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Outline

▪ Analytical performance modeling

▪ Basic x86 processor and core architecture

▪ Code execution on Out-of-order processor cores

▪ x86 Instruction set intro

▪ Analysis of simple kernels – demo and hands-on

▪ Introduction to OSACA

▪ Arm ISA and A64FX intro

▪ More complex case studies – demo and hands-on

▪ Summary, caveats, and take-aways
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Analytical Performance Modeling
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Analytical Performance Modeling

▪ What is the best performance my code can achieve?

▪ What are the relevant hardware bottlenecks?

▪ Apply simplified model of underlying hardware,

consisting of

▪ In-core execution

▪ Data transfer
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On the example of a Sapphire Rapids chip

Basic x86 out-of-order core architecture
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Basic processor and core architecture
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Basic processor and core architecture
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Basic processor and core architecture
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Basic processor and core architecture

9

0xC5F95800 0x15 

0x58F120 0xF202 0x31DE 

0x90 0x90 0x90 0x90



                     

 
 

 
  

  
 

 
   

 
 

  
 

 
  

  
 

  
 

 

  

  

                                  

         

                     

                    

          

       

                

               

       

      

                  

                  

       

       

   

   

      

     

       

   

   

   

   

       

       

        

    

    

      

                         

   

      

     

   

   

              

    

      

    

      

                                                            

   

   

       

       

   

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture
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Basic processor and core architecture
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ADD  Rvec1  Rvec1, MEM[R0]

MUL  Rvec2  Rvec2, Rvec3

LOAD R8  MEM[SP]

INC  R8
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Basic processor and core architecture
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https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

ADD  Rvec1  Rvec1, MEM[R0]

MUL  Rvec2  Rvec2, Rvec3

LOAD R8  MEM[SP]

INC  R8

LOAD Rvec0  MEM[R0]

ADD  Rvec1  Rvec1, Rvec0



                     

 
 

 
  

  
 

 
   

 
 

  
 

 
  

  
 

  
 

 

  

  

                                  

         

                     

                    

          

       

                

               

       

      

                  

                  

       

       

   

   

      

     

       

   

   

   

   

       

       

        

    

    

      

                         

   

      

     

   

   

              

    

      

    

      

                                                            

   

   

       

       

   

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture

13

LOAD Rvec0  MEM[R0]

ADD  Rvec1  Rvec1, Rvec0

SUB   R2  R2, R3

LOAD  R3  MEM[R2]

MUL   Rvec4  Rvec4, Rvec4, Rvec4

...



                     

 
 

 
  

  
 

 
   

 
 

  
 

 
  

  
 

  
 

 

  

  

                                  

         

                     

                    

          

       

                

               

       

      

                  

                  

       

       

   

   

      

     

       

   

   

   

   

       

       

        

    

    

      

                         

   

      

     

   

   

              

    

      

    

      

                                                            

   

   

       

       

   

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

Basic processor and core architecture
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LOAD  xmm0  MEM[rax]

ADD   xmm1  xmm1, xmm0
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Basic processor and core architecture
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Basic processor and core architecture
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Basic processor and core architecture
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Basic processor and core architecture
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Basic processor and core architecture
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Terminology and explanation 

Code execution on out-of-order CPUs
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Code execution on OoO processor cores

Three metrics to estimate the in-core runtime:

▪ Reciprocal Throughput (rTP)

▪ Latency (LT) and Critical Path (CP)

▪ Loop-carried dependencies (LCD)

Simplified runtime estimation:  𝑡𝑐 = max(𝑡𝑟𝑇𝑃, 𝑡𝐿𝐶𝐷)

     “it”:       -level iteration

40

rTP

instr. X

LT
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One assembly loop can easily consist of 

dozens of high-level iterations, e.g.:

8x vectorized, 4x unrolled 

→ 1 assembly iteration = 32 it

rTP

instr. X

LT
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Code execution on OoO processor cores

▪ Simple HW model:

▪ Six types of functional units (i.e., types of instructions), each functional unit (FU) 

assigned to one port:

▪ Reciprocal throughput for each instruction: 1cy

▪ Latency for each instruction: 1cy

▪ Port model:

41

P0 P1 P2 P3 P4 P5
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Code execution on OoO processor cores

▪ Loop 1:

▪ No dependencies within loop

▪ No intra-loop dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 1 cy

▪ LCD prediction: -

42
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Remember slides 17-21?
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Code execution on OoO processor cores

▪ Loop 2:

▪ Dependencies within loop body

▪ No loop-carried dependencies

▪ rTP prediction: 1 cy

▪ CP prediction: 3 cy

▪ LCD prediction: -
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Code execution on OoO processor cores
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Code execution on OoO processor cores

▪ Loop 4:

▪ Dependencies within loop body

▪ Loop-carried dependency

▪ rTP prediction: 1 cy

▪ CP prediction: 5 cy

▪ LCD prediction: 3 cy

47

P0 P1 P2 P3 P4 P5

3 cy/it

t

LCD                 CP

▪ Other limitations:

▪ Reorder buffer

▪ Loop length

▪                       p    , … 

▪ Decoder

▪ Data

▪ …

≠



➔ https://go-nhr.de/CLPE-ex0 

Hands-On #0:
 Out-of-Order Execution

https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
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Hands-On: Out-of-Order Execution

49

Dot product

→ Moodle, hands-on #0 (both Multiple-Choice and Drag&Drop)

P0 P1 P2 P3 P4 P5

Machine model:

Instructions:

    each with a reciprocal throughput

    and latency of 1 cy



Break



Introduction to the x86 ISA 
(Instruction Set Architecture)
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Basics of the x86-64 ISA

▪ Instructions have 0 to 5 operands (and possibly more suppressed operands)

▪ Operands can be registers (%), memory references ((...)) or immediates ($) 

▪ Opcodes (binary representation of instructions) vary from 1 to 15 bytes

▪ There are two assembler syntax forms: Intel (left)  and AT&T (right)

▪ Addressing Mode: 

▪ Intel: BASE + INDEX * SCALE + DISPLACEMENT

▪ AT&T: DISPLACEMENT(BASE, INDEX, SCALE)

▪ C:  A[i] equivalent to *(A+i)  (a pointer has a type: A+i*8)

▪ Suffixes: AT&T often uses (optional) suffixes based on the operand size

▪ b (byte): 8 bits, w (word): 16 bits, l (long): 32 bits, q (quad): 64 bits

movaps [rdi + rax*8+48], xmm3

add rax, 8

js 1b

movaps    %xmm3, 48(%rdi,%rax,8) 

addq  $8, %rax

js   ..B1.4 

Intel syntax AT&T syntax



rax

rbx

rcv

rdx

rsi

rdi

rsp (stack pointer)

rbp (base pointer)
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Basics of the x86-64 ISA with extensions

16 general purpose registers (64bit):  

rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15

alias with eight  32-bit register set:

eax, ebx, ecx, edx, esi, edi, esp, ebp

ah al

bh bl

ch cl

dh dl

32 bits
16 bits

8 bits

64 bits

*x

e*x, esi, edi, esp (stack pointer), ebp (base pointer)
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Basics of the x86-64 ISA with extensions

Floating Point SIMD registers (aliased):  8 opmask registers (64 bit, AVX512 only):

xmm0-xmm15 (...xmm31)  SSE (128bit)  k0–k7

ymm0-ymm15 (...ymm31)  AVX (256bit)

zmm0-zmm31          AVX-512 (512bit)

SIMD

register

512-bit

AVX-512
zmm*

128-bit

    …     . 
xmm*

256-bit

AVX, AVX2
ymm*
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix:  v

Operation:  mul, add, fmadd, mov

Modifier:  nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width:   scalar (s), packed (p)

Data type:  single (s),  double  (d)

… and many more
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Basics of the x86-64 ISA with extensions
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… and many more

Examples:
 vmulpd 

             

       

          

  

   

   

   



31 January 2026 58Core-Level Performance Engineering Tutorial | CGO 2026

Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix:  v

Operation:  mul, add, fmadd, mov
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… and many more

Examples:
 vmulpd 

             

       

          

→ Multiply Packed Double-Precision Floating-Point Values
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→ Fused Multiply-Add of Packed Single-Precision Floating-Point Values 
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix:  v

Operation:  mul, add, fmadd, mov

Modifier:  nontemporal (nt), unaligned (u), aligned (a), high (h), low (l)

Width:   scalar (s), packed (p)

Data type:  single (s),  double  (d)

… and many more

Examples:
 vmulpd 

 vfmadd213ps

 addsd

 vmovntdq

→ Multiply Packed Double-Precision Floating-Point Values

→ Fused Multiply-Add of Packed Single-Precision Floating-Point Values 

→ Add Scalar Double-Precision Floating-Point Values

→ Store Packed Integers Using Non-Temporal Hint
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Case Study: Sum reduction (DP)

double sum = 0.0;

for (int i=0; i<size; i++){

    sum += data[i];

}

Assembly code w/ -O1 (AT&T syntax, Intel compiler):

.label:

 addsd  0(%rdi, %rax, 8),%xmm0

 inc %rax

 cmp   %rsi, %rax

 jl     .label

To get  object code use 
objdump –d on object file or 

executable or compile with -S
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Case Study: Sum reduction (DP)

double sum = 0.0;

for (int i=0; i<size; i++){

    sum += data[i];

}

Assembly code w/ -O1 (AT&T syntax, Intel compiler):

.label:

 addsd  0(%rdi, %rax, 8),%xmm0

 inc %rax

 cmp   %rsi, %rax

 jl     .label

To get  object code use 
objdump –d on object file or 

executable or compile with -S

Intel syntax:
addsd xmm0, [rdi + rax * 8]
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Sum reduction (DP) – AVX512

Assembly code w/ -O3 -xCORE-AVX512 -qopt-zmm-usage=high :

