
Core-Level Performance Engineering
Jan Laukemann, Georg Hager

Erlangen National High Performance Computing Center (NHR@FAU)

at CGO 2026, Sydney

https://go-nhr.de/CLPE

https://go-nhr.de/CLPE
https://go-nhr.de/CLPE
https://go-nhr.de/CLPE

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Outline

▪ Analytical performance modeling

▪ Basic x86 processor and core architecture

▪ Code execution on Out-of-order processor cores

▪ x86 Instruction set intro

▪ Analysis of simple kernels – demo and hands-on

▪ Introduction to OSACA

▪ Arm ISA and A64FX intro

▪ More complex case studies – demo and hands-on

▪ Summary, caveats, and take-aways

2

Analytical Performance Modeling

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 3

Computational Intensity [Flop/B]

P
e
rf

o
rm

a
n
c
e
 [

G
F

lo
p

/s
]

Peak Hardware Performance

Application

Analytical Performance Modeling

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 3

Computational Intensity [Flop/B]

P
e
rf

o
rm

a
n
c
e
 [

G
F

lo
p

/s
]

Peak Hardware Performance

Peak Application Performance

(due to data type, used arithmetic functions, data dependencies, …)

Application

Analytical Performance Modeling

▪ What is the best performance my code can achieve?

▪ What are the relevant hardware bottlenecks?

▪ Apply simplified model of underlying hardware,

consisting of

▪ In-core execution

▪ Data transfer

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 4

Analytical Performance Modeling

▪ What is the best performance my code can achieve?

▪ What are the relevant hardware bottlenecks?

▪ Apply simplified model of underlying hardware,

consisting of

▪ In-core execution

▪ Data transfer

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 4

On the example of a Sapphire Rapids chip

Basic x86 out-of-order core architecture

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

6

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

6

...

0xC5F95800

0x1558F120

0xF20231DE

0x00000000

0x224410FF

...

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

7

...

0xC5F95800

0x1558F120

0xF20231DE

0x00000000

0x224410FF

...

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

8

0xC5F95800 0x1558F120

0xF20231DE 0x00000000

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

9

0xC5F95800 0x15

0x58F120 0xF202 0x31DE

0x90 0x90 0x90 0x90

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

10

0xC5F95800 0x15

0x58F120 0xF202 0x31DE

0x90 0x90 0x90 0x90

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

11

ADD Rvec1  Rvec1, MEM[R0]

MUL Rvec2  Rvec2, Rvec3

LOAD R8  MEM[SP]

INC R8

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

11

ADD Rvec1  Rvec1, MEM[R0]

MUL Rvec2  Rvec2, Rvec3

LOAD R8  MEM[SP]

INC R8

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

12

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

ADD Rvec1  Rvec1, MEM[R0]

MUL Rvec2  Rvec2, Rvec3

LOAD R8  MEM[SP]

INC R8

LOAD Rvec0  MEM[R0]

ADD Rvec1  Rvec1, Rvec0

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

13

LOAD Rvec0  MEM[R0]

ADD Rvec1  Rvec1, Rvec0

SUB R2  R2, R3

LOAD R3  MEM[R2]

MUL Rvec4  Rvec4, Rvec4, Rvec4

...

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

14

LOAD xmm0  MEM[rax]

ADD xmm1  xmm1, xmm0

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

15

ADD xmm1  xmm1, xmm0 LOAD xmm0  MEM[rax]

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

15

ADD xmm1  xmm1, xmm0 LOAD xmm0  MEM[rax]

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

15

ADD xmm1  xmm1, xmm0 LOAD xmm0  MEM[rax]

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

15

ADD xmm1  xmm1, xmm0 LOAD xmm0  MEM[rax]

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

16

Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

17

0x00 LOAD from address 0x1f8223de to reg1

0x04 LOAD from address 0x1f8244de to reg2

0x08 ADD reg1 and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010ff08

1cy on 2|3|11

1cy on 2|3|11

1cy on 0|1|5|6|10

1cy on 4|9, 1cy on 7|8

31 January 2026

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

18

0x00 LOAD from address 0x1f8223de to reg1

0x04 LOAD from address 0x1f8244de to reg2

0x08 ADD reg1 and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010ff08

1cy on 2|3|11

1cy on 2|3|11

1cy on 0|1|5|6|10

1cy on 4|9, 1cy on 7|8

0x00

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

19

0x00 LOAD from address 0x1f8223de to reg1

0x04 LOAD from address 0x1f8244de to reg2

0x08 ADD reg1 and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010ff08

1cy on 2|3|11

1cy on 2|3|11

1cy on 0|1|5|6|10

1cy on 4|9, 1cy on 7|8

0x00 0x04

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

20

0x00 LOAD from address 0x1f8223de to reg1

0x04 LOAD from address 0x1f8244de to reg2

0x08 ADD reg1 and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010ff08

1cy on 2|3|11

1cy on 2|3|11

1cy on 0|1|5|6|10

1cy on 4|9, 1cy on 7|8

0x00 0x04 0x08

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

21

0x0C 0x0C

0x00 LOAD from address 0x1f8223de to reg1

0x04 LOAD from address 0x1f8244de to reg2

0x08 ADD reg1 and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010ff08

0x00 0x04 0x08

1cy on 2|3|11

1cy on 2|3|11

1cy on 0|1|5|6|10

1cy on 4|9, 1cy on 7|8

Terminology and explanation

Code execution on out-of-order CPUs

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

Three metrics to estimate the in-core runtime:

▪ Reciprocal Throughput (rTP)

▪ Latency (LT) and Critical Path (CP)

▪ Loop-carried dependencies (LCD)

Simplified runtime estimation: 𝑡𝑐 = max(𝑡𝑟𝑇𝑃, 𝑡𝐿𝐶𝐷)

 “it”: -level iteration

40

rTP

instr. X

LT

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

Three metrics to estimate the in-core runtime:

▪ Reciprocal Throughput (rTP)

▪ Latency (LT) and Critical Path (CP)

▪ Loop-carried dependencies (LCD)

Simplified runtime estimation: 𝑡𝑐 = max(𝑡𝑟𝑇𝑃, 𝑡𝐿𝐶𝐷)

 “it”: -level iteration

40

One assembly loop can easily consist of

dozens of high-level iterations, e.g.:

8x vectorized, 4x unrolled

→ 1 assembly iteration = 32 it

rTP

instr. X

LT

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Simple HW model:

▪ Six types of functional units (i.e., types of instructions), each functional unit (FU)

assigned to one port:

▪ Reciprocal throughput for each instruction: 1cy

▪ Latency for each instruction: 1cy

▪ Port model:

41

P0 P1 P2 P3 P4 P5

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42

P0 P1 P2 P3 P4 P5

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42

P0 P1 P2 P3 P4 P5

t

1 cy/it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42

P0 P1 P2 P3 P4 P5

t

1 cy/it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Remember slides 17-21?

44

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Remember slides 17-21?

44

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Remember slides 17-21?

44

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Remember slides 17-21?

44

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Remember slides 17-21?

44

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

1 cy/it

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

1 cy/it

t

CP

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

1 cy/it

t

CP

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -

45

P0 P1 P2 P3 P4 P5

1 cy/it

t

CP

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

3 cy/it

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

3 cy/it

t

CP/LCD

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 3:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: 3 cy

46

P0 P1 P2 P3 P4 P5

3 cy/it

t

CP/LCD

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

3 cy/it

t

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

3 cy/it

t

LCD CP

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

3 cy/it

t

LCD CP

≠

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

3 cy/it

t

LCD CP

▪ Other limitations:

▪ Reorder buffer

▪ Loop length

▪ p , …

▪ Decoder

▪ Data

▪ …

≠

➔ https://go-nhr.de/CLPE-ex0

Hands-On #0:
 Out-of-Order Execution

https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Hands-On: Out-of-Order Execution

49

Dot product

→ Moodle, hands-on #0 (both Multiple-Choice and Drag&Drop)

P0 P1 P2 P3 P4 P5

Machine model:

Instructions:

 each with a reciprocal throughput

 and latency of 1 cy

Break

Introduction to the x86 ISA
(Instruction Set Architecture)

31 January 2026 55Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA

▪ Instructions have 0 to 5 operands (and possibly more suppressed operands)

▪ Operands can be registers (%), memory references ((...)) or immediates ($)

▪ Opcodes (binary representation of instructions) vary from 1 to 15 bytes

▪ There are two assembler syntax forms: Intel (left) and AT&T (right)

▪ Addressing Mode:

▪ Intel: BASE + INDEX * SCALE + DISPLACEMENT

▪ AT&T: DISPLACEMENT(BASE, INDEX, SCALE)

▪ C: A[i] equivalent to *(A+i) (a pointer has a type: A+i*8)

▪ Suffixes: AT&T often uses (optional) suffixes based on the operand size

▪ b (byte): 8 bits, w (word): 16 bits, l (long): 32 bits, q (quad): 64 bits

movaps [rdi + rax*8+48], xmm3

add rax, 8

js 1b

movaps %xmm3, 48(%rdi,%rax,8)

addq $8, %rax

js ..B1.4

Intel syntax AT&T syntax

rax

rbx

rcv

rdx

rsi

rdi

rsp (stack pointer)

rbp (base pointer)

31 January 2026 56Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

16 general purpose registers (64bit):

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight 32-bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

ah al

bh bl

ch cl

dh dl

32 bits
16 bits

8 bits

64 bits

*x

e*x, esi, edi, esp (stack pointer), ebp (base pointer)

31 January 2026 57Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

Floating Point SIMD registers (aliased): 8 opmask registers (64 bit, AVX512 only):

xmm0-xmm15 (...xmm31) SSE (128bit) k0–k7

ymm0-ymm15 (...ymm31) AVX (256bit)

zmm0-zmm31 AVX-512 (512bit)

SIMD

register

512-bit

AVX-512
zmm*

128-bit

 … .
xmm*

256-bit

AVX, AVX2
ymm*

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

→ Multiply Packed Double-Precision Floating-Point Values

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

 vfmadd213ps

→ Multiply Packed Double-Precision Floating-Point Values

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

 vfmadd213ps

→ Multiply Packed Double-Precision Floating-Point Values

→ Fused Multiply-Add of Packed Single-Precision Floating-Point Values

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

 vfmadd213ps

 addsd

→ Multiply Packed Double-Precision Floating-Point Values

→ Fused Multiply-Add of Packed Single-Precision Floating-Point Values

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

 vfmadd213ps

 addsd

→ Multiply Packed Double-Precision Floating-Point Values

→ Fused Multiply-Add of Packed Single-Precision Floating-Point Values

→ Add Scalar Double-Precision Floating-Point Values

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

 vfmadd213ps

 addsd

 vmovntdq

→ Multiply Packed Double-Precision Floating-Point Values

→ Fused Multiply-Add of Packed Single-Precision Floating-Point Values

→ Add Scalar Double-Precision Floating-Point Values

31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: v

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

… and many more

Examples:
 vmulpd

 vfmadd213ps

 addsd

 vmovntdq

→ Multiply Packed Double-Precision Floating-Point Values

→ Fused Multiply-Add of Packed Single-Precision Floating-Point Values

→ Add Scalar Double-Precision Floating-Point Values

→ Store Packed Integers Using Non-Temporal Hint

31 January 2026 59Core-Level Performance Engineering Tutorial | CGO 2026

Case Study: Sum reduction (DP)

double sum = 0.0;

for (int i=0; i<size; i++){

 sum += data[i];

}

Assembly code w/ -O1 (AT&T syntax, Intel compiler):

.label:

 addsd 0(%rdi, %rax, 8),%xmm0

 inc %rax

 cmp %rsi, %rax

 jl .label

To get object code use
objdump –d on object file or

executable or compile with -S

31 January 2026 59Core-Level Performance Engineering Tutorial | CGO 2026

Case Study: Sum reduction (DP)

double sum = 0.0;

for (int i=0; i<size; i++){

 sum += data[i];

}

Assembly code w/ -O1 (AT&T syntax, Intel compiler):

.label:

 addsd 0(%rdi, %rax, 8),%xmm0

 inc %rax

 cmp %rsi, %rax

 jl .label

To get object code use
objdump –d on object file or

executable or compile with -S

Intel syntax:
addsd xmm0, [rdi + rax * 8]

31 January 2026 60Core-Level Performance Engineering Tutorial | CGO 2026

Sum reduction (DP) – AVX512

Assembly code w/ -O3 -xCORE-AVX512 -qopt-zmm-usage=high :

..B3.28:

 vaddpd (%r13,%rcx,8), %zmm5, %zmm5

 vaddpd 64(%r13,%rcx,8), %zmm4, %zmm4

 vaddpd 128(%r13,%rcx,8), %zmm3, %zmm3

 vaddpd 192(%r13,%rcx,8), %zmm2, %zmm2

 addq $32, %rcx

 cmpq %rbx, %rcx

 jb ..B3.28

..B3.29:

 vaddpd %zmm4, %zmm5, %zmm4

 vaddpd %zmm2, %zmm3, %zmm2

 vaddpd %zmm2, %zmm4, %zmm5

[... SNIP ...]

