%$rsi, %$r9), %$xmm2
3 | | incqg $rdx
4 | | vaddsd 8 (%rsi,%rl0), %xmm2, %$xmm3
5 vaddsd 16 (%rsi,%r9 $xmm3, $xmmé

dep chain of 35 cy
7 out of 42 (CP) can overlap

= ratio 14.3%

4
24 | | addg $rl3, %rsi
25 | | cmpg $rl2, %rdx

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 136

Hands-On: Gauss-Seidel Method — opt. version (SPR)

-Ofast / -03 -01
Iil! 10: I

[1]

8:inc
6: vaddsd }—Z-I 11: vaddsd I <
‘ 3:incq }—lﬁ 16: cmpq ‘ 4 2
59 K12 vaddsd 2:vmovsd | 5
] 5

2 5.0 3: vaddsd 2
2 ! 9: vmulsd |—4>{ 10: vmovsd -"""--.. 5
2 I I 4: : 2
7: vaddsd HB: CEEERE ! [4] I 13: vmulsd 2 14: vmovsd I : vaddsd 5: vaddsd

l 5.0
(4] 1 6: vmulsd =2 7: vmovsd
m 1: label 5.0

9: cmpq

LCD

1 | ..B1.72:

2 | | vmovsd 8(%rl0,%rll), %$xmm2 LCD

2 I I incq 4 fé?x 10, 5r11) . 1 | ..B1.34:

VINOV'S 5rl10,%rll), %xmm 2 | | vmovsd (3rsi,%rdi,8), %xmmO

56’ } } ngg:g %2&?}82:3 gf’:‘m‘;gg gf’;ﬁfn‘:; 3| | vaddsd 8(%rcx,%rdi,8), %xmm0, Sxmml
° re r.° r.° 4 vaddsd $rax, srdi, 8 $xmml, %$xmm2

7 vaddsd $xmm3, %$xmm4

16 | | cmpg srl5, Srdx
17 | | * Jb ..B1.72
14.0

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 137

Hands-On: Gauss-Seidel Method — opt. version (SPR)

-Ofast / -03 -01
Iil! 10: I

[1]

8:inc
6: vaddsd }—Z-I 11: vaddsd I <
‘ 3:incq }—lﬁ 16: cmpq ‘ 4 2
59 K12 vaddsd 2:vmovsd | 5
] 5

2 5.0 3: vaddsd 2
2 ! 9: vmulsd |—4>{ 10: vmovsd -"""--.. 5
2 I I 4: : 2
7: vaddsd HB: CEEERE ! [4] I 13: vmulsd 2 14: vmovsd I : vaddsd 5: vaddsd

l 5.0
(4] 1 6: vmulsd =2 7: vmovsd
m 1: label 5.0

9: cmpq

LCD

1 | ..B1.72:

2 | | vmovsd 8(%rl0,%rll), %$xmm2 LCD

2 I I incq 4 fé?x 10, 5r11) . 1 | ..B1.34:

VINOV'S 5rl10,%rll), %xmm 2 | | vmovsd (3rsi,%rdi,8), %xmmO

56’ } } ngg:g %2&?}82:3 gf’:‘m‘;gg gf’;ﬁfn‘:; 3| | vaddsd 8(%rcx,%rdi,8), %xmm0, Sxmml
° re r.° r.° 4 vaddsd $rax, srdi, 8 $xmml, %$xmm2

7 vaddsd $xmm3, %$xmm4

16 | | cmpg %rl5, %rdx
17 * jb ..B1.72 :
a0 T dep chain of 14 cy

9cy / 23cy CP = 39% overlap

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 137

Hands-On: Gauss-Seidel Method — opt. version (SPR)

-Ofast / -03 -01
Iil! 10: I

4: vmovsd)
t - 3 P 8:incq 1 9: cmpq
5.0 | ©: vaddsd H 11: vaddsd I
2
4

‘ 3:incq }—lﬁ 16: cmpq ‘
5.0 ilz:vaddsd I 2:vmovsd | 5
2 5.0 _f 3: vaddsd

I 4, 2
. 9: Isd 10: d
2 - - — = s, 4: vaddsd 2=l 5: vaddsd | 2
. 7: vaddsd I—IIB: vaddsd ! (a1 I13: vmulsd =2} 14: vmovsdl W Lomn 5.0 i : 4
i (41 | 6: vmulsd 7: vmovsd
m 1: label