..B3.28:

        vaddpd    (%r13,%rcx,8), %zmm5, %zmm5

        vaddpd    64(%r13,%rcx,8), %zmm4, %zmm4

        vaddpd    128(%r13,%rcx,8), %zmm3, %zmm3

        vaddpd    192(%r13,%rcx,8), %zmm2, %zmm2

        addq      $32, %rcx

        cmpq      %rbx, %rcx

        jb        ..B3.28

..B3.29:

        vaddpd    %zmm4, %zmm5, %zmm4

        vaddpd    %zmm2, %zmm3, %zmm2

        vaddpd    %zmm2, %zmm4, %zmm5

# [... SNIP ...]

..B3.34:

        vshuff32x4 $238, %zmm5, %zmm5, %zmm2

        vaddpd    %zmm5, %zmm2, %zmm3

        vpermpd   $78, %zmm3, %zmm4

        vaddpd    %zmm4, %zmm3, %zmm5

        vpermpd   $177, %zmm5, %zmm6

        vaddpd    %zmm6, %zmm5, %zmm7

        vaddsd    %xmm1, %xmm7, %xmm1
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        vaddpd    %zmm4, %zmm3, %zmm5

        vpermpd   $177, %zmm5, %zmm6

        vaddpd    %zmm6, %zmm5, %zmm7

        vaddsd    %xmm1, %xmm7, %xmm1

Bulk loop code

(8x4-way unrolled) 
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Bulk loop code

(8x4-way unrolled) 

Remainder omitted
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Sum reduction (DP) – AVX512

Assembly code w/ -O3 -xCORE-AVX512 -qopt-zmm-usage=high :

..B3.28:

        vaddpd    (%r13,%rcx,8), %zmm5, %zmm5

        vaddpd    64(%r13,%rcx,8), %zmm4, %zmm4

        vaddpd    128(%r13,%rcx,8), %zmm3, %zmm3

        vaddpd    192(%r13,%rcx,8), %zmm2, %zmm2

        addq      $32, %rcx

        cmpq      %rbx, %rcx

        jb        ..B3.28

..B3.29:

        vaddpd    %zmm4, %zmm5, %zmm4

        vaddpd    %zmm2, %zmm3, %zmm2

        vaddpd    %zmm2, %zmm4, %zmm5

# [... SNIP ...]

..B3.34:

        vshuff32x4 $238, %zmm5, %zmm5, %zmm2

        vaddpd    %zmm5, %zmm2, %zmm3

        vpermpd   $78, %zmm3, %zmm4

        vaddpd    %zmm4, %zmm3, %zmm5

        vpermpd   $177, %zmm5, %zmm6

        vaddpd    %zmm6, %zmm5, %zmm7

        vaddsd    %xmm1, %xmm7, %xmm1

Bulk loop code

(8x4-way unrolled) 

Remainder omitted
Sum up 32 

partial sums into 
xmm1
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Example for masked execution

Masking is very helpful  in cases such as, e.g., remainder loop handling or 

conditionals

Available on x86 starting with AVX-512

Example:     vaddps %zmm0, %zmm1, %zmm2{%k1}
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SIMD with masking – sum reduction with condition

62

..B1.38:

        vmovups   (%r15,%rcx,8), %zmm6

        vmovups   64(%r15,%rcx,8), %zmm7

        vmovups   128(%r15,%rcx,8), %zmm8

        vmovups   192(%r15,%rcx,8), %zmm9

        vcmppd    $14, %zmm10, %zmm6, %k1

        vcmppd    $14, %zmm10, %zmm7, %k2

        vcmppd    $14, %zmm10, %zmm8, %k3

        vcmppd    $14, %zmm10, %zmm9, %k4

        vaddpd    %zmm6, %zmm5, %zmm5{%k1}

        vaddpd    %zmm7, %zmm4, %zmm4{%k2}

        vaddpd    %zmm8, %zmm3, %zmm3{%k3}

        vaddpd    %zmm9, %zmm2, %zmm2{%k4}

        addq      $32, %rcx

        cmpq      %r14, %rcx

        jb        ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

    if (data[i] > 0.0)

      sum += data[i];

}
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SIMD with masking – sum reduction with condition

62

..B1.38:

        vmovups   (%r15,%rcx,8), %zmm6

        vmovups   64(%r15,%rcx,8), %zmm7

        vmovups   128(%r15,%rcx,8), %zmm8

        vmovups   192(%r15,%rcx,8), %zmm9

        vcmppd    $14, %zmm10, %zmm6, %k1

        vcmppd    $14, %zmm10, %zmm7, %k2

        vcmppd    $14, %zmm10, %zmm8, %k3

        vcmppd    $14, %zmm10, %zmm9, %k4

        vaddpd    %zmm6, %zmm5, %zmm5{%k1}

        vaddpd    %zmm7, %zmm4, %zmm4{%k2}

        vaddpd    %zmm8, %zmm3, %zmm3{%k3}

        vaddpd    %zmm9, %zmm2, %zmm2{%k4}

        addq      $32, %rcx

        cmpq      %r14, %rcx

        jb        ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

    if (data[i] > 0.0)

      sum += data[i];

}

Bulk loop code

(8x4-way unrolled) 
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SIMD with masking – sum reduction with condition

62

..B1.38:

        vmovups   (%r15,%rcx,8), %zmm6

        vmovups   64(%r15,%rcx,8), %zmm7

        vmovups   128(%r15,%rcx,8), %zmm8

        vmovups   192(%r15,%rcx,8), %zmm9

        vcmppd    $14, %zmm10, %zmm6, %k1

        vcmppd    $14, %zmm10, %zmm7, %k2

        vcmppd    $14, %zmm10, %zmm8, %k3

        vcmppd    $14, %zmm10, %zmm9, %k4

        vaddpd    %zmm6, %zmm5, %zmm5{%k1}

        vaddpd    %zmm7, %zmm4, %zmm4{%k2}

        vaddpd    %zmm8, %zmm3, %zmm3{%k3}

        vaddpd    %zmm9, %zmm2, %zmm2{%k4}

        addq      $32, %rcx

        cmpq      %r14, %rcx

        jb        ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

    if (data[i] > 0.0)

      sum += data[i];

}

Bulk loop code

(8x4-way unrolled) 

SIMD mask

generation
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SIMD with masking – sum reduction with condition

62

..B1.38:

        vmovups   (%r15,%rcx,8), %zmm6

        vmovups   64(%r15,%rcx,8), %zmm7

        vmovups   128(%r15,%rcx,8), %zmm8

        vmovups   192(%r15,%rcx,8), %zmm9

        vcmppd    $14, %zmm10, %zmm6, %k1

        vcmppd    $14, %zmm10, %zmm7, %k2

        vcmppd    $14, %zmm10, %zmm8, %k3

        vcmppd    $14, %zmm10, %zmm9, %k4

        vaddpd    %zmm6, %zmm5, %zmm5{%k1}

        vaddpd    %zmm7, %zmm4, %zmm4{%k2}

        vaddpd    %zmm8, %zmm3, %zmm3{%k3}

        vaddpd    %zmm9, %zmm2, %zmm2{%k4}

        addq      $32, %rcx

        cmpq      %r14, %rcx

        jb        ..B1.38

double sum = 0.0;

for (int i=0; i<size; i++){

    if (data[i] > 0.0)

      sum += data[i];

}

Bulk loop code

(8x4-way unrolled) 

SIMD mask

generation

masked SIMD 

ADDs

(accumulates)



A pen & paper in-core analysis

STREAM Triad
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STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX 

ALU

DIV

FMA

BR

ALU

LEA

INT 

MUL

INT 

DIV

256b 

ALU

256b 

FMA

LD

AGU

LD

AGU

ST STST 

AGU

ST 

AGU
ALU

LEA

SHFT

BR

P10 P11

256b 

LD

AGU

ALU

LEA

INT 

MUL

AVX 

ALU

FMA

ALU

LEA
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STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LD

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX 

ALU

DIV

FMA

BR

ALU

LEA

INT 

MUL

INT 

DIV

256b 

ALU

256b 

FMA

LD

AGU

LD

AGU

ST STST 

AGU

ST 

AGU
ALU

LEA

SHFT

BR

P10 P11

256b 

LD

AGU

ALU

LEA

INT 

MUL

AVX 

ALU

FMA

ALU

LEA
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STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LD

FMA LD

E
x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX 

ALU

DIV

FMA

BR

ALU

LEA

INT 

MUL

INT 

DIV

256b 

ALU

256b 

FMA

LD

AGU

LD

AGU

ST STST 

AGU

ST 

AGU
ALU

LEA

SHFT

BR

P10 P11

256b 

LD

AGU

ALU

LEA

INT 

MUL

AVX 

ALU

FMA

ALU

LEA
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STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LD

FMA LD

STR STR
E

x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX 

ALU

DIV

FMA

BR

ALU

LEA

INT 

MUL

INT 

DIV

256b 

ALU

256b 

FMA

LD

AGU

LD

AGU

ST STST 

AGU

ST 

AGU
ALU

LEA

SHFT

BR

P10 P11

256b 

LD

AGU

ALU

LEA

INT 

MUL

AVX 

ALU

FMA

ALU

LEA
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STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LD

FMA LD

STR STR

ADD
E

x
e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX 

ALU

DIV

FMA

BR

ALU

LEA

INT 

MUL

INT 

DIV

256b 

ALU

256b 

FMA

LD

AGU

LD

AGU

ST STST 

AGU

ST 

AGU
ALU

LEA

SHFT

BR

P10 P11

256b 

LD

AGU

ALU

LEA

INT 

MUL

AVX 

ALU

FMA

ALU

LEA
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STREAM TRIAD on Intel Sapphire Rapids

64

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LD

FMA LD

STR STR

ADD

CMP&JMP

E
x
e

c
u

ti
o

n
 U

n
it
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ALU
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STREAM TRIAD on Intel Sapphire Rapids
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STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LDFMA LD STR STRADD CMP&JMPIt x+1

E
x
e
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u

ti
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n
 U

n
it
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AVX 
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INT 
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ST 
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BR
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LEA

INT 
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AVX 

ALU

FMA

ALU

LEA
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STREAM TRIAD on Intel Sapphire Rapids

65

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LDFMA LD STR STRADD CMP&JMP

LDFMA LD STR STRADD CMP&JMP

It x+1

It x+2

E
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e
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n
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AVX 
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ALU
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STREAM TRIAD on Intel Sapphire Rapids

65

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LDFMA LD STR STRADD CMP&JMP

LDFMA LD STR STRADD CMP&JMP

It x+1

It x+2

It x+3 LDFMA LD STR STRADD CMP&JMP

E
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e

c
u

ti
o

n
 U

n
it
s

P0 P1 P2 P3 P4 P5 P6 P9P7 P8

ALU

LEA

SHFT

AVX 

ALU

DIV

FMA

BR

ALU

LEA

INT 

MUL

INT 

DIV

256b 

ALU

256b 

FMA

LD

AGU

LD

AGU

ST STST 

AGU

ST 

AGU
ALU

LEA

SHFT

BR

P10 P11

256b 

LD

AGU

ALU

LEA

INT 

MUL

AVX 

ALU

FMA

ALU

LEA



31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026

STREAM TRIAD on Intel Sapphire Rapids

65

STREAM TRIAD

a[i] = b[i] + s * c[i]