..B3.34:

 vshuff32x4 $238, %zmm5, %zmm5, %zmm2

 vaddpd %zmm5, %zmm2, %zmm3

 vpermpd $78, %zmm3, %zmm4

 vaddpd %zmm4, %zmm3, %zmm5

 vpermpd $177, %zmm5, %zmm6

 vaddpd %zmm6, %zmm5, %zmm7

 vaddsd %xmm1, %xmm7, %xmm1

31 January 2026 60Core-Level Performance Engineering Tutorial | CGO 2026

Sum reduction (DP) – AVX512

Assembly code w/ -O3 -xCORE-AVX512 -qopt-zmm-usage=high :

..B3.28:

 vaddpd (%r13,%rcx,8), %zmm5, %zmm5

 vaddpd 64(%r13,%rcx,8), %zmm4, %zmm4

 vaddpd 128(%r13,%rcx,8), %zmm3, %zmm3

 vaddpd 192(%r13,%rcx,8), %zmm2, %zmm2

 addq $32, %rcx

 cmpq %rbx, %rcx

 jb ..B3.28

..B3.29:

 vaddpd %zmm4, %zmm5, %zmm4

 vaddpd %zmm2, %zmm3, %zmm2

 vaddpd %zmm2, %zmm4, %zmm5

[... SNIP ...]

..B3.34:

 vshuff32x4 $238, %zmm5, %zmm5, %zmm2

 vaddpd %zmm5, %zmm2, %zmm3

 vpermpd $78, %zmm3, %zmm4

 vaddpd %zmm4, %zmm3, %zmm5

 vpermpd $177, %zmm5, %zmm6

 vaddpd %zmm6, %zmm5, %zmm7

 vaddsd %xmm1, %xmm7, %xmm1

Bulk loop code

(8x4-way unrolled)

31 January 2026 60Core-Level Performance Engineering Tutorial | CGO 2026

Sum reduction (DP) – AVX512

Assembly code w/ -O3 -xCORE-AVX512 -qopt-zmm-usage=high :

..B3.28:

 vaddpd (%r13,%rcx,8), %zmm5, %zmm5

 vaddpd 64(%r13,%rcx,8), %zmm4, %zmm4

 vaddpd 128(%r13,%rcx,8), %zmm3, %zmm3

 vaddpd 192(%r13,%rcx,8), %zmm2, %zmm2

 addq $32, %rcx

 cmpq %rbx, %rcx

 jb ..B3.28

..B3.29:

 vaddpd %zmm4, %zmm5, %zmm4

 vaddpd %zmm2, %zmm3, %zmm2

 vaddpd %zmm2, %zmm4, %zmm5

[... SNIP ...]

..B3.34:

 vshuff32x4 $238, %zmm5, %zmm5, %zmm2

 vaddpd %zmm5, %zmm2, %zmm3

 vpermpd $78, %zmm3, %zmm4

 vaddpd %zmm4, %zmm3, %zmm5

 vpermpd $177, %zmm5, %zmm6

 vaddpd %zmm6, %zmm5, %zmm7

 vaddsd %xmm1, %xmm7, %xmm1

Bulk loop code

(8x4-way unrolled)

Remainder omitted

31 January 2026 60Core-Level Performance Engineering Tutorial | CGO 2026

Sum reduction (DP) – AVX512

Assembly code w/ -O3 -xCORE-AVX512 -qopt-zmm-usage=high :

..B3.28:

 vaddpd (%r13,%rcx,8), %zmm5, %zmm5

 vaddpd 64(%r13,%rcx,8), %zmm4, %zmm4

 vaddpd 128(%r13,%rcx,8), %zmm3, %zmm3

 vaddpd 192(%r13,%rcx,8), %zmm2, %zmm2

 addq $32, %rcx

 cmpq %rbx, %rcx

 jb ..B3.28

..B3.29:

 vaddpd %zmm4, %zmm5, %zmm4

 vaddpd %zmm2, %zmm3, %zmm2

 vaddpd %zmm2, %zmm4, %zmm5

[... SNIP ...]

..B3.34:

 vshuff32x4 $238, %zmm5, %zmm5, %zmm2

 vaddpd %zmm5, %zmm2, %zmm3

 vpermpd $78, %zmm3, %zmm4

 vaddpd %zmm4, %zmm3, %zmm5

 vpermpd $177, %zmm5, %zmm6

 vaddpd %zmm6, %zmm5, %zmm7

 vaddsd %xmm1, %xmm7, %xmm1

Bulk loop code

(8x4-way unrolled)

Remainder omitted
Sum up 32

partial sums into
xmm1

31 January 2026 61Core-Level Performance Engineering Tutorial | CGO 2026

Example for masked execution

Masking is very helpful in cases such as, e.g., remainder loop handling or

conditionals

Available on x86 starting with AVX-512

Example: vaddps %zmm0, %zmm1, %zmm2{%k1}

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SIMD with masking – sum reduction with condition

62

..B1.38:

 vmovups (%r15,%rcx,8), %zmm6

 vmovups 64(%r15,%rcx,8), %zmm7

 vmovups 128(%r15,%rcx,8), %zmm8

 vmovups 192(%r15,%rcx,8), %zmm9

 vcmppd $14, %zmm10, %zmm6, %k1

 vcmppd $14, %zmm10, %zmm7, %k2

 vcmppd $14, %zmm10, %zmm8, %k3

 vcmppd $14, %zmm10, %zmm9, %k4

 vaddpd %zmm6, %zmm5, %zmm5{%k1}

 vaddpd %zmm7, %zmm4, %zmm4{%k2}

 vaddpd %zmm8, %zmm3, %zmm3{%k3}

 vaddpd %zmm9, %zmm2, %zmm2{%k4}

 addq $32, %rcx

 cmpq %r14, %rcx

 jb ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

 if (data[i] > 0.0)

 sum += data[i];

}

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SIMD with masking – sum reduction with condition

62

..B1.38:

 vmovups (%r15,%rcx,8), %zmm6

 vmovups 64(%r15,%rcx,8), %zmm7

 vmovups 128(%r15,%rcx,8), %zmm8

 vmovups 192(%r15,%rcx,8), %zmm9

 vcmppd $14, %zmm10, %zmm6, %k1

 vcmppd $14, %zmm10, %zmm7, %k2

 vcmppd $14, %zmm10, %zmm8, %k3

 vcmppd $14, %zmm10, %zmm9, %k4

 vaddpd %zmm6, %zmm5, %zmm5{%k1}

 vaddpd %zmm7, %zmm4, %zmm4{%k2}

 vaddpd %zmm8, %zmm3, %zmm3{%k3}

 vaddpd %zmm9, %zmm2, %zmm2{%k4}

 addq $32, %rcx

 cmpq %r14, %rcx

 jb ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

 if (data[i] > 0.0)

 sum += data[i];

}

Bulk loop code

(8x4-way unrolled)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SIMD with masking – sum reduction with condition

62

..B1.38:

 vmovups (%r15,%rcx,8), %zmm6

 vmovups 64(%r15,%rcx,8), %zmm7

 vmovups 128(%r15,%rcx,8), %zmm8

 vmovups 192(%r15,%rcx,8), %zmm9

 vcmppd $14, %zmm10, %zmm6, %k1

 vcmppd $14, %zmm10, %zmm7, %k2

 vcmppd $14, %zmm10, %zmm8, %k3

 vcmppd $14, %zmm10, %zmm9, %k4

 vaddpd %zmm6, %zmm5, %zmm5{%k1}

 vaddpd %zmm7, %zmm4, %zmm4{%k2}

 vaddpd %zmm8, %zmm3, %zmm3{%k3}

 vaddpd %zmm9, %zmm2, %zmm2{%k4}

 addq $32, %rcx

 cmpq %r14, %rcx

 jb ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

 if (data[i] > 0.0)

 sum += data[i];

}

Bulk loop code

(8x4-way unrolled)

SIMD mask

generation

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SIMD with masking – sum reduction with condition

62

..B1.38:

 vmovups (%r15,%rcx,8), %zmm6

 vmovups 64(%r15,%rcx,8), %zmm7

 vmovups 128(%r15,%rcx,8), %zmm8

 vmovups 192(%r15,%rcx,8), %zmm9

 vcmppd $14, %zmm10, %zmm6, %k1

 vcmppd $14, %zmm10, %zmm7, %k2

 vcmppd $14, %zmm10, %zmm8, %k3

 vcmppd $14, %zmm10, %zmm9, %k4

 vaddpd %zmm6, %zmm5, %zmm5{%k1}

 vaddpd %zmm7, %zmm4, %zmm4{%k2}

 vaddpd %zmm8, %zmm3, %zmm3{%k3}

 vaddpd %zmm9, %zmm2, %zmm2{%k4}

 addq $32, %rcx

 cmpq %r14, %rcx

 jb ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

 if (data[i] > 0.0)

 sum += data[i];

}

Bulk loop code

(8x4-way unrolled)

SIMD mask

generation

masked SIMD

ADDs

(accumulates)

A pen & paper in-core analysis

STREAM Triad

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LD

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LD

FMA LD

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LD

FMA LD

STR STR
E

x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LD

FMA LD

STR STR

ADD
E

x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LD

FMA LD

STR STR

ADD

CMP&JMP

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

65

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LDFMA LD STR STRADD CMP&JMPIt x+1

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

65

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LDFMA LD STR STRADD CMP&JMP

LDFMA LD STR STRADD CMP&JMP

It x+1

It x+2

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

65

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LDFMA LD STR STRADD CMP&JMP

LDFMA LD STR STRADD CMP&JMP

It x+1

It x+2

It x+3 LDFMA LD STR STRADD CMP&JMP

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

65

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

 vmovups (%r14,%rdx,8), %zmm1

 vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

 vmovupd %zmm1, (%r12,%rdx,8)

 addq $8, %rdx

 cmpq %rsi, %rdx

 jb ..B2.42

LDFMA LD STR STRADD CMP&JMP

1 cy / 8 it

LDFMA LD STR STRADD CMP&JMP

It x+1

It x+2

It x+3 LDFMA LD STR STRADD CMP&JMP

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

Break

➔ https://go-nhr.de/CLPE-ex1

Hands-On #1:
 Dot product

https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Hands-On: Benchmarking Dot Product

71

Dot product

s = s + a[i] * b[i] * =

Σ

→ Moodle, hands-on #1

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Dot Product on SPR

73

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX

ALU

DIV

FMA

BR

ALU

LEA

INT

MUL

INT

DIV

256b

ALU

256b

FMA

LD

AGU

LD

AGU

ST STST

AGU

ST

AGU
ALU

LEA

SHFT

BR

P10 P11

256b

LD

AGU

ALU

LEA

INT

MUL

AVX

ALU

FMA

ALU

LEA

0

1

2

3

4

5

6

7

➔ https://go-nhr.de/CLPE-ex2

Hands-On #2:
 Dot product (with Compiler Explorer)

https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2

Dot Product on SPR – CE view

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 75

→ Moodle, hands-on #2

Right click and

“ v k

 ” p

find your region of

interest

Set executer

compiler and flags

(separately from

ASM compiler)

Add new compiler

Set runtime

parameters

Set ASM compiler

compiler and flags

Add new executor

Add new analysis

tool

Click to see your

compiler log

(warnings and errors)

Set OSACA runtime

parameters

An introduction

The Open-Source Architecture Code Analyzer
(OSACA)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