5.0

LCD
1 | ..B1.72:
2 | | vmovsd 8(%rl0,%rll), %$xmm2 LCD
2 I I incq 4 fé?x 10, 5r11) . 1 | ..Bl.34:
VINOV'S 5rl10,%rll), %xmm 2 | | vmovsd (3rsi,%rdi,8), %xmmO
5 | | vaddsd 16(%rl0,%rsi), %$xmm2, %$xmm3 ‘ T an
6 | | vaddsd 24 (%r10,%rsi), Sxmm5, Sxmm7 2 ' | vaddsd 8 (%rcx,%rdi,8), %xmm0, %xmml
7 vaddsd

vaddsd $rax, %rdi, 8 $xmml, %$xmm2
“ I I vmovs! !xmm!, I!rcx,!r!l,!l

8 | | incg Srdi
9 | | cmpg %$rl3, %rdi
10 | | * 1 ..B1.34
8.0
16 | | . cmpq %rl5, %rdx i . f
S R I -B1.72 dep chain of 14 cy dep chain of 6cy

9cy / 23cy CP = 39% overlap 9cy/15cy CP =» 60% overlap

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 137

Hands-On: Gauss-Seidel Method on SPR

Prediction | standard
it ----

icc 2021

icx 2022 9 9 8 8 8 8
icx 2024 9 11 10 8 10 10
GCC 14.2 8 10 10.5 8 6

Cangts 0 10 10 10 |4 |4

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

141

Summary & Caveats

= A code analyzer helps you to predict the in-core runtime of a basic block
= Might be sufficient, but often a full analysis requires a memory model as well!

= An analysis of (loop-carried-)dependencies can help you find
performance limitations!

= Analysis is done on compiler-generated code which always holds a factor
of uncertainty

= There might be additional things slowing you, e.g.:
= Cache trashing
= Loads across cache lines
= Front end limitations
= Bank conflicts

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 142

There is not just THE one code analyzer

= OSACA: https://github.com/RRZE-HPC/OSACA

= uiCA: https://www.uops.info/uiCA.html

= LLVM-MCA: https://llvm.org/docs/CommandGuide/llvm-mca.html

= JACA (Eol):
https://www.intel.com/content/www/us/en/developer/articles/tool/architectur
e-code-analyzer.ntml

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 143

https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA
https://www.uops.info/uiCA.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Thank you! Questions?

OSACA: |
PIP: © pip install -u osaca

Compiler Explorer:

Survey:

https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://godbolt.org/
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback

	Intro
	Slide 1: Core-Level Performance Engineering Jan Laukemann, Georg Hager Erlangen National High Performance Computing Center (NHR@FAU) at CGO 2026, Sydney
	Slide 2: Outline

	Analytical Performance modeling
	Slide 3: Analytical Performance Modeling
	Slide 4: Analytical Performance Modeling
	Slide 5: Analytical Performance Modeling
	Slide 6: Analytical Performance Modeling

	Basic processor and core architecture SPR
	Slide 7: Basic x86 out-of-order core architecture
	Slide 8: Basic processor and core architecture
	Slide 9: Basic processor and core architecture
	Slide 10: Basic processor and core architecture
	Slide 11: Basic processor and core architecture
	Slide 12: Basic processor and core architecture
	Slide 13: Basic processor and core architecture
	Slide 14: Basic processor and core architecture
	Slide 15: Basic processor and core architecture
	Slide 16: Basic processor and core architecture
	Slide 17: Basic processor and core architecture
	Slide 18: Basic processor and core architecture
	Slide 19: Basic processor and core architecture
	Slide 20: Basic processor and core architecture
	Slide 21: Basic processor and core architecture
	Slide 22: Basic processor and core architecture
	Slide 23: Basic processor and core architecture
	Slide 24: Basic processor and core architecture
	Slide 25: Basic processor and core architecture
	Slide 26: Basic processor and core architecture
	Slide 27: Basic processor and core architecture
	Slide 28: Basic processor and core architecture