..B2.42:

  vmovups     (%r14,%rdx,8), %zmm1

  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

  vmovupd     %zmm1, (%r12,%rdx,8)

  addq        $8, %rdx

  cmpq        %rsi, %rdx

  jb          ..B2.42

LDFMA LD STR STRADD CMP&JMP

1 cy / 8 it

LDFMA LD STR STRADD CMP&JMP

It x+1

It x+2

It x+3 LDFMA LD STR STRADD CMP&JMP

E
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e
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u
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o

n
 U

n
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s
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Break



➔ https://go-nhr.de/CLPE-ex1

Hands-On #1:
 Dot product

https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
https://go-nhr.de/CLPE-ex1
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Hands-On: Benchmarking Dot Product

71

Dot product

s = s + a[i] * b[i] * =

Σ

→ Moodle, hands-on #1
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Dot Product on SPR

73

E
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➔ https://go-nhr.de/CLPE-ex2

Hands-On #2:
 Dot product (with Compiler Explorer)

https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2
https://go-nhr.de/CLPE-ex2


Dot Product on SPR – CE view
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→ Moodle, hands-on #2

Right click and 

“  v       k   

    ”        p     

find your region of 

interest

Set executer 

compiler and flags 

(separately from 

ASM compiler)

Add new compiler

Set runtime 

parameters

Set ASM compiler 

compiler and flags

Add new executor

Add new analysis 

tool

Click to see your 

compiler log 

(warnings and errors)

Set OSACA runtime 

parameters



An introduction

The Open-Source Architecture Code Analyzer 
(OSACA)
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OSACA

▪ Open Source Architecture Code Analyzer

▪ Static in-core code analysis

Assumptions

▪ Steady-state execution (no warm-up/cool-down)

▪ All data in L1

▪ Perfect out-of-order scheduling

▪ (currently) no front-end, i.e., no limit in instruction fetching, decoding, etc…

▪ Architecture specific model for each µArch

▪ Python module

77

$ pip install osaca
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OSACA – Usage

Important flags:

78

osaca [-h] [-V] [--arch ARCH] [--fixed] [--lines LINES]

      [--ignore-unknown] [--lcd-timeout SECONDS]

      [--db-check] [--import MICROBENCH] [--insert-marker]

      [--export-graph GRAPHNAME] [--consider-flag-deps] 

      [--out OUT] [--verbose]

      FILEPATH

--arch ARCH Currently supported: Intel SNB – GNR, AMD ZEN1, ZEN2, ZEN3, ZEN4, ZEN5, 

       Arm TX2, A72, N1, A64FX, TSV110, M1, V2(Grace)

--lines L1,L2,L3-L4,L5:L6 Specify lines to analyze (if no markers are used)

--ignore-unknown Assume 0cy TP/LAT for unknown instructions
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Marking the region of interest

x86

arm

# OSACA-BEGIN
.L22:
vmovapd 0(%r13,%rax),%ymm0
vfmadd213pd (%r14,%rax),%ymm1,%ymm0
vmovapd %ymm0,(%r12,%rax)
addq $32,%rax
cmpq %rax,%r15
jne .L22

# OSACA-END

// OSACA-BEGIN
.L18:
ldr q2, [x20, x0]
ldr q1, [x21, x0]
fmla v1.2d, v2.2d, v0.2d
str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

Comment marker



31 January 2026 79Core-Level Performance Engineering Tutorial | CGO 2026

Marking the region of interest

x86

arm

# OSACA-BEGIN
.L22:
vmovapd 0(%r13,%rax),%ymm0
vfmadd213pd (%r14,%rax),%ymm1,%ymm0
vmovapd %ymm0,(%r12,%rax)
addq $32,%rax
cmpq %rax,%r15
jne .L22

# OSACA-END

// OSACA-BEGIN
.L18:
ldr q2, [x20, x0]
ldr q1, [x21, x0]
fmla v1.2d, v2.2d, v0.2d
str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

$ osaca --arch ARCH --insert-marker

Blocks found in assembly file:
.L_A
 ...
.L_B
 ...
-----------------------------
Possible blocks to be marked:
.L_A
.L_B
Choose block to be marked [.L_B]: _

Insertion toolComment marker
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Marking the region of interest

x86

arm

# OSACA-BEGIN
.L22:
vmovapd 0(%r13,%rax),%ymm0
vfmadd213pd (%r14,%rax),%ymm1,%ymm0
vmovapd %ymm0,(%r12,%rax)
addq $32,%rax
cmpq %rax,%r15
jne .L22

# OSACA-END

// OSACA-BEGIN
.L18:
ldr q2, [x20, x0]
ldr q1, [x21, x0]
fmla v1.2d, v2.2d, v0.2d
str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

$ osaca --arch ARCH --insert-marker

Blocks found in assembly file:
.L_A
 ...
.L_B
 ...
-----------------------------
Possible blocks to be marked:
.L_A
.L_B
Choose block to be marked [.L_B]: _

Insertion toolComment marker

will be marked with byte markers, i.e.:
movl $111,%ebx; .byte 100,103,144;    (x86)
...

movl $222,%ebx; .byte 100,103,144;

mov x1,#111; .byte 213,3,32,31     (aarch64)
...

mov x1,#222; .byte 213,3,32,31



Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 80



Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it

31 January 2026Core-Level Performance Engineering Tutorial | CGO 2026 80



Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it
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$ osaca --arch SPR triad.s

Open Source Architecture Code Analyzer (OSACA) - 0.6.0

Architecture:       SPR

 * - Instruction micro-ops not bound to a port

 X - No throughput/latency information for this instruction in data file

                                               Port pressure in cycles

  | 0  - 0DV | 1  - 1DV| 2   | 3  | 4  | 5  | 6  | 7  | 8  | 9  |  10  |  11  ||CP |LCD|

-------------------------------------------------------------------------------------------------------

2 |          |         |      |      |      |      |      |      |      |      |      |      ||   |   |  ..B2.42:

3 |          |         | 0.50 | 0.50 |      |      |      |      |      |      |      | 0.50 || 5 |   |  vmovups (%r14,%rdx,8), %zmm1

4 | 0.50     |         | 0.50 | 0.50 |      | 0.50 |      |      |      |      |      | 0.50 || 4 |   |  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

5 |          |         |      |      | 1.00 |      |      | 1.00 | 1.00 | 1.00 |      |      || 0 |   |  vmovupd     %zmm1, (%r12,%rdx,8)

6 | 0.10     | 0.26    |      |      |      | 0.10 | 0.27 |      |      |      | 0.27 |      ||   | 1 |  addq        $8, %rdx

7 | 0.00     | 0.34    |      |      |      | 0.00 | 0.33 |      |      |      | 0.33 |      ||   |   |  cmpq        %rsi, %rdx

8 |          |         |      |      |      |      |      |      |      |      |      |      ||   |   |* jb          ..B2.42

    0.60       0.60      1.00   1.00   1.00   0.60   0.60   1.00   1.00   1.00   0.60   1.00    9   1

Loop-Carried Dependencies Analysis Report

-----------------------------------------

   6 |  1.0 | addq        $8, %rdx                | [6]



Triad on SPR with OSACA

▪ Recap: Manual analysis resulted in 1 cy/8 it
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$ osaca --arch SPR triad.s

Open Source Architecture Code Analyzer (OSACA) - 0.6.0

Architecture:       SPR

 * - Instruction micro-ops not bound to a port

 X - No throughput/latency information for this instruction in data file

                                               Port pressure in cycles

  | 0  - 0DV | 1  - 1DV| 2   | 3  | 4  | 5  | 6  | 7  | 8  | 9  |  10  |  11  ||CP |LCD|

-------------------------------------------------------------------------------------------------------

2 |          |         |      |      |      |      |      |      |      |      |      |      ||   |   |  ..B2.42:

3 |          |         | 0.50 | 0.50 |      |      |      |      |      |      |      | 0.50 || 5 |   |  vmovups (%r14,%rdx,8), %zmm1

4 | 0.50     |         | 0.50 | 0.50 |      | 0.50 |      |      |      |      |      | 0.50 || 4 |   |  vfmadd213pd (%r15,%rdx,8), %zmm2, %zmm1

5 |          |         |      |      | 1.00 |      |      | 1.00 | 1.00 | 1.00 |      |      || 0 |   |  vmovupd     %zmm1, (%r12,%rdx,8)

6 | 0.10     | 0.26    |      |      |      | 0.10 | 0.27 |      |      |      | 0.27 |      ||   | 1 |  addq        $8, %rdx

7 | 0.00     | 0.34    |      |      |      | 0.00 | 0.33 |      |      |      | 0.33 |      ||   |   |  cmpq        %rsi, %rdx

8 |          |         |      |      |      |      |      |      |      |      |      |      ||   |   |* jb          ..B2.42

    0.60       0.60      1.00   1.00   1.00   0.60   0.60   1.00   1.00   1.00   0.60   1.00    9   1

Loop-Carried Dependencies Analysis Report

-----------------------------------------

   6 |  1.0 | addq        $8, %rdx                | [6]

0.60   0.60    1.00   1.00   1.00   0.60   0.60   1.00   1.00   1.00   0.60   1.00    9   1



➔ https://go-nhr.de/CLPE-ex3

Hands-On #3:
 Dot Product with OSACA

https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
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Hands-On: Benchmarking Dot Product (DP)

83

Dot Product

s = s + a[i] * b[i] * =

Σ

→ Moodle, hands-on #3



➔ https://go-nhr.de/CLPE-ex4

Hands-On #4:
 PI by integration

https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
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Hands-On: PI by integration

86

PI

𝜋 = න
0

1 4

1 + 𝑥2
ⅆ𝑥

double delta_x = 1./n;

double sum     = 0.0;

for (int i=0; i<n; i++)

{

  x    = (i + 0.5) * delta_x;

  sum += (4.0 / (1.0 + x * x));

}

1

1
𝛼 = 45° =

𝜋

4

tan 𝛼 =
1

1
= 1 ⇒  arctan 1 =

𝜋

4

⇒ 𝜋 = 4 ⋅ arctan(1)

𝑑
𝑑𝑥

 arctan(𝑥) =
1

1 + 𝑥2
⇒ 𝜋 = න

0

1 4

1 + 𝑥2
ⅆ𝑥

→ Moodle, hands-on #4
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Node architecture of A64FX – FX700
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Node architecture of A64FX – FX700
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Port model for the A64FX
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Port model for the A64FX