OSACA

▪ Open Source Architecture Code Analyzer

▪ Static in-core code analysis

Assumptions

▪ Steady-state execution (no warm-up/cool-down)

▪ All data in L1

▪ Perfect out-of-order scheduling

▪ (currently) no front-end, i.e., no limit in instruction fetching, decoding, etc…

▪ Architecture specific model for each µArch

▪ Python module

77

$ pip install osaca

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

OSACA – Usage

Important flags:

78

osaca [-h] [-V] [--arch ARCH] [--fixed] [--lines LINES]

 [--ignore-unknown] [--lcd-timeout SECONDS]

 [--db-check] [--import MICROBENCH] [--insert-marker]

 [--export-graph GRAPHNAME] [--consider-flag-deps]

 [--out OUT] [--verbose]

 FILEPATH

--arch ARCH Currently supported: Intel SNB – GNR, AMD ZEN1, ZEN2, ZEN3, ZEN4, ZEN5,

 Arm TX2, A72, N1, A64FX, TSV110, M1, V2(Grace)

--lines L1,L2,L3-L4,L5:L6 Specify lines to analyze (if no markers are used)

--ignore-unknown Assume 0cy TP/LAT for unknown instructions

31 January 2026 79Core-Level Performance Engineering Tutorial | CGO 2026

Marking the region of interest

x86

arm

OSACA-BEGIN
.L22:
vmovapd 0(%r13,%rax),%ymm0
vfmadd213pd (%r14,%rax),%ymm1,%ymm0
vmovapd %ymm0,(%r12,%rax)
addq $32,%rax
cmpq %rax,%r15
jne .L22

OSACA-END

// OSACA-BEGIN
.L18:
ldr q2, [x20, x0]
ldr q1, [x21, x0]
fmla v1.2d, v2.2d, v0.2d
str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

Comment marker

31 January 2026 79Core-Level Performance Engineering Tutorial | CGO 2026

Marking the region of interest

x86

arm

OSACA-BEGIN
.L22:
vmovapd 0(%r13,%rax),%ymm0
vfmadd213pd (%r14,%rax),%ymm1,%ymm0
vmovapd %ymm0,(%r12,%rax)
addq $32,%rax
cmpq %rax,%r15
jne .L22

OSACA-END

// OSACA-BEGIN
.L18:
ldr q2, [x20, x0]
ldr q1, [x21, x0]
fmla v1.2d, v2.2d, v0.2d
str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

$ osaca --arch ARCH --insert-marker

Blocks found in assembly file:
.L_A
 ...
.L_B
 ...

Possible blocks to be marked:
.L_A
.L_B
Choose block to be marked [.L_B]: _

Insertion toolComment marker

31 January 2026 79Core-Level Performance Engineering Tutorial | CGO 2026

Marking the region of interest

x86

arm

OSACA-BEGIN
.L22:
vmovapd 0(%r13,%rax),%ymm0
vfmadd213pd (%r14,%rax),%ymm1,%ymm0
vmovapd %ymm0,(%r12,%rax)
addq $32,%rax
cmpq %rax,%r15
jne .L22

OSACA-END

// OSACA-BEGIN
.L18:
ldr q2, [x20, x0]
ldr q1, [x21, x0]
fmla v1.2d, v2.2d, v0.2d
str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

$ osaca --arch ARCH --insert-marker

Blocks found in assembly file:
.L_A
 ...
.L_B
 ...

Possible blocks to be marked:
.L_A
.L_B
Choose block to be marked [.L_B]: _

Insertion toolComment marker

will be marked with byte markers, i.e.:
movl $111,%ebx; .byte 100,103,144; (x86)
...

movl $222,%ebx; .byte 100,103,144;

mov x1,#111; .byte 213,3,32,31 (aarch64)
...

mov x1,#222; .byte 213,3,32,31

Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 80

Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 80

Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 80

$ osaca --arch SPR triad.s

Open Source Architecture Code Analyzer (OSACA) - 0.6.0

Architecture: SPR

 * - Instruction micro-ops not bound to a port

 X - No throughput/latency information for this instruction in data file

 Port pressure in cycles

 | 0 - 0DV | 1 - 1DV| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 ||CP |LCD|

2 | | | | | | | | | | | | || | | ..B2.42:

3 | | | 0.50 | 0.50 | | | | | | | | 0.50 || 5 | | vmovups (%r14,%rdx,8), %zmm1

4 | 0.50 | | 0.50 | 0.50 | | 0.50 | | | | | | 0.50 || 4 | | vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

5 | | | | | 1.00 | | | 1.00 | 1.00 | 1.00 | | || 0 | | vmovupd %zmm1, (%r12,%rdx,8)

6 | 0.10 | 0.26 | | | | 0.10 | 0.27 | | | | 0.27 | || | 1 | addq $8, %rdx

7 | 0.00 | 0.34 | | | | 0.00 | 0.33 | | | | 0.33 | || | | cmpq %rsi, %rdx

8 | | | | | | | | | | | | || | |* jb ..B2.42

 0.60 0.60 1.00 1.00 1.00 0.60 0.60 1.00 1.00 1.00 0.60 1.00 9 1

Loop-Carried Dependencies Analysis Report

 6 | 1.0 | addq $8, %rdx | [6]

Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 80

$ osaca --arch SPR triad.s

Open Source Architecture Code Analyzer (OSACA) - 0.6.0

Architecture: SPR

 * - Instruction micro-ops not bound to a port

 X - No throughput/latency information for this instruction in data file

 Port pressure in cycles

 | 0 - 0DV | 1 - 1DV| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 ||CP |LCD|

2 | | | | | | | | | | | | || | | ..B2.42:

3 | | | 0.50 | 0.50 | | | | | | | | 0.50 || 5 | | vmovups (%r14,%rdx,8), %zmm1

4 | 0.50 | | 0.50 | 0.50 | | 0.50 | | | | | | 0.50 || 4 | | vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

5 | | | | | 1.00 | | | 1.00 | 1.00 | 1.00 | | || 0 | | vmovupd %zmm1, (%r12,%rdx,8)

6 | 0.10 | 0.26 | | | | 0.10 | 0.27 | | | | 0.27 | || | 1 | addq $8, %rdx

7 | 0.00 | 0.34 | | | | 0.00 | 0.33 | | | | 0.33 | || | | cmpq %rsi, %rdx

8 | | | | | | | | | | | | || | |* jb ..B2.42

 0.60 0.60 1.00 1.00 1.00 0.60 0.60 1.00 1.00 1.00 0.60 1.00 9 1

Loop-Carried Dependencies Analysis Report

 6 | 1.0 | addq $8, %rdx | [6]

0.60 0.60 1.00 1.00 1.00 0.60 0.60 1.00 1.00 1.00 0.60 1.00 9 1

➔ https://go-nhr.de/CLPE-ex3

Hands-On #3:
 Dot Product with OSACA

https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Hands-On: Benchmarking Dot Product (DP)

83

Dot Product

s = s + a[i] * b[i] * =

Σ

→ Moodle, hands-on #3

➔ https://go-nhr.de/CLPE-ex4

Hands-On #4:
 PI by integration

https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Hands-On: PI by integration

86

PI

𝜋 = න
0

1 4

1 + 𝑥2
ⅆ𝑥

double delta_x = 1./n;

double sum = 0.0;

for (int i=0; i<n; i++)

{

 x = (i + 0.5) * delta_x;

 sum += (4.0 / (1.0 + x * x));

}

1

1
𝛼 = 45° =

𝜋

4

tan 𝛼 =
1

1
= 1 ⇒ arctan 1 =

𝜋

4

⇒ 𝜋 = 4 ⋅ arctan(1)

𝑑
𝑑𝑥

 arctan(𝑥) =
1

1 + 𝑥2
⇒ 𝜋 = න

0

1 4

1 + 𝑥2
ⅆ𝑥

→ Moodle, hands-on #4

A64FX core architecture and
AArch64 Arm ISA

Node architecture of A64FX – FX700

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

48 cores

per node

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 90

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

Node architecture of A64FX – FX700

1 Core Memory

Group (CMG)

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

48 cores

per node

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 90

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

Node architecture of A64FX – FX700

1 Core Memory

Group (CMG)

4 CMGs

per node

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

48 cores

per node

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 90

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 91

Port model for the A64FX

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 91

Port model for the A64FX

Frontend

Backend

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 91

Port model for the A64FX

Frontend

Backend

31 January 2026 92Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ Opcodes are always 32 bits

▪ Similar to Intel (left) syntax with STORE (STR/STP) as exception

▪ add x1, x1, 8 # x1  x1 + 8

▪ ldr x0, [x1] # x0  mem at x1

▪ ldp x0, x1, [x2] # x0, x1  mem at x2

▪ str x0, [x1] # mem at x1  x0

▪ stp x0, x1, [x2] # mem at x2  x0, x1

▪ 31 general purpose registers (64 bits):

▪ x0–x30 (aliases with 32-bit GPRs w0–w30)

▪ 32nd register is stack pointer and zero register

x0 w0

x1 w1

...

x29 w29

x30 w30

SP/XZR WSP/WZR

64 bits
32 bits

31 January 2026 93Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ 32 SIMD and FP registers (NEON, 128 bits)

▪ v0–v31

▪ can be optionally specified with

shapes and lanes vn.<LANES><SHAPE>

▪ a single element can be indexed via brackets [i]

▪ 32 scalable vector registers (128–2048 bits):

▪ z0–z31, extending v registers, multiples of 128 bits

▪ size defined in OS

▪ 16 predicate registers (16–256 bits)

▪ p0–p15, multiples of 16 bits

▪ optional with predication operation /z, /m, /x z , , ’

z0 v0

z1 v1

...

z30 v30

z31 v31

LEN x 128 bits
128 bits

v0.2d

v0.4s

v0.8b

v0.b[1]

SIMD/FP

register

128-bit
q*

32-bit
s*

64-bit
d*

16-bit
h*

8-bit
b*

31 January 2026 94Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ Addressing Modes:

▪ Simple ([BASE]) ldr x0, [x1]

▪ Offset ([BASE, OFFSET]) ldr x0, [x1, #64]

▪ Modified Offset ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!) ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET) ldr x0, [x1], #64

31 January 2026 95Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ Addressing Modes:

▪ Simple ([BASE]) ldr x0, [x1]

▪ Offset ([BASE, OFFSET]) ldr x0, [x1, #64]

▪ Modified Offset ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!) ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET) ldr x0, [x1], #64

ldr x0, [x1]

x1

x0

Memory

31 January 2026 96Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ Addressing Modes:

▪ Simple ([BASE]) ldr x0, [x1]

▪ Offset ([BASE, OFFSET]) ldr x0, [x1, #64]

▪ Modified Offset ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!) ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET) ldr x0, [x1], #64

ldr x0, [x1, #64]

x1

x0

Memory

64+

31 January 2026 97Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ Addressing Modes:

▪ Simple ([BASE]) ldr x0, [x1]

▪ Offset ([BASE, OFFSET]) ldr x0, [x1, #64]

▪ Modified Offset ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!) ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET) ldr x0, [x1], #64

ldr x0, [x1, x2, lsl 3]

x1

x0

Memory

3

+

x2

<<

31 January 2026 98Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ Addressing Modes:

▪ Simple ([BASE]) ldr x0, [x1]

▪ Offset ([BASE, OFFSET]) ldr x0, [x1, #64]

▪ Modified Offset ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!) ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET) ldr x0, [x1], #64

ldr x0, [x1, #64]!

x1

x0

Memory

64+ x1

31 January 2026 99Core-Level Performance Engineering Tutorial | CGO 2026

AArch64 ISA – differences to x86

▪ Addressing Modes:

▪ Simple ([BASE]) ldr x0, [x1]

▪ Offset ([BASE, OFFSET]) ldr x0, [x1, #64]

▪ Modified Offset ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!) ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET) ldr x0, [x1], #64

ldr x0, [x1], #64

x1

x0

Memory

64+ x1

Break

Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:

ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.

Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI: 10.1002/cpe.6512

Case Study: SpMV on A64FX

Sparse Matrix-Vector Multiplication

= + •

https://doi.org/10.1002/cpe.6512

31 January 2026 104Core-Level Performance Engineering Tutorial | CGO 2026

Motivation

Thread pinning : Compact

CMG

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

31 January 2026 104Core-Level Performance Engineering Tutorial | CGO 2026

Motivation

Clear memory bandwidth

saturation for STREAM TRIAD
(a[i] = b[i] + s*c[i])

Thread pinning : Compact

210 GB/s =

117 B/cy

CMG

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

31 January 2026 104Core-Level Performance Engineering Tutorial | CGO 2026

Motivation

Clear memory bandwidth

saturation for STREAM TRIAD
(a[i] = b[i] + s*c[i])

Thread pinning : Compact

But why not for
SUM (s += a[i]) and

SpMV (b[:] = A[:,:]*x[i[:]]) ?

210 GB/s =

117 B/cy

CMG

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

31 January 2026 105Core-Level Performance Engineering Tutorial | CGO 2026

Motivation

Thread pinning : Compact

31 January 2026 105Core-Level Performance Engineering Tutorial | CGO 2026

Motivation

Thread pinning : Compact

31 January 2026 105Core-Level Performance Engineering Tutorial | CGO 2026

Motivation

Thread pinning : Compact

Understanding single-core

performance is the key!

31 January 2026 106Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

= + • Nr

General case:

some indirect

addressing

required!

b[:]= b[:]+ A[:,:] * x[:]

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

31 January 2026 106Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

= + • Nr

General case:

some indirect

addressing

required!

b[:]= b[:]+ A[:,:] * x[:]

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

31 January 2026 106Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

= + • Nr

General case:

some indirect

addressing

required!

b[:]= b[:]+ A[:,:] * x[:]

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format Minimum code

balance:

𝐵𝑐
𝑚𝑖𝑛 = 6

byte

flop

31 January 2026 106Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

= + • Nr

General case:

some indirect

addressing

required!

b[:]= b[:]+ A[:,:] * x[:]

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format Minimum code

balance:

𝐵𝑐
𝑚𝑖𝑛 = 6

byte

flop

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

increase loop counter j

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

increase loop counter j

“the work“

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

increase loop counter j

“the work“

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

increase loop counter j

“the work“

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

increase loop counter j

“the work“

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

increase loop counter j

“the work“

loop mechanics

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 107Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

load col_idx[j]

load A[j]

gather from x[]

increase loop counter j

“the work“

loop mechanics

reduction across SIMD register

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

31 January 2026 108Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

31 January 2026 108Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

31 January 2026 108Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

31 January 2026 108Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

Horizontal add of

512-bit register

latency = 49 cycles

31 January 2026 108Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

Horizontal add of

512-bit register

latency = 49 cycles

31 January 2026 108Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

Horizontal add of

512-bit register

latency = 49 cycles

Loop length : 27

HPCG matrix

31 January 2026 108Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

Horizontal add of

512-bit register

latency = 49 cycles

Loop length : 27

HPCG matrix

85 cy per inner loop

traversal

→ 100 GB/s per

CMG

→ No saturation

31 January 2026 109Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

$ osaca --arch a64fx spmv-inner-loop.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD |

--

1| | | | | | | | || | | .L6:

2| | | | | | 0.50 0.50 | 0.50 0.50 | || 8.0 | | ld1sw z0.d, p0/z, [x17,x20,lsl 2]

3| | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z2.d, p0/z, [x18,x20,lsl 3]

4| 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || 11.0 | | ld1d z3.d, p0/z, [x30,z0.d,lsl 3]

5| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x20, x20, 8

6| 0.00 | | 1.00 | | | | | || 9.0 | 9.0 | fmla z1.d, p0/m, z3.d, z2.d

7| | 1.00 | | 1.00 | | | | || | | whilelo p0.d, x20, x14

8| | | | | | | | 1.00 || | | b.any .L6

 1.00 1.00 1.00 2.00 1.00 3.00 3.00 3.00 3.00 1.00 28.0 9.0

Loop-Carried Dependencies Analysis Report

 6 | 9.0 | fmla z1.d, p0/m, z3.d, z2.d | [6]

 5 | 1.0 | add x20, x20, 8 | [5]

31 January 2026 109Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

$ osaca --arch a64fx spmv-inner-loop.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD |

--

1| | | | | | | | || | | .L6:

2| | | | | | 0.50 0.50 | 0.50 0.50 | || 8.0 | | ld1sw z0.d, p0/z, [x17,x20,lsl 2]

3| | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z2.d, p0/z, [x18,x20,lsl 3]

4| 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || 11.0 | | ld1d z3.d, p0/z, [x30,z0.d,lsl 3]

5| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x20, x20, 8

6| 0.00 | | 1.00 | | | | | || 9.0 | 9.0 | fmla z1.d, p0/m, z3.d, z2.d

7| | 1.00 | | 1.00 | | | | || | | whilelo p0.d, x20, x14

8| | | | | | | | 1.00 || | | b.any .L6

 1.00 1.00 1.00 2.00 1.00 3.00 3.00 3.00 3.00 1.00 28.0 9.0

Loop-Carried Dependencies Analysis Report

 6 | 9.0 | fmla z1.d, p0/m, z3.d, z2.d | [6]

 5 | 1.0 | add x20, x20, 8 | [5]

31 January 2026 109Core-Level Performance Engineering Tutorial | CGO 2026

SpMV

$ osaca --arch a64fx spmv-inner-loop.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD |

--

1| | | | | | | | || | | .L6:

2| | | | | | 0.50 0.50 | 0.50 0.50 | || 8.0 | | ld1sw z0.d, p0/z, [x17,x20,lsl 2]

3| | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z2.d, p0/z, [x18,x20,lsl 3]

4| 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || 11.0 | | ld1d z3.d, p0/z, [x30,z0.d,lsl 3]

5| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x20, x20, 8

6| 0.00 | | 1.00 | | | | | || 9.0 | 9.0 | fmla z1.d, p0/m, z3.d, z2.d

7| | 1.00 | | 1.00 | | | | || | | whilelo p0.d, x20, x14

8| | | | | | | | 1.00 || | | b.any .L6

 1.00 1.00 1.00 2.00 1.00 3.00 3.00 3.00 3.00 1.00 28.0 9.0

Loop-Carried Dependencies Analysis Report

 6 | 9.0 | fmla z1.d, p0/m, z3.d, z2.d | [6]

 5 | 1.0 | add x20, x20, 8 | [5]

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 110

b[:] A[:]

+=

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

How to choose the parameters?

▪ 𝐶

▪ 𝑛 × SIMD width to allow good utilization of SIMD units

▪ 𝑛 > 1 useful for hiding ADD pipeline latency

▪ 𝜎

▪ As small as possible, as large as necessary

▪ Large 𝜎 reduces zero padding

▪ Sorting alters RHS access pattern

112

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on
modern processors with wide SIMD units. SIAM Journal on Scientific
Computing 36(5), C401–C423 (2014). DOI: 10.1137/130930352,

http://dx.doi.org/10.1137/130930352

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SELL-32-𝜎 kernel OSACA analysis for A64FX

113

| 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD |

 92 | | | | | | | | || | | .L4:

 93 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z16.d, p0/z, [x11]

 94 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z17.d, p0/z, [x11, #1, mul vl]

 95 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z20.d, p0/z, [x11, #2, mul vl]

 96 | | | | | | 0.50 0.50 | 0.50 0.50 | || 8.0 | | ld1sw z21.d, p0/z, [x11, #3, mul vl]

 97 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x10, x10, 32

 98 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x11, x11, 128

 99 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x12, x12, 256

 100 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z19.d, p0/z, [x12, #-4, mul vl]

 101 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z18.d, p0/z, [x12, #-3, mul vl]

 102 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z25.d, p0/z, [x12, #-2, mul vl]

 103 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z27.d, p0/z, [x12, #-1, mul vl]

 104 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z22.d, p0/z, [x3, z16.d, lsl 3]

 105 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z23.d, p0/z, [x3, z17.d, lsl 3]

 106 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z24.d, p0/z, [x3, z20.d, lsl 3]

 107 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || 11.0 | | ld1d z26.d, p0/z, [x3, z21.d, lsl 3]

 108 | | 1.00 | | 1.00 | | | | || | | whilelo p1.d, x10, x9

 109 | 0.00 | | 1.00 | | | | | || | | fmla z4.d, p0/m, z19.d, z22.d

 110 | 0.00 | | 1.00 | | | | | || | | fmla z5.d, p0/m, z18.d, z23.d

 111 | 0.00 | | 1.00 | | | | | || | | fmla z6.d, p0/m, z25.d, z24.d

 112 | 0.00 | | 1.00 | | | | | || 9.0 | 9.0 | fmla z7.d, p0/m, z27.d, z26.d

 113 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov p0.b, p1.b

 114 | | | | | | | | 1.00 || | | b.any .L4

 4.00 1.00 4.00 5.00 4.00 12.0 12.0 12.0 12.0 1.00 28.0 9.0

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SELL-32-𝜎 kernel OSACA analysis for A64FX

113

| 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD |

 92 | | | | | | | | || | | .L4:

 93 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z16.d, p0/z, [x11]

 94 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z17.d, p0/z, [x11, #1, mul vl]

 95 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z20.d, p0/z, [x11, #2, mul vl]

 96 | | | | | | 0.50 0.50 | 0.50 0.50 | || 8.0 | | ld1sw z21.d, p0/z, [x11, #3, mul vl]

 97 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x10, x10, 32

 98 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x11, x11, 128

 99 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x12, x12, 256

 100 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z19.d, p0/z, [x12, #-4, mul vl]

 101 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z18.d, p0/z, [x12, #-3, mul vl]

 102 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z25.d, p0/z, [x12, #-2, mul vl]

 103 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z27.d, p0/z, [x12, #-1, mul vl]

 104 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z22.d, p0/z, [x3, z16.d, lsl 3]

 105 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z23.d, p0/z, [x3, z17.d, lsl 3]

 106 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z24.d, p0/z, [x3, z20.d, lsl 3]

 107 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || 11.0 | | ld1d z26.d, p0/z, [x3, z21.d, lsl 3]

 108 | | 1.00 | | 1.00 | | | | || | | whilelo p1.d, x10, x9

 109 | 0.00 | | 1.00 | | | | | || | | fmla z4.d, p0/m, z19.d, z22.d

 110 | 0.00 | | 1.00 | | | | | || | | fmla z5.d, p0/m, z18.d, z23.d

 111 | 0.00 | | 1.00 | | | | | || | | fmla z6.d, p0/m, z25.d, z24.d

 112 | 0.00 | | 1.00 | | | | | || 9.0 | 9.0 | fmla z7.d, p0/m, z27.d, z26.d

 113 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov p0.b, p1.b

 114 | | | | | | | | 1.00 || | | b.any .L4

 4.00 1.00 4.00 5.00 4.00 12.0 12.0 12.0 12.0 1.00 28.0 9.0

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SELL-32-𝜎 kernel OSACA analysis for A64FX

113

| 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD |

 92 | | | | | | | | || | | .L4:

 93 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z16.d, p0/z, [x11]

 94 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z17.d, p0/z, [x11, #1, mul vl]

 95 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1sw z20.d, p0/z, [x11, #2, mul vl]

 96 | | | | | | 0.50 0.50 | 0.50 0.50 | || 8.0 | | ld1sw z21.d, p0/z, [x11, #3, mul vl]

 97 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x10, x10, 32

 98 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x11, x11, 128

 99 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | add x12, x12, 256

 100 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z19.d, p0/z, [x12, #-4, mul vl]

 101 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z18.d, p0/z, [x12, #-3, mul vl]

 102 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z25.d, p0/z, [x12, #-2, mul vl]

 103 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z27.d, p0/z, [x12, #-1, mul vl]

 104 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z22.d, p0/z, [x3, z16.d, lsl 3]

 105 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z23.d, p0/z, [x3, z17.d, lsl 3]

 106 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || | | ld1d z24.d, p0/z, [x3, z20.d, lsl 3]

 107 | 1.00 | | | 1.00 | | 2.00 2.00 | 2.00 2.00 | || 11.0 | | ld1d z26.d, p0/z, [x3, z21.d, lsl 3]

 108 | | 1.00 | | 1.00 | | | | || | | whilelo p1.d, x10, x9

 109 | 0.00 | | 1.00 | | | | | || | | fmla z4.d, p0/m, z19.d, z22.d

 110 | 0.00 | | 1.00 | | | | | || | | fmla z5.d, p0/m, z18.d, z23.d

 111 | 0.00 | | 1.00 | | | | | || | | fmla z6.d, p0/m, z25.d, z24.d

 112 | 0.00 | | 1.00 | | | | | || 9.0 | 9.0 | fmla z7.d, p0/m, z27.d, z26.d

 113 | 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov p0.b, p1.b

 114 | | | | | | | | 1.00 || | | b.any .L4

 4.00 1.00 4.00 5.00 4.00 12.0 12.0 12.0 12.0 1.00 28.0 9.0

Shift of bottleneck

31 January 2026 114Core-Level Performance Engineering Tutorial | CGO 2026

SELL-32-𝜎 kernel OSACA analysis for A64FX

Loop-Carried Dependencies Analysis Report

112 | 9.0 | fmla z7.d, p0/m, z27.d, z26.d | [112]

111 | 9.0 | fmla z6.d, p0/m, z25.d, z24.d | [111]

110 | 9.0 | fmla z5.d, p0/m, z18.d, z23.d | [110]

109 | 9.0 | fmla z4.d, p0/m, z19.d, z22.d | [109]

99 | 1.0 | add x12, x12, 256 | [99]

98 | 1.0 | add x11, x11, 128 | [98]

97 | 1.0 | add x10, x10, 32 | [97]

0

10

20

30

0 2 4 6 8 10 12

P
e

rf
o

rm
a

n
c

e
 [

G
fl

o
p

/s
]

of active cores

HPCG-1283

FCC CRS FCC SELL-8-1 FCC SELL-32-1

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

SpMV performance with SELL-C- (1 CMG)

▪ SELL-C- separates

SIMD from sum

reduction

▪ C>8 allows for reduction
of fmla latency impact

115

Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:

ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.

Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI: 10.1002/cpe.6512

Case Study: Domain Wall (DW) Kernel

from Quantum Chromodynamics (QCD)

© Brookhaven National Lab

https://doi.org/10.1002/cpe.6512

Context

▪ Lattice QCD simulates the strong interaction

▪ Iterative multigrid techniques on regular (4D or 5D) lattices

▪ Core component: Apply Dirac operator 𝐷 to quark-field vector Ψ

▪ Domain Wall (DW) formulation: quark field lives on 4D boundary of a 5D

space-time volume 𝑉4 × 𝐿𝑠

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 118

#define x_p 1 // x−plus direction

#define x_m 2 // x−minus direction

#define y_p 3 // y−plus direction

...

#pragma omp parallel for schedule(static)

for{t,z,y,x} = 1:{Lt−2,Lz−2,Ly−2,Lx−2} //collapsed loop over 4d space−time

{

 for(int s=0; s<Ls; ++s) //loop over fifth dimension

 {

 O[t][z][y][x][s] = R(x_p) ⋅ U[x_p][t][z][y][x] ⋅ P(x_p) ⋅ I[t][z][y][x+1][s] +
 R(x_m) ⋅ U[x_m][t][z][y][x] ⋅ P(x_m) ⋅ I[t][z][y][x−1][s] +
 R(y_p) ⋅ U[y_p][t][z][y][x] ⋅ P(y_p) ⋅ I[t][z][y+1][x][s] +
 R(y_m) ⋅ U[y_m][t][z][y][x] ⋅ P(y_m) ⋅ I[t][z][y−1][x][s] +
 R(z_p) ⋅ U[z_p][t][z][y][x] ⋅ P(z_p) ⋅ I[t][z+1][y][x][s] +
 R(z_m) ⋅ U[z_m][t][z][y][x] ⋅ P(z_m) ⋅ I[t][z−1][y][x][s] +
 R(t_p) ⋅ U[t_p][t][z][y][x] ⋅ P(t_p) ⋅ I[t+1][z][y][x][s] +
 R(t_m) ⋅ U[t_m][t][z][y][x] ⋅ P(t_m) ⋅ I[t−1][z][y][x][s];
 }

}

31 January 2026 119Core-Level Performance Engineering Tutorial | CGO 2026

DW stencil kernel (simplified)

• “ ” w k

• Uses SVE intrinsics

• Data type: double complex

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Complex numbers data layout choice

120

AoS (standard)

AoSoA

vector length

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Observed performance

▪ Starting point: AoS layout, ACLE intrinsics, GCC/FCC

▪ 1320 flops/LUP (theoretical)

▪ Measured code balance: 1500 byte/LUP

▪ A64FX (FX1000): 𝐵𝑚 = 0.25
byte
flop

 → expect memory bound

121

𝐵𝑐 ≈ 1.14
byte

flop

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Observed performance

▪ Starting point: AoS layout, ACLE intrinsics, GCC/FCC

▪ 1320 flops/LUP (theoretical)

▪ Measured code balance: 1500 byte/LUP

▪ A64FX (FX1000): 𝐵𝑚 = 0.25
byte
flop

 → expect memory bound

121

𝐵𝑐 ≈ 1.14
byte

flop

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoS)

122

$ osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

560 | | | | | | | | || | | .L41:

561 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | lsl w2, w13, 3

562 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z16.d, p0/z, [x11]

563 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x18, sp, 160

564 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z18.d, p0/z, [x11, #-4, mul vl]

565 | | | | 0.50 | 0.50 | | | || | | sxtw x2, w2

566 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z19.d, p0/z, [x11, #-3, mul vl]

 [...]

1367| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z2.d, p0, [x0, #4, mul vl]

1368| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z13.d, p0, [x0, #5, mul vl]

1369| | | | 0.00 | 1.00 | | | || | | cmp w14, w13

1370| | | | | | | | 1.00 || | | bne .L41

 680 500 30 30 118.5 98.5 118.5 98.5 1.0 158 1.0

Loop-Carried Dependencies Analysis Report

1360 | 1.0 | add w13, w13, 1 | [1360]

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoS)

122

$ osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

560 | | | | | | | | || | | .L41:

561 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | lsl w2, w13, 3

562 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z16.d, p0/z, [x11]

563 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x18, sp, 160

564 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z18.d, p0/z, [x11, #-4, mul vl]

565 | | | | 0.50 | 0.50 | | | || | | sxtw x2, w2

566 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z19.d, p0/z, [x11, #-3, mul vl]

 [...]

1367| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z2.d, p0, [x0, #4, mul vl]

1368| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z13.d, p0, [x0, #5, mul vl]

1369| | | | 0.00 | 1.00 | | | || | | cmp w14, w13

1370| | | | | | | | 1.00 || | | bne .L41

 680 500 30 30 118.5 98.5 118.5 98.5 1.0 158 1.0

Loop-Carried Dependencies Analysis Report

1360 | 1.0 | add w13, w13, 1 | [1360]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Operation type

complex arithmetic load store prefix ops FP arithmetic INT arithmetic permutations Compare/Branch

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoS)

122

$ osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

560 | | | | | | | | || | | .L41:

561 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | lsl w2, w13, 3

562 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z16.d, p0/z, [x11]

563 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x18, sp, 160

564 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z18.d, p0/z, [x11, #-4, mul vl]

565 | | | | 0.50 | 0.50 | | | || | | sxtw x2, w2

566 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z19.d, p0/z, [x11, #-3, mul vl]

 [...]

1367| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z2.d, p0, [x0, #4, mul vl]

1368| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z13.d, p0, [x0, #5, mul vl]

1369| | | | 0.00 | 1.00 | | | || | | cmp w14, w13

1370| | | | | | | | 1.00 || | | bne .L41

 680 500 30 30 118.5 98.5 118.5 98.5 1.0 158 1.0

Loop-Carried Dependencies Analysis Report

1360 | 1.0 | add w13, w13, 1 | [1360]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Operation type

complex arithmetic load store prefix ops FP arithmetic INT arithmetic permutations Compare/Branch

FCMLA Zd, Pg, Zn, Zm, c 2cy on P0, 1cy on P2

FCADD Zd, Pg, Zn, Zm, c 1cy on P0, 1cy on P2

0

100

200

300

400

500

600

700

800

P0 P1 P2 P3 P4 P5 P5D P6 P6D P7

c
y
c
le

s

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoS)

122

$ osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

560 | | | | | | | | || | | .L41:

561 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | lsl w2, w13, 3

562 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z16.d, p0/z, [x11]

563 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x18, sp, 160

564 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z18.d, p0/z, [x11, #-4, mul vl]

565 | | | | 0.50 | 0.50 | | | || | | sxtw x2, w2

566 | | | | | | 0.50 0.50 | 0.50 0.50 | || | | ld1d z19.d, p0/z, [x11, #-3, mul vl]

 [...]

1367| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z2.d, p0, [x0, #4, mul vl]

1368| 1.00 | | | | | 1.00 | 1.00 | || | | st1d z13.d, p0, [x0, #5, mul vl]

1369| | | | 0.00 | 1.00 | | | || | | cmp w14, w13

1370| | | | | | | | 1.00 || | | bne .L41

 680 500 30 30 118.5 98.5 118.5 98.5 1.0 158 1.0

Loop-Carried Dependencies Analysis Report

1360 | 1.0 | add w13, w13, 1 | [1360]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Operation type

complex arithmetic load store prefix ops FP arithmetic INT arithmetic permutations Compare/Branch

FCMLA Zd, Pg, Zn, Zm, c 2cy on P0, 1cy on P2

FCADD Zd, Pg, Zn, Zm, c 1cy on P0, 1cy on P2

FMLA Zd, Pg, Zn, Zm 1cy on P0 OR P2

FADD Zd, Pg, Zn, Zm 1cy on P0 OR P2

0

100

200

300

400

500

600

700

800

P0 P1 P2 P3 P4 P5 P5D P6 P6D P7

c
y
c
le

s

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoSoA)

123

$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

433 | | | | | | | | || | | .L66:

434 | | | | 2.50 | 2.50 | | | || | | madd x0, x1, x0, x19

435 | 1.00 | | | | | 0.50 | 0.50 | || | | str x0, [sp, 1896]

436 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, x0

437 | 1.00 | | | | | 0.50 | 0.50 | || | | str x1, [sp, 1936]

438 | | | | 0.50 | 0.50 | | | || | | cmp x0, x1

 [...]

2803| | | | | | 0.00 0.00 | 1.00 1.00 | || | | ldr x0, [sp, 1784]

2804| | | | | | 0.00 | 1.00 | || | | prfd pldl2strm, p0, [x0]

2805| | | | | | | | 1.00 || | | b .L64

2806| | | | | | | | || | | .L38:

2807| 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, 1

2808| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov x19, 0

2809| | | | | | | | 1.00 || | | b .L66

 567 1.0 567 247 247 488.5 275.5 488.5 275.5 14 92 1.0

Loop-Carried Dependencies Analysis Report

 507 | 1.0 | add sp, sp, 2048 | [507]

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoSoA)

123

$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

433 | | | | | | | | || | | .L66:

434 | | | | 2.50 | 2.50 | | | || | | madd x0, x1, x0, x19

435 | 1.00 | | | | | 0.50 | 0.50 | || | | str x0, [sp, 1896]

436 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, x0

437 | 1.00 | | | | | 0.50 | 0.50 | || | | str x1, [sp, 1936]

438 | | | | 0.50 | 0.50 | | | || | | cmp x0, x1

 [...]

2803| | | | | | 0.00 0.00 | 1.00 1.00 | || | | ldr x0, [sp, 1784]

2804| | | | | | 0.00 | 1.00 | || | | prfd pldl2strm, p0, [x0]

2805| | | | | | | | 1.00 || | | b .L64

2806| | | | | | | | || | | .L38:

2807| 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, 1

2808| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov x19, 0

2809| | | | | | | | 1.00 || | | b .L66

 567 1.0 567 247 247 488.5 275.5 488.5 275.5 14 92 1.0

Loop-Carried Dependencies Analysis Report

 507 | 1.0 | add sp, sp, 2048 | [507]

0

100

200

300

400

500

600

700

800

P0 P1 P2 P3 P4 P5 P5D P6 P6D P7

c
y
c
le

s

Port utilization

AoS

AoSoA

0

1000

2000

3000

AoS AoSoA

Active cycles for one
iteration across all ports

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoSoA)

123

$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

433 | | | | | | | | || | | .L66:

434 | | | | 2.50 | 2.50 | | | || | | madd x0, x1, x0, x19

435 | 1.00 | | | | | 0.50 | 0.50 | || | | str x0, [sp, 1896]

436 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, x0

437 | 1.00 | | | | | 0.50 | 0.50 | || | | str x1, [sp, 1936]

438 | | | | 0.50 | 0.50 | | | || | | cmp x0, x1

 [...]