	Code execution on OoO processor cores
	Slide 52: Code execution on out-of-order CPUs
	Slide 53: Code execution on OoO processor cores
	Slide 54: Code execution on OoO processor cores
	Slide 55: Code execution on OoO processor cores
	Slide 56: Code execution on OoO processor cores
	Slide 57: Code execution on OoO processor cores
	Slide 58: Code execution on OoO processor cores
	Slide 59: Code execution on OoO processor cores
	Slide 60: Code execution on OoO processor cores
	Slide 61: Code execution on OoO processor cores
	Slide 62: Code execution on OoO processor cores
	Slide 69: Remember slides 17-21?
	Slide 70: Remember slides 17-21?
	Slide 71: Remember slides 17-21?
	Slide 72: Remember slides 17-21?
	Slide 73: Remember slides 17-21?
	Slide 74: Code execution on OoO processor cores
	Slide 75: Code execution on OoO processor cores
	Slide 76: Code execution on OoO processor cores
	Slide 77: Code execution on OoO processor cores
	Slide 78: Code execution on OoO processor cores
	Slide 79: Code execution on OoO processor cores
	Slide 80: Code execution on OoO processor cores
	Slide 81: Code execution on OoO processor cores
	Slide 82: Code execution on OoO processor cores
	Slide 83: Code execution on OoO processor cores
	Slide 84: Code execution on OoO processor cores
	Slide 85: Code execution on OoO processor cores
	Slide 86: Code execution on OoO processor cores
	Slide 87: Code execution on OoO processor cores
	Slide 88: Code execution on OoO processor cores
	Slide 89: Code execution on OoO processor cores
	Slide 90: Code execution on OoO processor cores
	Slide 91: Code execution on OoO processor cores
	Slide 92: Code execution on OoO processor cores
	Slide 93: Code execution on OoO processor cores
	Slide 94: Code execution on OoO processor cores
	Slide 95: Code execution on OoO processor cores
	Slide 96: Code execution on OoO processor cores
	Slide 97: Code execution on OoO processor cores
	Slide 98: Code execution on OoO processor cores
	Slide 99: Code execution on OoO processor cores
	Slide 100: Code execution on OoO processor cores
	Slide 101: Code execution on OoO processor cores
	Slide 102: Code execution on OoO processor cores
	Slide 103: Code execution on OoO processor cores
	Slide 104: Code execution on OoO processor cores
	Slide 105: Code execution on OoO processor cores
	Slide 106: Code execution on OoO processor cores
	Slide 107: Code execution on OoO processor cores
	Slide 108: Code execution on OoO processor cores
	Slide 109: Code execution on OoO processor cores
	Slide 110: Code execution on OoO processor cores
	Slide 111: Code execution on OoO processor cores
	Slide 112: Code execution on OoO processor cores
	Slide 113: Code execution on OoO processor cores
	Slide 114: Code execution on OoO processor cores
	Slide 115: Code execution on OoO processor cores
	Slide 116: Code execution on OoO processor cores
	Slide 117: Hands-On #0: Out-of-Order Execution
	Slide 118: Hands-On: Out-of-Order Execution
	Slide 122: Break

	Introduction to x86 ISA
	Slide 123: Introduction to the x86 ISA (Instruction Set Architecture)
	Slide 124: Basics of the x86-64 ISA
	Slide 125: Basics of the x86-64 ISA with extensions
	Slide 126: Basics of the x86-64 ISA with extensions
	Slide 127: Basics of the x86-64 ISA with extensions
	Slide 128: Basics of the x86-64 ISA with extensions
	Slide 129: Basics of the x86-64 ISA with extensions
	Slide 130: Basics of the x86-64 ISA with extensions
	Slide 131: Basics of the x86-64 ISA with extensions
	Slide 132: Basics of the x86-64 ISA with extensions
	Slide 133: Basics of the x86-64 ISA with extensions
	Slide 134: Basics of the x86-64 ISA with extensions
	Slide 135: Basics of the x86-64 ISA with extensions
	Slide 136: Case Study: Sum reduction (DP)
	Slide 137: Case Study: Sum reduction (DP)
	Slide 138: Sum reduction (DP) – AVX512
	Slide 139: Sum reduction (DP) – AVX512
	Slide 140: Sum reduction (DP) – AVX512
	Slide 141: Sum reduction (DP) – AVX512
	Slide 142: Example for masked execution
	Slide 143: SIMD with masking – sum reduction with condition
	Slide 144: SIMD with masking – sum reduction with condition
	Slide 145: SIMD with masking – sum reduction with condition
	Slide 146: SIMD with masking – sum reduction with condition

	Example: STREAM Triad Pen&Paper SPR
	Slide 147: STREAM Triad
	Slide 148: STREAM TRIAD on Intel Sapphire Rapids
	Slide 149: STREAM TRIAD on Intel Sapphire Rapids
	Slide 150: STREAM TRIAD on Intel Sapphire Rapids
	Slide 151: STREAM TRIAD on Intel Sapphire Rapids
	Slide 152: STREAM TRIAD on Intel Sapphire Rapids
	Slide 153: STREAM TRIAD on Intel Sapphire Rapids
	Slide 154: STREAM TRIAD on Intel Sapphire Rapids
	Slide 155: STREAM TRIAD on Intel Sapphire Rapids
	Slide 156: STREAM TRIAD on Intel Sapphire Rapids
	Slide 157: STREAM TRIAD on Intel Sapphire Rapids
	Slide 158: Break

	Hands-On: Benchmarking Dot Product
	Slide 171: Hands-On #1: Dot product
	Slide 172: Hands-On: Benchmarking Dot Product
	Slide 174: Dot Product on SPR
	Slide 175: Hands-On #2: Dot product (with Compiler Explorer)
	Slide 176: Dot Product on SPR – CE view