Frontend

Backend
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Port model for the A64FX

Frontend
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AArch64 ISA – differences to x86

▪ Opcodes are always 32 bits

▪ Similar to Intel (left) syntax with STORE (STR/STP) as exception

▪ add  x1, x1, 8    # x1  x1 + 8

▪ ldr  x0, [x1]     # x0  mem at x1

▪ ldp  x0, x1, [x2] # x0, x1  mem at x2

▪ str  x0, [x1]     # mem at x1  x0

▪ stp  x0, x1, [x2] # mem at x2  x0, x1

▪ 31 general purpose registers (64 bits):

▪ x0–x30 (aliases with 32-bit GPRs w0–w30)

▪ 32nd register is stack pointer and zero register 

x0 w0

x1 w1

...

x29 w29

x30 w30

SP/XZR WSP/WZR

64 bits
32 bits
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AArch64 ISA – differences to x86

▪ 32 SIMD and FP registers (NEON, 128 bits)

▪ v0–v31

▪ can be optionally specified with

shapes and lanes vn.<LANES><SHAPE>

▪ a single element can be indexed via brackets [i]

▪ 32 scalable vector registers (128–2048 bits):

▪ z0–z31, extending v registers, multiples of 128 bits

▪ size defined in OS

▪ 16 predicate registers (16–256 bits) 

▪ p0–p15, multiples of 16 bits

▪ optional with predication operation /z, /m, /x  z      ,        ,    ’       

z0 v0

z1 v1

...

z30 v30

z31 v31

LEN x 128 bits
128 bits

v0.2d

v0.4s

v0.8b

v0.b[1]

SIMD/FP

register

128-bit
q*

32-bit
s*

64-bit
d*

16-bit
h*

8-bit
b*
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AArch64 ISA – differences to x86

▪ Addressing Modes: 

▪ Simple ([BASE])   ldr x0, [x1]

▪ Offset ([BASE, OFFSET])  ldr x0, [x1, #64]

▪ Modified Offset   ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!)  ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET)  ldr x0, [x1], #64
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▪ Pre-indexed ([BASE, OFFSET]!)  ldr x0, [x1, #64]!
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ldr x0, [x1]

x1

x0

Memory
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AArch64 ISA – differences to x86

▪ Addressing Modes: 

▪ Simple ([BASE])   ldr x0, [x1]
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▪ Modified Offset   ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!)  ldr x0, [x1, #64]!
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ldr x0, [x1, #64]

x1

x0

Memory

64+
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AArch64 ISA – differences to x86

▪ Addressing Modes: 

▪ Simple ([BASE])   ldr x0, [x1]

▪ Offset ([BASE, OFFSET])  ldr x0, [x1, #64]

▪ Modified Offset   ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!)  ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET)  ldr x0, [x1], #64

ldr x0, [x1, x2, lsl 3]

x1

x0

Memory

3

+

x2

<<
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AArch64 ISA – differences to x86

▪ Addressing Modes: 

▪ Simple ([BASE])   ldr x0, [x1]

▪ Offset ([BASE, OFFSET])  ldr x0, [x1, #64]

▪ Modified Offset   ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!)  ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET)  ldr x0, [x1], #64

ldr x0, [x1, #64]!

x1

x0

Memory

64+ x1
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AArch64 ISA – differences to x86

▪ Addressing Modes: 

▪ Simple ([BASE])   ldr x0, [x1]

▪ Offset ([BASE, OFFSET])  ldr x0, [x1, #64]

▪ Modified Offset   ldr x0, [x1, x2, lsl 3]

▪ Pre-indexed ([BASE, OFFSET]!)  ldr x0, [x1, #64]!

▪ Post-indexed ([BASE], OFFSET)  ldr x0, [x1], #64

ldr x0, [x1], #64

x1

x0

Memory

64+ x1



Break



Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:

ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.

Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI: 10.1002/cpe.6512

Case Study: SpMV on A64FX

Sparse Matrix-Vector Multiplication

= + •

https://doi.org/10.1002/cpe.6512


31 January 2026 104Core-Level Performance Engineering Tutorial | CGO 2026

Motivation

Thread pinning : Compact
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Motivation

Clear memory bandwidth 

saturation for STREAM TRIAD 
(a[i] = b[i] + s*c[i])

Thread pinning : Compact
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Motivation

Clear memory bandwidth 

saturation for STREAM TRIAD 
(a[i] = b[i] + s*c[i])

Thread pinning : Compact

But why not for 
SUM (s += a[i]) and 

SpMV (b[:] = A[:,:]*x[i[:]]) ?

210 GB/s = 

117 B/cy
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Motivation

Thread pinning : Compact
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Motivation

Thread pinning : Compact
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Motivation

Thread pinning : Compact

Understanding single-core 

performance is the key!
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SpMV

Sparse Matrix-Vector Multiplication (SpMV) :  b=Ax

= + • Nr

General case: 

some indirect 

addressing 

required!

b[:]= b[:]+ A[:,:]       * x[:]

for i = 0:nrows-1 //Long outer loop 

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format
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balance: 
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𝑚𝑖𝑛 = 6

byte

flop
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SpMV

Sparse Matrix-Vector Multiplication (SpMV) :  b=Ax

= + • Nr

General case: 

some indirect 

addressing 

required!

b[:]= b[:]+ A[:,:]       * x[:]

for i = 0:nrows-1 //Long outer loop 

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop
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SpMV

for i = 0:nrows-1 //Long outer loop 

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]

ld1d z2.d, p0/z, [x18, x20, lsl 3]

ld1d z3.d, p0/z, [x30, z0.d, lsl 3]

add x20, x20, 8

fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop
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SpMV

for i = 0:nrows-1 //Long outer loop 

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format

.L6:

ld1sw z0.d, p0/z, [x17, x20, lsl 2]
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fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6
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Assembly of the short inner-loop
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fmla z1.d, p0/m, z3.d, z2.d

whilelo p0.d, x20, x14

b.any .L6
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SpMV

for i = 0:nrows-1 //Long outer loop 
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SpMV

for i = 0:nrows-1 //Long outer loop 
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$ osaca --arch a64fx spmv-inner-loop.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

 | 0   - 0DV |  1   |  2   |  3   |  4   |  5  -  5D  |  6   -  6D  |  7   ||  CP  | LCD  |

--------------------------------------------------------------------------------------------

1|           |      |      |      |      |            |             |      ||      |      | .L6:

2|           |      |      |      |      | 0.50  0.50 | 0.50   0.50 |      ||  8.0 |      | ld1sw z0.d, p0/z, [x17,x20,lsl 2]

3|           |      |      |      |      | 0.50  0.50 | 0.50   0.50 |      ||      |      | ld1d z2.d, p0/z, [x18,x20,lsl 3]

4| 1.00      |      |      | 1.00 |      | 2.00  2.00 | 2.00   2.00 |      || 11.0 |      | ld1d z3.d, p0/z, [x30,z0.d,lsl 3]

5| 0.00      |      | 0.00 | 0.00 | 1.00 |            |             |      ||      |      | add  x20, x20, 8

6| 0.00      |      | 1.00 |      |      |            |             |      ||  9.0 |  9.0 | fmla z1.d, p0/m, z3.d, z2.d

7|           | 1.00 |      | 1.00 |      |            |             |      ||      |      | whilelo  p0.d, x20, x14

8|           |      |      |      |      |            |             | 1.00 ||      |      | b.any .L6

   1.00        1.00   1.00   2.00   1.00   3.00  3.00   3.00   3.00   1.00    28.0    9.0

Loop-Carried Dependencies Analysis Report

-----------------------------------------

   6 |  9.0 | fmla    z1.d, p0/m, z3.d, z2.d     | [6]

   5 |  1.0 | add     x20, x20, 8                | [5]
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 | 0   - 0DV |  1   |  2   |  3   |  4   |  5  -  5D  |  6   -  6D  |  7   ||  CP  | LCD  |

--------------------------------------------------------------------------------------------

1|           |      |      |      |      |            |             |      ||      |      | .L6:

2|           |      |      |      |      | 0.50  0.50 | 0.50   0.50 |      ||  8.0 |      | ld1sw z0.d, p0/z, [x17,x20,lsl 2]

3|           |      |      |      |      | 0.50  0.50 | 0.50   0.50 |      ||      |      | ld1d z2.d, p0/z, [x18,x20,lsl 3]

4| 1.00      |      |      | 1.00 |      | 2.00  2.00 | 2.00   2.00 |      || 11.0 |      | ld1d z3.d, p0/z, [x30,z0.d,lsl 3]

5| 0.00      |      | 0.00 | 0.00 | 1.00 |            |             |      ||      |      | add  x20, x20, 8

6| 0.00      |      | 1.00 |      |      |            |             |      ||  9.0 |  9.0 | fmla z1.d, p0/m, z3.d, z2.d

7|           | 1.00 |      | 1.00 |      |            |             |      ||      |      | whilelo  p0.d, x20, x14

8|           |      |      |      |      |            |             | 1.00 ||      |      | b.any .L6

   1.00        1.00   1.00   2.00   1.00   3.00  3.00   3.00   3.00   1.00    28.0    9.0

Loop-Carried Dependencies Analysis Report

-----------------------------------------

   6 |  9.0 | fmla    z1.d, p0/m, z3.d, z2.d     | [6]

   5 |  1.0 | add     x20, x20, 8                | [5]



SIMD-friendly execution of SpMV with SELL-C-𝜎

▪ Inner loop goes down one block column

▪ Column-major storage within block

→ consecutive access of matrix

▪ Enables SIMD FMA instructions for column 

traversal in block and LHS update

▪ No reductions across SIMD register slots

▪ Longer inner loop (in assembly) than CRS

▪ RHS access still indirect (gather)
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How to choose the parameters?