2803| | | | | | 0.00 0.00 | 1.00 1.00 | || | | ldr x0, [sp, 1784]

2804| | | | | | 0.00 | 1.00 | || | | prfd pldl2strm, p0, [x0]

2805| | | | | | | | 1.00 || | | b .L64

2806| | | | | | | | || | | .L38:

2807| 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, 1

2808| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov x19, 0

2809| | | | | | | | 1.00 || | | b .L66

 567 1.0 567 247 247 488.5 275.5 488.5 275.5 14 92 1.0

Loop-Carried Dependencies Analysis Report

 507 | 1.0 | add sp, sp, 2048 | [507]

0

100

200

300

400

500

600

700

800

P0 P1 P2 P3 P4 P5 P5D P6 P6D P7

c
y
c
le

s

Port utilization

AoS

AoSoA

0

1000

2000

3000

AoS AoSoA

Active cycles for one
iteration across all ports

~2x

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoSoA)

123

$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

433 | | | | | | | | || | | .L66:

434 | | | | 2.50 | 2.50 | | | || | | madd x0, x1, x0, x19

435 | 1.00 | | | | | 0.50 | 0.50 | || | | str x0, [sp, 1896]

436 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, x0

437 | 1.00 | | | | | 0.50 | 0.50 | || | | str x1, [sp, 1936]

438 | | | | 0.50 | 0.50 | | | || | | cmp x0, x1

 [...]

2803| | | | | | 0.00 0.00 | 1.00 1.00 | || | | ldr x0, [sp, 1784]

2804| | | | | | 0.00 | 1.00 | || | | prfd pldl2strm, p0, [x0]

2805| | | | | | | | 1.00 || | | b .L64

2806| | | | | | | | || | | .L38:

2807| 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, 1

2808| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov x19, 0

2809| | | | | | | | 1.00 || | | b .L66

 567 1.0 567 247 247 488.5 275.5 488.5 275.5 14 92 1.0

Loop-Carried Dependencies Analysis Report

 507 | 1.0 | add sp, sp, 2048 | [507]

0

100

200

300

400

500

600

700

800

P0 P1 P2 P3 P4 P5 P5D P6 P6D P7

c
y
c
le

s

Port utilization

AoS

AoSoA

0

1000

2000

3000

AoS AoSoA

Active cycles for one
iteration across all ports

~2x

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

In-core analysis (complex-AoSoA)

123

$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

 Port pressure in cycles

 | 0 - 0DV | 1 | 2 | 3 | 4 | 5 - 5D | 6 - 6D | 7 || CP | LCD|

433 | | | | | | | | || | | .L66:

434 | | | | 2.50 | 2.50 | | | || | | madd x0, x1, x0, x19

435 | 1.00 | | | | | 0.50 | 0.50 | || | | str x0, [sp, 1896]

436 | 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, x0

437 | 1.00 | | | | | 0.50 | 0.50 | || | | str x1, [sp, 1936]

438 | | | | 0.50 | 0.50 | | | || | | cmp x0, x1

 [...]

2803| | | | | | 0.00 0.00 | 1.00 1.00 | || | | ldr x0, [sp, 1784]

2804| | | | | | 0.00 | 1.00 | || | | prfd pldl2strm, p0, [x0]

2805| | | | | | | | 1.00 || | | b .L64

2806| | | | | | | | || | | .L38:

2807| 0.00 | | 0.00 | 0.50 | 0.50 | | | || | | add x1, x1, 1

2808| 0.00 | | 0.00 | 0.00 | 1.00 | | | || | | mov x19, 0

2809| | | | | | | | 1.00 || | | b .L66

 567 1.0 567 247 247 488.5 275.5 488.5 275.5 14 92 1.0

Loop-Carried Dependencies Analysis Report

 507 | 1.0 | add sp, sp, 2048 | [507]

0

100

200

300

400

500

600

700

800

P0 P1 P2 P3 P4 P5 P5D P6 P6D P7

c
y
c
le

s

Port utilization

AoS

AoSoA

Performance gain

0

1000

2000

3000

AoS AoSoA

Active cycles for one
iteration across all ports

~2x

DW kernel optimizations

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 124

0

2

4

6

8

10

12

14

16

18

20

GCC

P
e
rf

o
rm

a
n
c
e
 [

G
fl
o
p
/s

]
DW kernel

AoS baseline AoS prefetch+O1 AoSoA prefetch+01

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Summary of optimizations for DW

▪ AoSoA (RRII) data layout

▪ Prevents use of complex arithmetic instructions fcmla/fcadd

▪ Removes imbalance between FLA and FLB ports in the core

▪ Some register spills occur, but still better than AoS (RIRI)

▪ More instructions but better performance

▪ Software prefetching decreases L2 data volume

▪ -O1 makes compiler obey the ordering hints in the computational kernel

(more efficient OoO execution)

131

➔ https://go-nhr.de/CLPE-ex5

Hands-On #5:
 2D Gauss-Seidel analysis

https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5

• Limited by loop-carried dependency

• Create code with -Ofast, -funroll-loops

• Analyze for SPR

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 133

Hands-On: Gauss-Seidel Method

for(int it=0; it<NITER; ++it) {

 for (int i=1; i<NI-1; ++i) {

 for (int k=1; k<NK-1; ++k) {

 phi[i][k] = 0.25 * (

 phi[i][k-1] + phi[i+1][k] +

 phi[i][k+1] + phi[i-1][k]

);

 }

 }

}→ Moodle, hands-on #5

• Limited by loop-carried dependency

• Create code with -Ofast, -funroll-loops

• Analyze for SPR

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 133

Hands-On: Gauss-Seidel Method

for(int it=0; it<NITER; ++it) {

 for (int i=1; i<NI-1; ++i) {

 for (int k=1; k<NK-1; ++k) {

 phi[i][k] = 0.25 * (

 phi[i][k-1] + phi[i+1][k] +

 phi[i][k+1] + phi[i-1][k]

);

 }

 }

}→ Moodle, hands-on #5

• Limited by loop-carried dependency

• Create code with -Ofast, -funroll-loops

• Analyze for SPR

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 133

Hands-On: Gauss-Seidel Method

for(int it=0; it<NITER; ++it) {

 for (int i=1; i<NI-1; ++i) {

 for (int k=1; k<NK-1; ++k) {

 phi[i][k] = 0.25 * (

 phi[i][k-1] + phi[i+1][k] +

 phi[i][k+1] + phi[i-1][k]

);

 }

 }

}→ Moodle, hands-on #5

• Limited by loop-carried dependency

• Create code with -Ofast, -funroll-loops

• Analyze for SPR

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 133

Hands-On: Gauss-Seidel Method

for(int it=0; it<NITER; ++it) {

 for (int i=1; i<NI-1; ++i) {

 for (int k=1; k<NK-1; ++k) {

 phi[i][k] = 0.25 * (

 phi[i][k-1] + phi[i+1][k] +

 phi[i][k+1] + phi[i-1][k]

);

 }

 }

}→ Moodle, hands-on #5

31 January 2026
135

Combined Analysis Report

Port pressure in cycles
| 0 - 0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |

--
414 | | | | | | | | | | | | || | | ..B1.72: # Preds ..B1.72 ..B1.71
415 | | | 0.00 | 0.00 | | | | | | | 1.00 | || 5.0 | | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00 | | | | | 0.00 | 1.00 | | | | | 0.00 || | | incq %rdx
417 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 16(%rsi,%r15), %xmm2, %xmm3
418 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 | | 0.75 | | | | 0.25 | | | | | | || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm5, 8(%rsi,%r15)
422 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6
423 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm9, 16(%rsi,%r15)
427 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm13, 24(%rsi,%r15)
432 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 | | 0.25 | 0.33 | 0.33 | | 0.75 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 | | 0.00 | 0.33 | 0.33 | | 1.00 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || 0.0 | | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00 | 0.00 | | | | | 0.50 | | | | 0.50 | || | | addq $32, %rsi
438 | 0.00 | | | | | 0.00 | 0.50 | | | | 0.50 | || | | cmpq %r13, %rdx
439 | | | | | | | | | | | | || | | * jb ..B1.72 # Prob 28%

4.00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 45 36

Loop-Carried Dependencies Analysis Report

416 | 1.0 | incq %rdx #143.11 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 | 1.0 | addq $32, %rsi #143.11 | [437]

Core-Level Performance Engineering Tutorial | CGO 2026

Hands-On: Gauss-Seidel Method on SPR

31 January 2026
135

Combined Analysis Report

Port pressure in cycles
| 0 - 0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |

--
414 | | | | | | | | | | | | || | | ..B1.72: # Preds ..B1.72 ..B1.71
415 | | | 0.00 | 0.00 | | | | | | | 1.00 | || 5.0 | | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00 | | | | | 0.00 | 1.00 | | | | | 0.00 || | | incq %rdx
417 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 16(%rsi,%r15), %xmm2, %xmm3
418 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 | | 0.75 | | | | 0.25 | | | | | | || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm5, 8(%rsi,%r15)
422 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6
423 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm9, 16(%rsi,%r15)
427 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm13, 24(%rsi,%r15)
432 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 | | 0.25 | 0.33 | 0.33 | | 0.75 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 | | 0.00 | 0.33 | 0.33 | | 1.00 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || 0.0 | | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00 | 0.00 | | | | | 0.50 | | | | 0.50 | || | | addq $32, %rsi
438 | 0.00 | | | | | 0.00 | 0.50 | | | | 0.50 | || | | cmpq %r13, %rdx
439 | | | | | | | | | | | | || | | * jb ..B1.72 # Prob 28%

4.00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 45 36

Loop-Carried Dependencies Analysis Report

416 | 1.0 | incq %rdx #143.11 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 | 1.0 | addq $32, %rsi #143.11 | [437]

Core-Level Performance Engineering Tutorial | CGO 2026

Block Throughput 1.50 cy

6.00 6.00

Hands-On: Gauss-Seidel Method on SPR

31 January 2026
135

Combined Analysis Report

Port pressure in cycles
| 0 - 0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |

--
414 | | | | | | | | | | | | || | | ..B1.72: # Preds ..B1.72 ..B1.71
415 | | | 0.00 | 0.00 | | | | | | | 1.00 | || 5.0 | | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00 | | | | | 0.00 | 1.00 | | | | | 0.00 || | | incq %rdx
417 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 16(%rsi,%r15), %xmm2, %xmm3
418 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 | | 0.75 | | | | 0.25 | | | | | | || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm5, 8(%rsi,%r15)
422 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6
423 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm9, 16(%rsi,%r15)
427 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm13, 24(%rsi,%r15)
432 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 | | 0.25 | 0.33 | 0.33 | | 0.75 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 | | 0.00 | 0.33 | 0.33 | | 1.00 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || 0.0 | | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00 | 0.00 | | | | | 0.50 | | | | 0.50 | || | | addq $32, %rsi
438 | 0.00 | | | | | 0.00 | 0.50 | | | | 0.50 | || | | cmpq %r13, %rdx
439 | | | | | | | | | | | | || | | * jb ..B1.72 # Prob 28%

4.00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 45 36

Loop-Carried Dependencies Analysis Report

416 | 1.0 | incq %rdx #143.11 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 | 1.0 | addq $32, %rsi #143.11 | [437]

Core-Level Performance Engineering Tutorial | CGO 2026

45

Block Throughput 1.50 cy

Critical Path 11.25 cy

6.00 6.00

Hands-On: Gauss-Seidel Method on SPR

31 January 2026
135

Combined Analysis Report

Port pressure in cycles
| 0 - 0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |

--
414 | | | | | | | | | | | | || | | ..B1.72: # Preds ..B1.72 ..B1.71
415 | | | 0.00 | 0.00 | | | | | | | 1.00 | || 5.0 | | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00 | | | | | 0.00 | 1.00 | | | | | 0.00 || | | incq %rdx
417 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 16(%rsi,%r15), %xmm2, %xmm3
418 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 | | 0.75 | | | | 0.25 | | | | | | || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm5, 8(%rsi,%r15)
422 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6
423 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm9, 16(%rsi,%r15)
427 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 | | 0.75 | 0.33 | 0.33 | | 0.25 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || | | vmovsd %xmm13, 24(%rsi,%r15)
432 | | 0.50 | 0.33 | 0.33 | | 0.50 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 | | 0.25 | 0.33 | 0.33 | | 0.75 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 | | 0.00 | 0.33 | 0.33 | | 1.00 | | | | | | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00 | 0.00 | | | | | | | | | | || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 | | | | | 0.50 | | | 0.50 | 0.50 | 0.50 | | || 0.0 | | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00 | 0.00 | | | | | 0.50 | | | | 0.50 | || | | addq $32, %rsi
438 | 0.00 | | | | | 0.00 | 0.50 | | | | 0.50 | || | | cmpq %r13, %rdx
439 | | | | | | | | | | | | || | | * jb ..B1.72 # Prob 28%

4.00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 45 36

Loop-Carried Dependencies Analysis Report

416 | 1.0 | incq %rdx #143.11 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 | 1.0 | addq $32, %rsi #143.11 | [437]

Core-Level Performance Engineering Tutorial | CGO 2026

45 36

Block Throughput 1.50 cy

Critical Path 11.25 cy

Loop-Carried Dep. 9.0 cy

6.00 6.00

Hands-On: Gauss-Seidel Method on SPR

Hands-On: Gauss-Seidel Method – standard version

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 136

$ osaca --arch spr --export-graph dependencies.dot gs.s

$ dot -Tpdf dependencies.dot –o dep_graph.pdf

LCD
 2 | | vmovsd (%rsi,%r9), %xmm2

3 | | incq %rdx
 4 | | vaddsd 8(%rsi,%r10), %xmm2, %xmm3
 5 | | vaddsd 16(%rsi,%r9), %xmm3, %xmm4

6 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1 .
7 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5 .

 8 | | vmovsd %xmm5, 8(%rsi,%r9)
9 | 2.0 | vaddsd (%rsi,%r10), %xmm5, %xmm6 .
10 | 2.0 | vaddsd 8(%rsi,%r11), %xmm6, %xmm7 .
11 | 2.0 | vaddsd 16(%rsi,%r10), %xmm7, %xmm8 .
12 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9 .

 13 | | vmovsd %xmm9, 8(%rsi,%r10)
14 | 2.0 | vaddsd (%rsi,%r11), %xmm9, %xmm10 .
15 | 2.0 | vaddsd 8(%rsi,%r8), %xmm10, %xmm11 .
16 | 2.0 | vaddsd 16(%rsi,%r11), %xmm11, %xmm12
17 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13 .

 18 | | vmovsd %xmm13, 8(%rsi,%r11)
19 | 2.0 | vaddsd (%rsi,%r8), %xmm13, %xmm14 .
20 | 2.0 | vaddsd 8(%rsi,%r14), %xmm14, %xmm15.
21 | 2.0 | vaddsd 16(%rsi,%r8), %xmm15, %xmm16.
22 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1 .

 23 | | vmovsd %xmm1, 8(%rsi,%r8)
24 | | addq %r13, %rsi

 25 | | cmpq %r12, %rdx
 36.0

Hands-On: Gauss-Seidel Method – standard version

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 136

$ osaca --arch spr --export-graph dependencies.dot gs.s

$ dot -Tpdf dependencies.dot –o dep_graph.pdf

LCD
 2 | | vmovsd (%rsi,%r9), %xmm2

3 | | incq %rdx
 4 | | vaddsd 8(%rsi,%r10), %xmm2, %xmm3
 5 | | vaddsd 16(%rsi,%r9), %xmm3, %xmm4

6 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1 .
7 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5 .

 8 | | vmovsd %xmm5, 8(%rsi,%r9)
9 | 2.0 | vaddsd (%rsi,%r10), %xmm5, %xmm6 .
10 | 2.0 | vaddsd 8(%rsi,%r11), %xmm6, %xmm7 .
11 | 2.0 | vaddsd 16(%rsi,%r10), %xmm7, %xmm8 .
12 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9 .

 13 | | vmovsd %xmm9, 8(%rsi,%r10)
14 | 2.0 | vaddsd (%rsi,%r11), %xmm9, %xmm10 .
15 | 2.0 | vaddsd 8(%rsi,%r8), %xmm10, %xmm11 .
16 | 2.0 | vaddsd 16(%rsi,%r11), %xmm11, %xmm12
17 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13 .

 18 | | vmovsd %xmm13, 8(%rsi,%r11)
19 | 2.0 | vaddsd (%rsi,%r8), %xmm13, %xmm14 .
20 | 2.0 | vaddsd 8(%rsi,%r14), %xmm14, %xmm15.
21 | 2.0 | vaddsd 16(%rsi,%r8), %xmm15, %xmm16.
22 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1 .

 23 | | vmovsd %xmm1, 8(%rsi,%r8)
24 | | addq %r13, %rsi

 25 | | cmpq %r12, %rdx
 36.0

dep chain of 35 cy

7 out of 42 (CP) can overlap

➔ ratio 14.3%

Hands-On: Gauss-Seidel Method – opt. version (SPR)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 137

LCD
 1 | | ..B1.72:
 2 | | vmovsd 8(%r10,%r11), %xmm2

3 | | incq %rdx
 4 | | vmovsd 16(%r10,%r11), %xmm5
 5 | | vaddsd 16(%r10,%rsi), %xmm2, %xmm3
 6 | | vaddsd 24(%r10,%rsi), %xmm5, %xmm7
 7 | | vaddsd 8(%r10,%r13), %xmm3, %xmm4

8 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1 .
9 | 4.0 | vmulsd %xmm0, %xmm1, %xmm6 .

 10 | | vmovsd %xmm6, 8(%r10,%rsi)
11 | 2.0 | vaddsd %xmm7, %xmm6, %xmm8 .
12 | 2.0 | vaddsd 16(%r10,%r13), %xmm8, %xmm9
13 | 4.0 | vmulsd %xmm0, %xmm9, %xmm1 .

 14 | | vmovsd %xmm1, 16(%r10,%rsi)
15 | | addq $16, %r10

 16 | | cmpq %r15, %rdx
 17 | | * jb ..B1.72
 14.0

-Ofast / -O3 -O1

LCD
 1 | | ..B1.34:
 2 | | vmovsd (%rsi,%rdi,8), %xmm0
 3 | | vaddsd 8(%rcx,%rdi,8), %xmm0, %xmm1
 4 | | vaddsd (%rax,%rdi,8), %xmm1, %xmm2

5 | 2.0 | vaddsd %xmm3, %xmm2, %xmm3 .
6 | 4.0 | vmulsd .L_2il0floatpacket.0(%rip), %xmm3, %xmm3

 7 | | vmovsd %xmm3, (%rcx,%rdi,8)
8 | | incq %rdi

 9 | | cmpq %r13, %rdi
 10 | | * jl ..B1.34
 8.0

Hands-On: Gauss-Seidel Method – opt. version (SPR)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 137

LCD
 1 | | ..B1.72:
 2 | | vmovsd 8(%r10,%r11), %xmm2

3 | | incq %rdx
 4 | | vmovsd 16(%r10,%r11), %xmm5
 5 | | vaddsd 16(%r10,%rsi), %xmm2, %xmm3
 6 | | vaddsd 24(%r10,%rsi), %xmm5, %xmm7
 7 | | vaddsd 8(%r10,%r13), %xmm3, %xmm4

8 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1 .
9 | 4.0 | vmulsd %xmm0, %xmm1, %xmm6 .

 10 | | vmovsd %xmm6, 8(%r10,%rsi)
11 | 2.0 | vaddsd %xmm7, %xmm6, %xmm8 .
12 | 2.0 | vaddsd 16(%r10,%r13), %xmm8, %xmm9
13 | 4.0 | vmulsd %xmm0, %xmm9, %xmm1 .

 14 | | vmovsd %xmm1, 16(%r10,%rsi)
15 | | addq $16, %r10

 16 | | cmpq %r15, %rdx
 17 | | * jb ..B1.72
 14.0 dep chain of 14 cy

9cy / 23cy CP ➔ 39% overlap

-Ofast / -O3 -O1

LCD
 1 | | ..B1.34:
 2 | | vmovsd (%rsi,%rdi,8), %xmm0
 3 | | vaddsd 8(%rcx,%rdi,8), %xmm0, %xmm1
 4 | | vaddsd (%rax,%rdi,8), %xmm1, %xmm2

5 | 2.0 | vaddsd %xmm3, %xmm2, %xmm3 .
6 | 4.0 | vmulsd .L_2il0floatpacket.0(%rip), %xmm3, %xmm3

 7 | | vmovsd %xmm3, (%rcx,%rdi,8)
8 | | incq %rdi

 9 | | cmpq %r13, %rdi
 10 | | * jl ..B1.34
 8.0

Hands-On: Gauss-Seidel Method – opt. version (SPR)

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 137

LCD
 1 | | ..B1.72:
 2 | | vmovsd 8(%r10,%r11), %xmm2

3 | | incq %rdx
 4 | | vmovsd 16(%r10,%r11), %xmm5
 5 | | vaddsd 16(%r10,%rsi), %xmm2, %xmm3
 6 | | vaddsd 24(%r10,%rsi), %xmm5, %xmm7
 7 | | vaddsd 8(%r10,%r13), %xmm3, %xmm4

8 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1 .
9 | 4.0 | vmulsd %xmm0, %xmm1, %xmm6 .

 10 | | vmovsd %xmm6, 8(%r10,%rsi)
11 | 2.0 | vaddsd %xmm7, %xmm6, %xmm8 .
12 | 2.0 | vaddsd 16(%r10,%r13), %xmm8, %xmm9
13 | 4.0 | vmulsd %xmm0, %xmm9, %xmm1 .

 14 | | vmovsd %xmm1, 16(%r10,%rsi)
15 | | addq $16, %r10

 16 | | cmpq %r15, %rdx
 17 | | * jb ..B1.72
 14.0 dep chain of 14 cy

9cy / 23cy CP ➔ 39% overlap

-Ofast / -O3 -O1

LCD
 1 | | ..B1.34:
 2 | | vmovsd (%rsi,%rdi,8), %xmm0
 3 | | vaddsd 8(%rcx,%rdi,8), %xmm0, %xmm1
 4 | | vaddsd (%rax,%rdi,8), %xmm1, %xmm2

5 | 2.0 | vaddsd %xmm3, %xmm2, %xmm3 .
6 | 4.0 | vmulsd .L_2il0floatpacket.0(%rip), %xmm3, %xmm3

 7 | | vmovsd %xmm3, (%rcx,%rdi,8)
8 | | incq %rdi

 9 | | cmpq %r13, %rdi
 10 | | * jl ..B1.34
 8.0

dep chain of 6cy

9 cy / 15 cy CP ➔ 60% overlap

Hands-On: Gauss-Seidel Method on SPR

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 141

Prediction

[cy/it]

standard optimized

-Ofast -O3 -O1 -Ofast -O3 -O1

icc 2021 9 9 14 7 7 6

icx 2022 9 9 8 8 8 8

icx 2024 9 11 10 8 10 10

GCC 14.2 8 10 10.5 8 4 6

Clang 18 10 10 10 10 4 4

Summary & Caveats

▪ A code analyzer helps you to predict the in-core runtime of a basic block

▪ Might be sufficient, but often a full analysis requires a memory model as well!

▪ An analysis of (loop-carried-)dependencies can help you find

performance limitations!

▪ Analysis is done on compiler-generated code which always holds a factor

of uncertainty

▪ There might be additional things slowing you, e.g.:
▪ Cache trashing

▪ Loads across cache lines

▪ Front end limitations

▪ Bank conflicts

▪ ...

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 142

There is not just THE one code analyzer

▪ OSACA: https://github.com/RRZE-HPC/OSACA

▪ uiCA: https://www.uops.info/uiCA.html

▪ LLVM-MCA: https://llvm.org/docs/CommandGuide/llvm-mca.html

▪ IACA (EoL):

https://www.intel.com/content/www/us/en/developer/articles/tool/architectur

e-code-analyzer.html

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 143

https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA
https://www.uops.info/uiCA.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html

Thank you! Questions?