	OSACA Introduction
	Slide 177: The Open-Source Architecture Code Analyzer (OSACA)
	Slide 178: OSACA
	Slide 179: OSACA – Usage
	Slide 180: Marking the region of interest
	Slide 181: Marking the region of interest
	Slide 182: Marking the region of interest
	Slide 183: Triad on SPR with OSACA
	Slide 184: Triad on SPR with OSACA
	Slide 185: Triad on SPR with OSACA
	Slide 186: Triad on SPR with OSACA

	Hands-On w/ OSACA: Dot Product and PI
	Slide 190: Hands-On #3: Dot Product with OSACA
	Slide 191: Hands-On: Benchmarking Dot Product (DP)
	Slide 193: Hands-On #4: PI by integration
	Slide 194: Hands-On: PI by integration

	A64FX Core arch and ARM asm
	Slide 197: A64FX core architecture and AArch64 Arm ISA
	Slide 198: Node architecture of A64FX – FX700
	Slide 199: Node architecture of A64FX – FX700
	Slide 200: Node architecture of A64FX – FX700
	Slide 201: Port model for the A64FX
	Slide 202: Port model for the A64FX
	Slide 203: Port model for the A64FX
	Slide 204: AArch64 ISA – differences to x86
	Slide 205: AArch64 ISA – differences to x86
	Slide 206: AArch64 ISA – differences to x86
	Slide 207: AArch64 ISA – differences to x86
	Slide 208: AArch64 ISA – differences to x86
	Slide 209: AArch64 ISA – differences to x86
	Slide 210: AArch64 ISA – differences to x86
	Slide 211: AArch64 ISA – differences to x86
	Slide 214: Break

	Case Study: SpMV on A64FX
	Slide 215: Case Study: SpMV on A64FX Sparse Matrix-Vector Multiplication
	Slide 216: Motivation
	Slide 217: Motivation
	Slide 218: Motivation
	Slide 219: Motivation
	Slide 220: Motivation
	Slide 221: Motivation
	Slide 222: SpMV
	Slide 223: SpMV
	Slide 224: SpMV
	Slide 225: SpMV
	Slide 226: SpMV
	Slide 227: SpMV
	Slide 228: SpMV
	Slide 229: SpMV
	Slide 230: SpMV
	Slide 231: SpMV
	Slide 232: SpMV
	Slide 233: SpMV
	Slide 234: SpMV
	Slide 235: SpMV
	Slide 236: SpMV
	Slide 237: SpMV
	Slide 238: SpMV
	Slide 239: SpMV
	Slide 240: SpMV
	Slide 241: SpMV
	Slide 242: SpMV
	Slide 243: SpMV
	Slide 244: SpMV
	Slide 245: SpMV
	Slide 246: SpMV
	Slide 247: SpMV
	Slide 248: SpMV
	Slide 249: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 250: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 251: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 252: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 253: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 254: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 255: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 256: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 257: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 258: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 259: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 260: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 261: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 262: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 263: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 264: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 265: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 266: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 270: How to choose the parameters?
	Slide 271: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 272: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 273: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 274: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 275: SpMV performance with SELL-C-s (1 CMG)

	Case Study: Lattice QCD on A64FX
	Slide 277: Case Study: Domain Wall (DW) Kernel from Quantum Chromodynamics (QCD)
	Slide 278: Context
	Slide 279: DW stencil kernel (simplified)
	Slide 280: Complex numbers data layout choice
	Slide 281: Observed performance
	Slide 282: Observed performance
	Slide 283: In-core analysis (complex-AoS)
	Slide 284: In-core analysis (complex-AoS)
	Slide 285: In-core analysis (complex-AoS)
	Slide 286: In-core analysis (complex-AoS)
	Slide 287: In-core analysis (complex-AoSoA)
	Slide 288: In-core analysis (complex-AoSoA)
	Slide 289: In-core analysis (complex-AoSoA)
	Slide 290: In-core analysis (complex-AoSoA)
	Slide 291: In-core analysis (complex-AoSoA)
	Slide 292: DW kernel optimizations
	Slide 302: Summary of optimizations for DW

	Hands-On: 2D Gauss-Seidel
	Slide 303: Hands-On #5: 2D Gauss-Seidel analysis
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317: Hands-On: Gauss-Seidel Method – standard version
	Slide 318: Hands-On: Gauss-Seidel Method – standard version
	Slide 319: Hands-On: Gauss-Seidel Method – opt. version (SPR)
	Slide 320: Hands-On: Gauss-Seidel Method – opt. version (SPR)
	Slide 321: Hands-On: Gauss-Seidel Method – opt. version (SPR)
	Slide 328: Hands-On: Gauss-Seidel Method on SPR

	Summary
	Slide 329: Summary & Caveats
	Slide 330: There is not just THE one code analyzer
	Slide 332: Thank you! Questions?