▪ 𝐶

▪ 𝑛 × SIMD width to allow good utilization of SIMD units

▪ 𝑛 > 1 useful for hiding ADD pipeline latency

▪ 𝜎

▪ As small as possible, as large as necessary

▪ Large 𝜎 reduces zero padding

▪ Sorting alters RHS access pattern

112

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse 
matrix data format for efficient general sparse matrix-vector multiplication on 
modern processors with wide SIMD units. SIAM Journal on Scientific 
Computing 36(5), C401–C423 (2014). DOI: 10.1137/130930352,

http://dx.doi.org/10.1137/130930352
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SELL-32-𝜎 kernel OSACA analysis for A64FX

113

|  0   - 0DV  |  1   |  2   |  3   |  4   |  5   -  5D  |  6   -  6D  |  7   ||  CP  | LCD  |

-------------------------------------------------------------------------------------------------

  92 |             |      |      |      |      |             |             |      ||      |      |   .L4:

  93 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1sw z16.d, p0/z, [x11]

  94 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1sw z17.d, p0/z, [x11, #1, mul vl]

  95 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1sw z20.d, p0/z, [x11, #2, mul vl]

  96 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||  8.0 |      |   ld1sw z21.d, p0/z, [x11, #3, mul vl]

  97 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   add x10, x10, 32

  98 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   add x11, x11, 128

  99 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   add x12, x12, 256

 100 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z19.d, p0/z, [x12, #-4, mul vl]

 101 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z18.d, p0/z, [x12, #-3, mul vl]

 102 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z25.d, p0/z, [x12, #-2, mul vl]

 103 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z27.d, p0/z, [x12, #-1, mul vl]

 104 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z22.d, p0/z, [x3, z16.d, lsl 3]

 105 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z23.d, p0/z, [x3, z17.d, lsl 3]

 106 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z24.d, p0/z, [x3, z20.d, lsl 3]

 107 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      || 11.0 |      |   ld1d z26.d, p0/z, [x3, z21.d, lsl 3]

 108 |             | 1.00 |      | 1.00 |      |             |             |      ||      |      |   whilelo p1.d, x10, x9

 109 | 0.00        |      | 1.00 |      |      |             |             |      ||      |      |   fmla z4.d, p0/m, z19.d, z22.d

 110 | 0.00        |      | 1.00 |      |      |             |             |      ||      |      |   fmla z5.d, p0/m, z18.d, z23.d

 111 | 0.00        |      | 1.00 |      |      |             |             |      ||      |      |   fmla z6.d, p0/m, z25.d, z24.d

 112 | 0.00        |      | 1.00 |      |      |             |             |      ||  9.0 |  9.0 |   fmla z7.d, p0/m, z27.d, z26.d

 113 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   mov p0.b, p1.b

 114 |             |      |      |      |      |             |             | 1.00 ||      |      |   b.any .L4

       4.00          1.00   4.00   5.00   4.00   12.0   12.0   12.0   12.0   1.00    28.0   9.0  
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 103 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z27.d, p0/z, [x12, #-1, mul vl]

 104 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z22.d, p0/z, [x3, z16.d, lsl 3]

 105 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z23.d, p0/z, [x3, z17.d, lsl 3]

 106 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z24.d, p0/z, [x3, z20.d, lsl 3]

 107 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      || 11.0 |      |   ld1d z26.d, p0/z, [x3, z21.d, lsl 3]
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|  0   - 0DV  |  1   |  2   |  3   |  4   |  5   -  5D  |  6   -  6D  |  7   ||  CP  | LCD  |

-------------------------------------------------------------------------------------------------

  92 |             |      |      |      |      |             |             |      ||      |      |   .L4:

  93 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1sw z16.d, p0/z, [x11]

  94 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1sw z17.d, p0/z, [x11, #1, mul vl]

  95 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1sw z20.d, p0/z, [x11, #2, mul vl]

  96 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||  8.0 |      |   ld1sw z21.d, p0/z, [x11, #3, mul vl]

  97 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   add x10, x10, 32

  98 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   add x11, x11, 128

  99 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   add x12, x12, 256

 100 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z19.d, p0/z, [x12, #-4, mul vl]

 101 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z18.d, p0/z, [x12, #-3, mul vl]

 102 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z25.d, p0/z, [x12, #-2, mul vl]

 103 |             |      |      |      |      | 0.50   0.50 | 0.50   0.50 |      ||      |      |   ld1d z27.d, p0/z, [x12, #-1, mul vl]

 104 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z22.d, p0/z, [x3, z16.d, lsl 3]

 105 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z23.d, p0/z, [x3, z17.d, lsl 3]

 106 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      ||      |      |   ld1d z24.d, p0/z, [x3, z20.d, lsl 3]

 107 | 1.00        |      |      | 1.00 |      | 2.00   2.00 | 2.00   2.00 |      || 11.0 |      |   ld1d z26.d, p0/z, [x3, z21.d, lsl 3]

 108 |             | 1.00 |      | 1.00 |      |             |             |      ||      |      |   whilelo p1.d, x10, x9

 109 | 0.00        |      | 1.00 |      |      |             |             |      ||      |      |   fmla z4.d, p0/m, z19.d, z22.d

 110 | 0.00        |      | 1.00 |      |      |             |             |      ||      |      |   fmla z5.d, p0/m, z18.d, z23.d

 111 | 0.00        |      | 1.00 |      |      |             |             |      ||      |      |   fmla z6.d, p0/m, z25.d, z24.d

 112 | 0.00        |      | 1.00 |      |      |             |             |      ||  9.0 |  9.0 |   fmla z7.d, p0/m, z27.d, z26.d

 113 | 0.00        |      | 0.00 | 0.00 | 1.00 |             |             |      ||      |      |   mov p0.b, p1.b

 114 |             |      |      |      |      |             |             | 1.00 ||      |      |   b.any .L4

       4.00          1.00   4.00   5.00   4.00   12.0   12.0   12.0   12.0   1.00    28.0   9.0  

Shift of bottleneck
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SELL-32-𝜎 kernel OSACA analysis for A64FX

Loop-Carried Dependencies Analysis Report

-----------------------------------------

112 |  9.0 | fmla z7.d, p0/m, z27.d, z26.d       | [112]

111 |  9.0 | fmla z6.d, p0/m, z25.d, z24.d       | [111]

110 |  9.0 | fmla z5.d, p0/m, z18.d, z23.d       | [110]

109 |  9.0 | fmla z4.d, p0/m, z19.d, z22.d       | [109]

99 |  1.0 | add x12, x12, 256                   | [99]

98 |  1.0 | add x11, x11, 128                   | [98]

97 |  1.0 | add x10, x10, 32                    | [97]
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SpMV performance with SELL-C- (1 CMG)

▪ SELL-C- separates 

SIMD from sum 

reduction

▪ C>8 allows for reduction 
of fmla latency impact

115



Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:

ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.

Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI: 10.1002/cpe.6512

Case Study: Domain Wall (DW) Kernel

from Quantum Chromodynamics (QCD)

© Brookhaven National Lab

https://doi.org/10.1002/cpe.6512


Context

▪ Lattice QCD simulates the strong interaction 

▪ Iterative multigrid techniques on regular (4D or 5D) lattices

▪ Core component: Apply Dirac operator 𝐷 to quark-field vector Ψ

▪ Domain Wall (DW) formulation: quark field lives on 4D boundary of a 5D 

space-time volume 𝑉4 × 𝐿𝑠
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#define x_p 1 // x−plus direction

#define x_m 2 // x−minus direction

#define y_p 3 // y−plus direction

...

#pragma omp parallel for schedule(static)

for{t,z,y,x} = 1:{Lt−2,Lz−2,Ly−2,Lx−2} //collapsed loop over 4d space−time

{

  for(int s=0; s<Ls; ++s) //loop over fifth dimension

  {

    O[t][z][y][x][s] = R(x_p) ⋅ U[x_p][t][z][y][x] ⋅ P(x_p) ⋅ I[t][z][y][x+1][s] +
      R(x_m) ⋅ U[x_m][t][z][y][x] ⋅ P(x_m) ⋅ I[t][z][y][x−1][s] +
      R(y_p) ⋅ U[y_p][t][z][y][x] ⋅ P(y_p) ⋅ I[t][z][y+1][x][s] +
      R(y_m) ⋅ U[y_m][t][z][y][x] ⋅ P(y_m) ⋅ I[t][z][y−1][x][s] +
      R(z_p) ⋅ U[z_p][t][z][y][x] ⋅ P(z_p) ⋅ I[t][z+1][y][x][s] +
      R(z_m) ⋅ U[z_m][t][z][y][x] ⋅ P(z_m) ⋅ I[t][z−1][y][x][s] +
      R(t_p) ⋅ U[t_p][t][z][y][x] ⋅ P(t_p) ⋅ I[t+1][z][y][x][s] +
      R(t_m) ⋅ U[t_m][t][z][y][x] ⋅ P(t_m) ⋅ I[t−1][z][y][x][s];
  }

}

31 January 2026 119Core-Level Performance Engineering Tutorial | CGO 2026

DW stencil kernel (simplified)

• “    ”                  w  k

• Uses SVE intrinsics

• Data type: double complex
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Complex numbers data layout choice

120

AoS (standard)

AoSoA

vector length
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Observed performance 

▪ Starting point: AoS layout, ACLE intrinsics, GCC/FCC

▪ 1320 flops/LUP (theoretical)

▪ Measured code balance: 1500 byte/LUP

▪ A64FX (FX1000): 𝐵𝑚 = 0.25
byte
flop

 → expect memory bound

121

𝐵𝑐 ≈ 1.14
byte

flop
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In-core analysis (complex-AoS)

122

$ osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

560 |          |    |      |      |      |           |           |      ||    |    |   .L41:

561 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   lsl w2, w13, 3

562 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z16.d, p0/z, [x11]

563 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x18, sp, 160

564 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z18.d, p0/z, [x11, #-4, mul vl]

565 |          |    |      | 0.50 | 0.50 |           |           |      ||    |    |   sxtw x2, w2

566 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z19.d, p0/z, [x11, #-3, mul vl]

  [...]

1367| 1.00     |    |      |      |      | 1.00      | 1.00      |      ||    |    |   st1d z2.d, p0, [x0, #4, mul vl]

1368| 1.00     |    |      |      |      | 1.00      | 1.00      |      ||    |    |   st1d z13.d, p0, [x0, #5, mul vl]

1369|          |    |      | 0.00 | 1.00 |           |           |      ||    |    |   cmp w14, w13

1370|          |    |      |      |      |           |           | 1.00 ||    |    |   bne .L41

      680             500    30     30    118.5 98.5  118.5 98.5   1.0    158   1.0  

Loop-Carried Dependencies Analysis Report

-----------------------------------------

1360 |  1.0 | add w13, w13, 1                     | [1360]
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In-core analysis (complex-AoS)

122

$ osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

560 |          |    |      |      |      |           |           |      ||    |    |   .L41:

561 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   lsl w2, w13, 3

562 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z16.d, p0/z, [x11]

563 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x18, sp, 160

564 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z18.d, p0/z, [x11, #-4, mul vl]

565 |          |    |      | 0.50 | 0.50 |           |           |      ||    |    |   sxtw x2, w2

566 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z19.d, p0/z, [x11, #-3, mul vl]

  [...]