OSACA: https://github.com/RRZE-HPC/osaca

 pip: $ pip install -u osaca

Compiler Explorer: https://godbolt.org

Survey: https://go-nhr.de/course-feedback

https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://godbolt.org/
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback

	Intro
	Slide 1: Core-Level Performance Engineering Jan Laukemann, Georg Hager Erlangen National High Performance Computing Center (NHR@FAU) at CGO 2026, Sydney
	Slide 2: Outline

	Analytical Performance modeling
	Slide 3: Analytical Performance Modeling
	Slide 4: Analytical Performance Modeling
	Slide 5: Analytical Performance Modeling
	Slide 6: Analytical Performance Modeling

	Basic processor and core architecture SPR
	Slide 7: Basic x86 out-of-order core architecture
	Slide 8: Basic processor and core architecture
	Slide 9: Basic processor and core architecture
	Slide 10: Basic processor and core architecture
	Slide 11: Basic processor and core architecture
	Slide 12: Basic processor and core architecture
	Slide 13: Basic processor and core architecture
	Slide 14: Basic processor and core architecture
	Slide 15: Basic processor and core architecture
	Slide 16: Basic processor and core architecture
	Slide 17: Basic processor and core architecture
	Slide 18: Basic processor and core architecture
	Slide 19: Basic processor and core architecture
	Slide 20: Basic processor and core architecture
	Slide 21: Basic processor and core architecture
	Slide 22: Basic processor and core architecture
	Slide 23: Basic processor and core architecture
	Slide 24: Basic processor and core architecture
	Slide 25: Basic processor and core architecture
	Slide 26: Basic processor and core architecture
	Slide 27: Basic processor and core architecture
	Slide 28: Basic processor and core architecture

	Code execution on OoO processor cores
	Slide 52: Code execution on out-of-order CPUs
	Slide 53: Code execution on OoO processor cores
	Slide 54: Code execution on OoO processor cores
	Slide 55: Code execution on OoO processor cores
	Slide 56: Code execution on OoO processor cores
	Slide 57: Code execution on OoO processor cores
	Slide 58: Code execution on OoO processor cores
	Slide 59: Code execution on OoO processor cores
	Slide 60: Code execution on OoO processor cores
	Slide 61: Code execution on OoO processor cores
	Slide 62: Code execution on OoO processor cores
	Slide 69: Remember slides 17-21?
	Slide 70: Remember slides 17-21?
	Slide 71: Remember slides 17-21?
	Slide 72: Remember slides 17-21?
	Slide 73: Remember slides 17-21?
	Slide 74: Code execution on OoO processor cores
	Slide 75: Code execution on OoO processor cores
	Slide 76: Code execution on OoO processor cores
	Slide 77: Code execution on OoO processor cores
	Slide 78: Code execution on OoO processor cores
	Slide 79: Code execution on OoO processor cores
	Slide 80: Code execution on OoO processor cores
	Slide 81: Code execution on OoO processor cores
	Slide 82: Code execution on OoO processor cores
	Slide 83: Code execution on OoO processor cores
	Slide 84: Code execution on OoO processor cores
	Slide 85: Code execution on OoO processor cores
	Slide 86: Code execution on OoO processor cores
	Slide 87: Code execution on OoO processor cores
	Slide 88: Code execution on OoO processor cores
	Slide 89: Code execution on OoO processor cores
	Slide 90: Code execution on OoO processor cores
	Slide 91: Code execution on OoO processor cores
	Slide 92: Code execution on OoO processor cores
	Slide 93: Code execution on OoO processor cores
	Slide 94: Code execution on OoO processor cores
	Slide 95: Code execution on OoO processor cores
	Slide 96: Code execution on OoO processor cores
	Slide 97: Code execution on OoO processor cores
	Slide 98: Code execution on OoO processor cores
	Slide 99: Code execution on OoO processor cores
	Slide 100: Code execution on OoO processor cores
	Slide 101: Code execution on OoO processor cores
	Slide 102: Code execution on OoO processor cores
	Slide 103: Code execution on OoO processor cores
	Slide 104: Code execution on OoO processor cores
	Slide 105: Code execution on OoO processor cores
	Slide 106: Code execution on OoO processor cores
	Slide 107: Code execution on OoO processor cores
	Slide 108: Code execution on OoO processor cores
	Slide 109: Code execution on OoO processor cores
	Slide 110: Code execution on OoO processor cores
	Slide 111: Code execution on OoO processor cores
	Slide 112: Code execution on OoO processor cores
	Slide 113: Code execution on OoO processor cores
	Slide 114: Code execution on OoO processor cores
	Slide 115: Code execution on OoO processor cores
	Slide 116: Code execution on OoO processor cores
	Slide 117: Hands-On #0: Out-of-Order Execution
	Slide 118: Hands-On: Out-of-Order Execution
	Slide 122: Break

	Introduction to x86 ISA
	Slide 123: Introduction to the x86 ISA (Instruction Set Architecture)
	Slide 124: Basics of the x86-64 ISA
	Slide 125: Basics of the x86-64 ISA with extensions
	Slide 126: Basics of the x86-64 ISA with extensions
	Slide 127: Basics of the x86-64 ISA with extensions
	Slide 128: Basics of the x86-64 ISA with extensions
	Slide 129: Basics of the x86-64 ISA with extensions
	Slide 130: Basics of the x86-64 ISA with extensions
	Slide 131: Basics of the x86-64 ISA with extensions
	Slide 132: Basics of the x86-64 ISA with extensions
	Slide 133: Basics of the x86-64 ISA with extensions
	Slide 134: Basics of the x86-64 ISA with extensions
	Slide 135: Basics of the x86-64 ISA with extensions
	Slide 136: Case Study: Sum reduction (DP)
	Slide 137: Case Study: Sum reduction (DP)
	Slide 138: Sum reduction (DP) – AVX512
	Slide 139: Sum reduction (DP) – AVX512
	Slide 140: Sum reduction (DP) – AVX512
	Slide 141: Sum reduction (DP) – AVX512
	Slide 142: Example for masked execution
	Slide 143: SIMD with masking – sum reduction with condition
	Slide 144: SIMD with masking – sum reduction with condition
	Slide 145: SIMD with masking – sum reduction with condition
	Slide 146: SIMD with masking – sum reduction with condition

	Example: STREAM Triad Pen&Paper SPR
	Slide 147: STREAM Triad
	Slide 148: STREAM TRIAD on Intel Sapphire Rapids
	Slide 149: STREAM TRIAD on Intel Sapphire Rapids
	Slide 150: STREAM TRIAD on Intel Sapphire Rapids
	Slide 151: STREAM TRIAD on Intel Sapphire Rapids
	Slide 152: STREAM TRIAD on Intel Sapphire Rapids
	Slide 153: STREAM TRIAD on Intel Sapphire Rapids
	Slide 154: STREAM TRIAD on Intel Sapphire Rapids
	Slide 155: STREAM TRIAD on Intel Sapphire Rapids
	Slide 156: STREAM TRIAD on Intel Sapphire Rapids
	Slide 157: STREAM TRIAD on Intel Sapphire Rapids
	Slide 158: Break

	Hands-On: Benchmarking Dot Product
	Slide 171: Hands-On #1: Dot product
	Slide 172: Hands-On: Benchmarking Dot Product
	Slide 174: Dot Product on SPR
	Slide 175: Hands-On #2: Dot product (with Compiler Explorer)
	Slide 176: Dot Product on SPR – CE view

	OSACA Introduction
	Slide 177: The Open-Source Architecture Code Analyzer (OSACA)
	Slide 178: OSACA
	Slide 179: OSACA – Usage
	Slide 180: Marking the region of interest
	Slide 181: Marking the region of interest
	Slide 182: Marking the region of interest
	Slide 183: Triad on SPR with OSACA
	Slide 184: Triad on SPR with OSACA
	Slide 185: Triad on SPR with OSACA
	Slide 186: Triad on SPR with OSACA

	Hands-On w/ OSACA: Dot Product and PI
	Slide 190: Hands-On #3: Dot Product with OSACA
	Slide 191: Hands-On: Benchmarking Dot Product (DP)
	Slide 193: Hands-On #4: PI by integration
	Slide 194: Hands-On: PI by integration

	A64FX Core arch and ARM asm
	Slide 197: A64FX core architecture and AArch64 Arm ISA
	Slide 198: Node architecture of A64FX – FX700
	Slide 199: Node architecture of A64FX – FX700
	Slide 200: Node architecture of A64FX – FX700
	Slide 201: Port model for the A64FX
	Slide 202: Port model for the A64FX
	Slide 203: Port model for the A64FX
	Slide 204: AArch64 ISA – differences to x86
	Slide 205: AArch64 ISA – differences to x86
	Slide 206: AArch64 ISA – differences to x86
	Slide 207: AArch64 ISA – differences to x86
	Slide 208: AArch64 ISA – differences to x86
	Slide 209: AArch64 ISA – differences to x86
	Slide 210: AArch64 ISA – differences to x86
	Slide 211: AArch64 ISA – differences to x86
	Slide 214: Break

	Case Study: SpMV on A64FX
	Slide 215: Case Study: SpMV on A64FX Sparse Matrix-Vector Multiplication
	Slide 216: Motivation
	Slide 217: Motivation
	Slide 218: Motivation
	Slide 219: Motivation
	Slide 220: Motivation
	Slide 221: Motivation
	Slide 222: SpMV
	Slide 223: SpMV
	Slide 224: SpMV
	Slide 225: SpMV
	Slide 226: SpMV
	Slide 227: SpMV
	Slide 228: SpMV
	Slide 229: SpMV
	Slide 230: SpMV
	Slide 231: SpMV
	Slide 232: SpMV
	Slide 233: SpMV
	Slide 234: SpMV
	Slide 235: SpMV
	Slide 236: SpMV
	Slide 237: SpMV
	Slide 238: SpMV
	Slide 239: SpMV
	Slide 240: SpMV
	Slide 241: SpMV
	Slide 242: SpMV
	Slide 243: SpMV
	Slide 244: SpMV
	Slide 245: SpMV
	Slide 246: SpMV
	Slide 247: SpMV
	Slide 248: SpMV
	Slide 249: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 250: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 251: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 252: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 253: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 254: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 255: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 256: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 257: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 258: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 259: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 260: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 261: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 262: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 263: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 264: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 265: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 266: SIMD-friendly execution of SpMV with SELL-C-sigma
	Slide 270: How to choose the parameters?
	Slide 271: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 272: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 273: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 274: SELL-32-sigma kernel OSACA analysis for A64FX
	Slide 275: SpMV performance with SELL-C-s (1 CMG)

	Case Study: Lattice QCD on A64FX
	Slide 277: Case Study: Domain Wall (DW) Kernel from Quantum Chromodynamics (QCD)
	Slide 278: Context
	Slide 279: DW stencil kernel (simplified)
	Slide 280: Complex numbers data layout choice
	Slide 281: Observed performance
	Slide 282: Observed performance
	Slide 283: In-core analysis (complex-AoS)
	Slide 284: In-core analysis (complex-AoS)
	Slide 285: In-core analysis (complex-AoS)
	Slide 286: In-core analysis (complex-AoS)
	Slide 287: In-core analysis (complex-AoSoA)
	Slide 288: In-core analysis (complex-AoSoA)
	Slide 289: In-core analysis (complex-AoSoA)
	Slide 290: In-core analysis (complex-AoSoA)
	Slide 291: In-core analysis (complex-AoSoA)
	Slide 292: DW kernel optimizations
	Slide 302: Summary of optimizations for DW

	Hands-On: 2D Gauss-Seidel
	Slide 303: Hands-On #5: 2D Gauss-Seidel analysis
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317: Hands-On: Gauss-Seidel Method – standard version
	Slide 318: Hands-On: Gauss-Seidel Method – standard version
	Slide 319: Hands-On: Gauss-Seidel Method – opt. version (SPR)
	Slide 320: Hands-On: Gauss-Seidel Method – opt. version (SPR)
	Slide 321: Hands-On: Gauss-Seidel Method – opt. version (SPR)
	Slide 328: Hands-On: Gauss-Seidel Method on SPR

	Summary
	Slide 329: Summary & Caveats
	Slide 330: There is not just THE one code analyzer
	Slide 332: Thank you! Questions?