1367| 1.00     |    |      |      |      | 1.00      | 1.00      |      ||    |    |   st1d z2.d, p0, [x0, #4, mul vl]

1368| 1.00     |    |      |      |      | 1.00      | 1.00      |      ||    |    |   st1d z13.d, p0, [x0, #5, mul vl]

1369|          |    |      | 0.00 | 1.00 |           |           |      ||    |    |   cmp w14, w13

1370|          |    |      |      |      |           |           | 1.00 ||    |    |   bne .L41

      680             500    30     30    118.5 98.5  118.5 98.5   1.0    158   1.0  

Loop-Carried Dependencies Analysis Report

-----------------------------------------

1360 |  1.0 | add w13, w13, 1                     | [1360]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Operation type

complex arithmetic load store prefix ops FP arithmetic INT arithmetic permutations Compare/Branch
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566 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z19.d, p0/z, [x11, #-3, mul vl]

  [...]

1367| 1.00     |    |      |      |      | 1.00      | 1.00      |      ||    |    |   st1d z2.d, p0, [x0, #4, mul vl]

1368| 1.00     |    |      |      |      | 1.00      | 1.00      |      ||    |    |   st1d z13.d, p0, [x0, #5, mul vl]

1369|          |    |      | 0.00 | 1.00 |           |           |      ||    |    |   cmp w14, w13

1370|          |    |      |      |      |           |           | 1.00 ||    |    |   bne .L41
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In-core analysis (complex-AoS)
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$ osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

560 |          |    |      |      |      |           |           |      ||    |    |   .L41:

561 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   lsl w2, w13, 3
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566 |          |    |      |      |      | 0.50 0.50 | 0.50 0.50 |      ||    |    |   ld1d z19.d, p0/z, [x11, #-3, mul vl]

  [...]
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1368| 1.00     |    |      |      |      | 1.00      | 1.00      |      ||    |    |   st1d z13.d, p0, [x0, #5, mul vl]
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1370|          |    |      |      |      |           |           | 1.00 ||    |    |   bne .L41

      680             500    30     30    118.5 98.5  118.5 98.5   1.0    158   1.0  

Loop-Carried Dependencies Analysis Report

-----------------------------------------
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In-core analysis (complex-AoSoA)

123

$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

433 |          |    |      |      |      |           |           |      ||    |    |   .L66:

434 |          |    |      | 2.50 | 2.50 |           |           |      ||    |    |   madd x0, x1, x0, x19

435 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x0, [sp, 1896]

436 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, x0

437 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x1, [sp, 1936]

438 |          |    |      | 0.50 | 0.50 |           |           |      ||    |    |   cmp x0, x1

  [...]

2803|          |    |      |      |      | 0.00 0.00 | 1.00 1.00 |      ||    |    |   ldr x0, [sp, 1784]

2804|          |    |      |      |      | 0.00      | 1.00      |      ||    |    |   prfd pldl2strm, p0, [x0]

2805|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L64

2806|          |    |      |      |      |           |           |      ||    |    |   .L38:

2807| 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, 1

2808| 0.00     |    | 0.00 | 0.00 | 1.00 |           |           |      ||    |    |   mov x19, 0

2809|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L66

      567       1.0   567    247    247   488.5 275.5 488.5 275.5  14      92  1.0

Loop-Carried Dependencies Analysis Report

-----------------------------------------

 507 |  1.0 | add sp, sp, 2048                    | [507]
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In-core analysis (complex-AoSoA)
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$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

433 |          |    |      |      |      |           |           |      ||    |    |   .L66:

434 |          |    |      | 2.50 | 2.50 |           |           |      ||    |    |   madd x0, x1, x0, x19

435 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x0, [sp, 1896]

436 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, x0

437 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x1, [sp, 1936]

438 |          |    |      | 0.50 | 0.50 |           |           |      ||    |    |   cmp x0, x1

  [...]

2803|          |    |      |      |      | 0.00 0.00 | 1.00 1.00 |      ||    |    |   ldr x0, [sp, 1784]

2804|          |    |      |      |      | 0.00      | 1.00      |      ||    |    |   prfd pldl2strm, p0, [x0]

2805|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L64

2806|          |    |      |      |      |           |           |      ||    |    |   .L38:

2807| 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, 1

2808| 0.00     |    | 0.00 | 0.00 | 1.00 |           |           |      ||    |    |   mov x19, 0

2809|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L66

      567       1.0   567    247    247   488.5 275.5 488.5 275.5  14      92  1.0

Loop-Carried Dependencies Analysis Report

-----------------------------------------

 507 |  1.0 | add sp, sp, 2048                    | [507]
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In-core analysis (complex-AoSoA)
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$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

433 |          |    |      |      |      |           |           |      ||    |    |   .L66:

434 |          |    |      | 2.50 | 2.50 |           |           |      ||    |    |   madd x0, x1, x0, x19

435 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x0, [sp, 1896]

436 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, x0

437 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x1, [sp, 1936]

438 |          |    |      | 0.50 | 0.50 |           |           |      ||    |    |   cmp x0, x1

  [...]

2803|          |    |      |      |      | 0.00 0.00 | 1.00 1.00 |      ||    |    |   ldr x0, [sp, 1784]

2804|          |    |      |      |      | 0.00      | 1.00      |      ||    |    |   prfd pldl2strm, p0, [x0]

2805|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L64

2806|          |    |      |      |      |           |           |      ||    |    |   .L38:

2807| 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, 1

2808| 0.00     |    | 0.00 | 0.00 | 1.00 |           |           |      ||    |    |   mov x19, 0

2809|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L66

      567       1.0   567    247    247   488.5 275.5 488.5 275.5  14      92  1.0

Loop-Carried Dependencies Analysis Report

-----------------------------------------

 507 |  1.0 | add sp, sp, 2048                    | [507]
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$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

433 |          |    |      |      |      |           |           |      ||    |    |   .L66:

434 |          |    |      | 2.50 | 2.50 |           |           |      ||    |    |   madd x0, x1, x0, x19

435 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x0, [sp, 1896]

436 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, x0

437 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x1, [sp, 1936]

438 |          |    |      | 0.50 | 0.50 |           |           |      ||    |    |   cmp x0, x1

  [...]

2803|          |    |      |      |      | 0.00 0.00 | 1.00 1.00 |      ||    |    |   ldr x0, [sp, 1784]

2804|          |    |      |      |      | 0.00      | 1.00      |      ||    |    |   prfd pldl2strm, p0, [x0]

2805|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L64

2806|          |    |      |      |      |           |           |      ||    |    |   .L38:

2807| 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, 1

2808| 0.00     |    | 0.00 | 0.00 | 1.00 |           |           |      ||    |    |   mov x19, 0

2809|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L66

      567       1.0   567    247    247   488.5 275.5 488.5 275.5  14      92  1.0

Loop-Carried Dependencies Analysis Report

-----------------------------------------

 507 |  1.0 | add sp, sp, 2048                    | [507]
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$ osaca --arch a64fx rrii-o1-gcc.s

[...]

Combined Analysis Report

------------------------

                                Port pressure in cycles

    | 0  - 0DV | 1  |  2   |  3   |  4   | 5  -  5D  | 6   -  6D |  7   || CP | LCD|

-------------------------------------------------------------------------------------

433 |          |    |      |      |      |           |           |      ||    |    |   .L66:

434 |          |    |      | 2.50 | 2.50 |           |           |      ||    |    |   madd x0, x1, x0, x19

435 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x0, [sp, 1896]

436 | 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, x0

437 | 1.00     |    |      |      |      | 0.50      | 0.50      |      ||    |    |   str x1, [sp, 1936]

438 |          |    |      | 0.50 | 0.50 |           |           |      ||    |    |   cmp x0, x1

  [...]

2803|          |    |      |      |      | 0.00 0.00 | 1.00 1.00 |      ||    |    |   ldr x0, [sp, 1784]

2804|          |    |      |      |      | 0.00      | 1.00      |      ||    |    |   prfd pldl2strm, p0, [x0]

2805|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L64

2806|          |    |      |      |      |           |           |      ||    |    |   .L38:

2807| 0.00     |    | 0.00 | 0.50 | 0.50 |           |           |      ||    |    |   add x1, x1, 1

2808| 0.00     |    | 0.00 | 0.00 | 1.00 |           |           |      ||    |    |   mov x19, 0

2809|          |    |      |      |      |           |           | 1.00 ||    |    |   b .L66

      567       1.0   567    247    247   488.5 275.5 488.5 275.5  14      92  1.0

Loop-Carried Dependencies Analysis Report

-----------------------------------------

 507 |  1.0 | add sp, sp, 2048                    | [507]
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Summary of optimizations for DW

▪ AoSoA (RRII) data layout

▪ Prevents use of complex arithmetic instructions fcmla/fcadd

▪ Removes imbalance between FLA and FLB ports in the core

▪ Some register spills occur, but still better than AoS (RIRI)

▪ More instructions but better performance 

▪ Software prefetching decreases L2 data volume

▪ -O1 makes compiler obey the ordering hints in the computational kernel 

(more efficient OoO execution)

131



➔ https://go-nhr.de/CLPE-ex5

Hands-On #5: 
 2D Gauss-Seidel analysis

https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5


• Limited by loop-carried dependency

• Create code with -Ofast, -funroll-loops

• Analyze for SPR
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Hands-On: Gauss-Seidel Method

for(int it=0; it<NITER; ++it) {

 for (int i=1; i<NI-1; ++i) {

  for (int k=1; k<NK-1; ++k) {

   phi[i][k] = 0.25 * (

      phi[i][k-1] + phi[i+1][k] +

      phi[i][k+1] + phi[i-1][k]

   );

  }

  }

}→ Moodle, hands-on #5
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Hands-On: Gauss-Seidel Method

for(int it=0; it<NITER; ++it) {

 for (int i=1; i<NI-1; ++i) {

  for (int k=1; k<NK-1; ++k) {

   phi[i][k] = 0.25 * (

      phi[i][k-1] + phi[i+1][k] +

      phi[i][k+1] + phi[i-1][k]

   );

  }

  }

}→ Moodle, hands-on #5
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Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV | 1 - 1DV |  2   |  3   |  4   |   5  |  6   |  7   |  8   |  9   |  10  |  11  ||  CP | LCD |

------------------------------------------------------------------------------------------------------------
414 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | ..B1.72: # Preds ..B1.72 ..B1.71
415 |         |         | 0.00 | 0.00 |      |      |      |      |      |      | 1.00 |      || 5.0 |     | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00    |         |      |      |      | 0.00 | 1.00 |      |      |      |      | 0.00 ||     |     | incq %rdx
417 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 16(%rsi,%r15), %xmm2, %xmm3 
418 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 |         | 0.75    |      |      |      | 0.25 |      |      |      |      |      |      || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm5, 8(%rsi,%r15)
422 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6 
423 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm9, 16(%rsi,%r15)
427 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm13, 24(%rsi,%r15)
432 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 |         | 0.25    | 0.33 | 0.33 |      | 0.75 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 |         | 0.00    | 0.33 | 0.33 |      | 1.00 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      || 0.0 |     | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00    | 0.00    |      |      |      |      | 0.50 |      |      |      | 0.50 |      ||     |     | addq $32, %rsi
438 | 0.00    |         |      |      |      | 0.00 | 0.50 |      |      |      | 0.50 |      ||     |     | cmpq %r13, %rdx
439 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | * jb ..B1.72 # Prob 28%

4.00      6.00      3.67   3.67   2.00   6.00   2.00   2.00   2.00   2.00   2.00   3.67    45    36 

Loop-Carried Dependencies Analysis Report
-----------------------------------------
416 |  1.0 | incq %rdx #143.11                 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 |  1.0 | addq $32, %rsi #143.11            | [437]

Core-Level Performance Engineering Tutorial | CGO 2026

Hands-On: Gauss-Seidel Method on SPR



31 January 2026
135

Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV | 1 - 1DV |  2   |  3   |  4   |   5  |  6   |  7   |  8   |  9   |  10  |  11  ||  CP | LCD |

------------------------------------------------------------------------------------------------------------
414 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | ..B1.72: # Preds ..B1.72 ..B1.71
415 |         |         | 0.00 | 0.00 |      |      |      |      |      |      | 1.00 |      || 5.0 |     | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00    |         |      |      |      | 0.00 | 1.00 |      |      |      |      | 0.00 ||     |     | incq %rdx
417 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 16(%rsi,%r15), %xmm2, %xmm3 
418 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 |         | 0.75    |      |      |      | 0.25 |      |      |      |      |      |      || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm5, 8(%rsi,%r15)
422 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6 
423 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm9, 16(%rsi,%r15)
427 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm13, 24(%rsi,%r15)
432 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 |         | 0.25    | 0.33 | 0.33 |      | 0.75 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 |         | 0.00    | 0.33 | 0.33 |      | 1.00 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      || 0.0 |     | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00    | 0.00    |      |      |      |      | 0.50 |      |      |      | 0.50 |      ||     |     | addq $32, %rsi
438 | 0.00    |         |      |      |      | 0.00 | 0.50 |      |      |      | 0.50 |      ||     |     | cmpq %r13, %rdx
439 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | * jb ..B1.72 # Prob 28%

4.00      6.00      3.67   3.67   2.00   6.00   2.00   2.00   2.00   2.00   2.00   3.67    45    36 

Loop-Carried Dependencies Analysis Report
-----------------------------------------
416 |  1.0 | incq %rdx #143.11                 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 |  1.0 | addq $32, %rsi #143.11            | [437]

Core-Level Performance Engineering Tutorial | CGO 2026
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Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV | 1 - 1DV |  2   |  3   |  4   |   5  |  6   |  7   |  8   |  9   |  10  |  11  ||  CP | LCD |

------------------------------------------------------------------------------------------------------------
414 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | ..B1.72: # Preds ..B1.72 ..B1.71
415 |         |         | 0.00 | 0.00 |      |      |      |      |      |      | 1.00 |      || 5.0 |     | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00    |         |      |      |      | 0.00 | 1.00 |      |      |      |      | 0.00 ||     |     | incq %rdx
417 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 16(%rsi,%r15), %xmm2, %xmm3 
418 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 |         | 0.75    |      |      |      | 0.25 |      |      |      |      |      |      || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm5, 8(%rsi,%r15)
422 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6 
423 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm9, 16(%rsi,%r15)
427 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm13, 24(%rsi,%r15)
432 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 |         | 0.25    | 0.33 | 0.33 |      | 0.75 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 |         | 0.00    | 0.33 | 0.33 |      | 1.00 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      || 0.0 |     | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00    | 0.00    |      |      |      |      | 0.50 |      |      |      | 0.50 |      ||     |     | addq $32, %rsi
438 | 0.00    |         |      |      |      | 0.00 | 0.50 |      |      |      | 0.50 |      ||     |     | cmpq %r13, %rdx
439 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | * jb ..B1.72 # Prob 28%

4.00      6.00      3.67   3.67   2.00   6.00   2.00   2.00   2.00   2.00   2.00   3.67    45    36 

Loop-Carried Dependencies Analysis Report
-----------------------------------------
416 |  1.0 | incq %rdx #143.11                 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 |  1.0 | addq $32, %rsi #143.11            | [437]

Core-Level Performance Engineering Tutorial | CGO 2026
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Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV | 1 - 1DV |  2   |  3   |  4   |   5  |  6   |  7   |  8   |  9   |  10  |  11  ||  CP | LCD |

------------------------------------------------------------------------------------------------------------
414 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | ..B1.72: # Preds ..B1.72 ..B1.71
415 |         |         | 0.00 | 0.00 |      |      |      |      |      |      | 1.00 |      || 5.0 |     | vmovsd 8(%rsi,%r10), %xmm2
416 | 0.00    |         |      |      |      | 0.00 | 1.00 |      |      |      |      | 0.00 ||     |     | incq %rdx
417 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 16(%rsi,%r15), %xmm2, %xmm3 
418 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 |     | vaddsd 8(%rsi,%r11), %xmm3, %xmm4
419 |         | 0.75    |      |      |      | 0.25 |      |      |      |      |      |      || 2.0 | 2.0 | vaddsd %xmm1, %xmm4, %xmm1
420 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm1, %xmm0, %xmm5
421 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm5, 8(%rsi,%r15)
422 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r10), %xmm5, %xmm6 
423 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r15), %xmm6, %xmm7
424 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 16(%rsi,%r11), %xmm7, %xmm8
425 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm8, %xmm0, %xmm9
426 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm9, 16(%rsi,%r15)
427 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r10), %xmm9, %xmm10
428 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r15), %xmm10, %xmm11
429 |         | 0.75    | 0.33 | 0.33 |      | 0.25 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 24(%rsi,%r11), %xmm11, %xmm12
430 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm12, %xmm0, %xmm13
431 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      ||     |     | vmovsd %xmm13, 24(%rsi,%r15)
432 |         | 0.50    | 0.33 | 0.33 |      | 0.50 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r10), %xmm13, %xmm14
433 |         | 0.25    | 0.33 | 0.33 |      | 0.75 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 40(%rsi,%r15), %xmm14, %xmm15
434 |         | 0.00    | 0.33 | 0.33 |      | 1.00 |      |      |      |      |      | 0.33 || 2.0 | 2.0 | vaddsd 32(%rsi,%r11), %xmm15, %xmm16
435 | 1.00    | 0.00    |      |      |      |      |      |      |      |      |      |      || 4.0 | 4.0 | vmulsd %xmm16, %xmm0, %xmm1
436 |         |         |      |      | 0.50 |      |      | 0.50 | 0.50 | 0.50 |      |      || 0.0 |     | vmovsd %xmm1, 32(%rsi,%r15)
437 | 0.00    | 0.00    |      |      |      |      | 0.50 |      |      |      | 0.50 |      ||     |     | addq $32, %rsi
438 | 0.00    |         |      |      |      | 0.00 | 0.50 |      |      |      | 0.50 |      ||     |     | cmpq %r13, %rdx
439 |         |         |      |      |      |      |      |      |      |      |      |      ||     |     | * jb ..B1.72 # Prob 28%

4.00      6.00      3.67   3.67   2.00   6.00   2.00   2.00   2.00   2.00   2.00   3.67    45    36 

Loop-Carried Dependencies Analysis Report
-----------------------------------------
416 |  1.0 | incq %rdx #143.11                 | [416]
419 | 36.0 | vaddsd %xmm1, %xmm4, %xmm1 #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 |  1.0 | addq $32, %rsi #143.11            | [437]
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45 36

Block Throughput 1.50 cy

Critical Path 11.25 cy

Loop-Carried Dep. 9.0  cy

6.00                     6.00

Hands-On: Gauss-Seidel Method on SPR
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$ osaca --arch spr --export-graph dependencies.dot gs.s

$ dot -Tpdf dependencies.dot –o dep_graph.pdf

LCD
   2 |     |   vmovsd    (%rsi,%r9), %xmm2            

3 |     |   incq %rdx                         
   4 |     |   vaddsd    8(%rsi,%r10), %xmm2, %xmm3   
   5 |     |   vaddsd    16(%rsi,%r9), %xmm3, %xmm4   

6 | 2.0 |   vaddsd %xmm1, %xmm4, %xmm1         .
7 | 4.0 |   vmulsd %xmm1, %xmm0, %xmm5         .

   8 |     |   vmovsd    %xmm5, 8(%rsi,%r9)           
9 | 2.0 |   vaddsd (%rsi,%r10), %xmm5, %xmm6 .
10 | 2.0 |   vaddsd 8(%rsi,%r11), %xmm6, %xmm7  .
11 | 2.0 |   vaddsd 16(%rsi,%r10), %xmm7, %xmm8 .
12 | 4.0 |   vmulsd %xmm8, %xmm0, %xmm9         .

  13 |     |   vmovsd    %xmm9, 8(%rsi,%r10)          
14 | 2.0 |   vaddsd (%rsi,%r11), %xmm9, %xmm10 .
15 | 2.0 |   vaddsd 8(%rsi,%r8), %xmm10, %xmm11 .
16 | 2.0 |   vaddsd 16(%rsi,%r11), %xmm11, %xmm12
17 | 4.0 |   vmulsd %xmm12, %xmm0, %xmm13       .

  18 |     |   vmovsd    %xmm13, 8(%rsi,%r11)         
19 | 2.0 |   vaddsd (%rsi,%r8), %xmm13, %xmm14  .
20 | 2.0 |   vaddsd 8(%rsi,%r14), %xmm14, %xmm15.
21 | 2.0 |   vaddsd 16(%rsi,%r8), %xmm15, %xmm16.
22 | 4.0 |   vmulsd %xmm16, %xmm0, %xmm1        .

  23 |     |   vmovsd    %xmm1, 8(%rsi,%r8)           
24 |     |   addq %r13, %rsi                   

  25 |     |   cmpq      %r12, %rdx                   
      36.0
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$ osaca --arch spr --export-graph dependencies.dot gs.s

$ dot -Tpdf dependencies.dot –o dep_graph.pdf

LCD
   2 |     |   vmovsd    (%rsi,%r9), %xmm2            

3 |     |   incq %rdx                         
   4 |     |   vaddsd    8(%rsi,%r10), %xmm2, %xmm3   
   5 |     |   vaddsd    16(%rsi,%r9), %xmm3, %xmm4   

6 | 2.0 |   vaddsd %xmm1, %xmm4, %xmm1         .
7 | 4.0 |   vmulsd %xmm1, %xmm0, %xmm5         .

   8 |     |   vmovsd    %xmm5, 8(%rsi,%r9)           
9 | 2.0 |   vaddsd (%rsi,%r10), %xmm5, %xmm6 .
10 | 2.0 |   vaddsd 8(%rsi,%r11), %xmm6, %xmm7  .
11 | 2.0 |   vaddsd 16(%rsi,%r10), %xmm7, %xmm8 .
12 | 4.0 |   vmulsd %xmm8, %xmm0, %xmm9         .

  13 |     |   vmovsd    %xmm9, 8(%rsi,%r10)          
14 | 2.0 |   vaddsd (%rsi,%r11), %xmm9, %xmm10 .
15 | 2.0 |   vaddsd 8(%rsi,%r8), %xmm10, %xmm11 .
16 | 2.0 |   vaddsd 16(%rsi,%r11), %xmm11, %xmm12
17 | 4.0 |   vmulsd %xmm12, %xmm0, %xmm13       .

  18 |     |   vmovsd    %xmm13, 8(%rsi,%r11)         
19 | 2.0 |   vaddsd (%rsi,%r8), %xmm13, %xmm14  .
20 | 2.0 |   vaddsd 8(%rsi,%r14), %xmm14, %xmm15.
21 | 2.0 |   vaddsd 16(%rsi,%r8), %xmm15, %xmm16.
22 | 4.0 |   vmulsd %xmm16, %xmm0, %xmm1        .

  23 |     |   vmovsd    %xmm1, 8(%rsi,%r8)           
24 |     |   addq %r13, %rsi                   

  25 |     |   cmpq      %r12, %rdx                   
      36.0

dep chain of 35 cy 

7 out of 42 (CP) can overlap

➔ ratio 14.3% 
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LCD
   1 |     |   ..B1.72:
   2 |     |   vmovsd    8(%r10,%r11), %xmm2        

3 |     |   incq %rdx   
   4 |     |   vmovsd    16(%r10,%r11), %xmm5       
   5 |     |   vaddsd    16(%r10,%rsi), %xmm2, %xmm3
   6 |     |   vaddsd    24(%r10,%rsi), %xmm5, %xmm7
   7 |     |   vaddsd    8(%r10,%r13), %xmm3, %xmm4 

8 | 2.0 |   vaddsd %xmm1, %xmm4, %xmm1       .        
9 | 4.0 |   vmulsd %xmm0, %xmm1, %xmm6 .        

  10 |     |   vmovsd    %xmm6, 8(%r10,%rsi)        
11 | 2.0 |   vaddsd %xmm7, %xmm6, %xmm8       .      
12 | 2.0 |   vaddsd 16(%r10,%r13), %xmm8, %xmm9
13 | 4.0 |   vmulsd %xmm0, %xmm9, %xmm1       .  

  14 |     |   vmovsd    %xmm1, 16(%r10,%rsi)       
15 |     |   addq $16, %r10                  

  16 |     |   cmpq      %r15, %rdx                 
  17 |     | * jb        ..B1.72
      14.0

-Ofast / -O3 -O1

LCD
   1 |     |   ..B1.34:
   2 |     |   vmovsd    (%rsi,%rdi,8), %xmm0                    
   3 |     |   vaddsd    8(%rcx,%rdi,8), %xmm0, %xmm1            
   4 |     |   vaddsd    (%rax,%rdi,8), %xmm1, %xmm2             

5 | 2.0 |   vaddsd %xmm3, %xmm2, %xmm3                    .
6 | 4.0 |   vmulsd .L_2il0floatpacket.0(%rip), %xmm3, %xmm3

   7 |     |   vmovsd    %xmm3, (%rcx,%rdi,8)                    
8 |     |   incq %rdi                                    

   9 |     |   cmpq      %r13, %rdi                              
  10 |     | * jl        ..B1.34               
       8.0
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LCD
   1 |     |   ..B1.72:
   2 |     |   vmovsd    8(%r10,%r11), %xmm2        

3 |     |   incq %rdx   
   4 |     |   vmovsd    16(%r10,%r11), %xmm5       
   5 |     |   vaddsd    16(%r10,%rsi), %xmm2, %xmm3
   6 |     |   vaddsd    24(%r10,%rsi), %xmm5, %xmm7
   7 |     |   vaddsd    8(%r10,%r13), %xmm3, %xmm4 

8 | 2.0 |   vaddsd %xmm1, %xmm4, %xmm1       .        
9 | 4.0 |   vmulsd %xmm0, %xmm1, %xmm6 .        

  10 |     |   vmovsd    %xmm6, 8(%r10,%rsi)        
11 | 2.0 |   vaddsd %xmm7, %xmm6, %xmm8       .      
12 | 2.0 |   vaddsd 16(%r10,%r13), %xmm8, %xmm9
13 | 4.0 |   vmulsd %xmm0, %xmm9, %xmm1       .  

  14 |     |   vmovsd    %xmm1, 16(%r10,%rsi)       
15 |     |   addq $16, %r10                  

  16 |     |   cmpq      %r15, %rdx                 
  17 |     | * jb        ..B1.72
      14.0 dep chain of 14 cy

9cy / 23cy CP ➔ 39% overlap

-Ofast / -O3 -O1

LCD
   1 |     |   ..B1.34:
   2 |     |   vmovsd    (%rsi,%rdi,8), %xmm0                    
   3 |     |   vaddsd    8(%rcx,%rdi,8), %xmm0, %xmm1            
   4 |     |   vaddsd    (%rax,%rdi,8), %xmm1, %xmm2             

5 | 2.0 |   vaddsd %xmm3, %xmm2, %xmm3                    .
6 | 4.0 |   vmulsd .L_2il0floatpacket.0(%rip), %xmm3, %xmm3

   7 |     |   vmovsd    %xmm3, (%rcx,%rdi,8)                    
8 |     |   incq %rdi                                    

   9 |     |   cmpq      %r13, %rdi                              
  10 |     | * jl        ..B1.34               
       8.0
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LCD
   1 |     |   ..B1.72:
   2 |     |   vmovsd    8(%r10,%r11), %xmm2        

3 |     |   incq %rdx   
   4 |     |   vmovsd    16(%r10,%r11), %xmm5       
   5 |     |   vaddsd    16(%r10,%rsi), %xmm2, %xmm3
   6 |     |   vaddsd    24(%r10,%rsi), %xmm5, %xmm7
   7 |     |   vaddsd    8(%r10,%r13), %xmm3, %xmm4 

8 | 2.0 |   vaddsd %xmm1, %xmm4, %xmm1       .        
9 | 4.0 |   vmulsd %xmm0, %xmm1, %xmm6 .        

  10 |     |   vmovsd    %xmm6, 8(%r10,%rsi)        
11 | 2.0 |   vaddsd %xmm7, %xmm6, %xmm8       .      
12 | 2.0 |   vaddsd 16(%r10,%r13), %xmm8, %xmm9
13 | 4.0 |   vmulsd %xmm0, %xmm9, %xmm1       .  

  14 |     |   vmovsd    %xmm1, 16(%r10,%rsi)       
15 |     |   addq $16, %r10                  

  16 |     |   cmpq      %r15, %rdx                 
  17 |     | * jb        ..B1.72
      14.0 dep chain of 14 cy

9cy / 23cy CP ➔ 39% overlap

-Ofast / -O3 -O1

LCD
   1 |     |   ..B1.34:
   2 |     |   vmovsd    (%rsi,%rdi,8), %xmm0                    
   3 |     |   vaddsd    8(%rcx,%rdi,8), %xmm0, %xmm1            
   4 |     |   vaddsd    (%rax,%rdi,8), %xmm1, %xmm2             

5 | 2.0 |   vaddsd %xmm3, %xmm2, %xmm3                    .
6 | 4.0 |   vmulsd .L_2il0floatpacket.0(%rip), %xmm3, %xmm3

   7 |     |   vmovsd    %xmm3, (%rcx,%rdi,8)                    
8 |     |   incq %rdi                                    

   9 |     |   cmpq      %r13, %rdi                              
  10 |     | * jl        ..B1.34               
       8.0

dep chain of 6cy

9 cy / 15 cy CP ➔ 60% overlap
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Prediction 

[cy/it]

standard optimized

-Ofast -O3 -O1 -Ofast -O3 -O1

icc 2021 9 9 14 7 7 6

icx 2022 9 9 8 8 8 8

icx 2024 9 11 10 8 10 10

GCC 14.2 8 10 10.5 8 4 6

Clang 18 10 10 10 10 4 4



Summary & Caveats

▪ A code analyzer helps you to predict the in-core runtime of a basic block

▪ Might be sufficient, but often a full analysis requires a memory model as well!

▪ An analysis of (loop-carried-)dependencies can help you find 

performance limitations!

▪ Analysis is done on compiler-generated code which always holds a factor 

of uncertainty

▪ There might be additional things slowing you, e.g.:
▪ Cache trashing

▪ Loads across cache lines

▪ Front end limitations

▪ Bank conflicts

▪ ...
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There is not just THE one code analyzer

▪ OSACA: https://github.com/RRZE-HPC/OSACA 

▪ uiCA: https://www.uops.info/uiCA.html 

▪ LLVM-MCA: https://llvm.org/docs/CommandGuide/llvm-mca.html 

▪ IACA (EoL): 

https://www.intel.com/content/www/us/en/developer/articles/tool/architectur

e-code-analyzer.html  
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Thank you! Questions?

OSACA: https://github.com/RRZE-HPC/osaca

  pip: $ pip install -u osaca

Compiler Explorer: https://godbolt.org 

Survey: https://go-nhr.de/course-feedback 

https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://godbolt.org/
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
https://go-nhr.de/course-feedback
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