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Outline

= Analytical performance modeling

= Basic x86 processor and core architecture

= Code execution on Out-of-order processor cores
*= X86 Instruction set intro

= Analysis of simple kernels — demo and hands-on
= |ntroduction to OSACA
= Arm ISA and A64F X intro

= More complex case studies — demo and hands-on

= Summary, caveats, and take-aways
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Analytical Performance Modeling

Peak Hardware Performance

Performance [GFlop/s]

Computational Intensity [Flop/B]
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Analytical Performance Modeling

Peak Hardware Performance

Peak Application Performance

(due to data type, used arithmetic functions, data dependencies, ...)

Performance [GFlop/s]

Computational Intensity [Flop/B]
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Analytical Performance Modeling

= What is the best performance my code can achieve?

= \What are the relevant hardware bottlenecks?

= Apply simplified model of underlying hardware,
consisting of

Attainable GFlops/sec

. I n -CO re executi O n l;perational Imer:sity (Flops/Byte)
= Data transfer

LD L1-L2 L2-L3 L3-MEM
ST
MUL
ADD
>t [cy]
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Analytical Performance Modeling

= What is the best performance my code can achieve?

= \What are the relevant hardware bottlenecks?

= Apply simplified model of underlying hardware,
consisting of

Attainable GFlops/sec

" I n 'Co re exe C u ti 0 n ;perational Inter:sity (Flops/Byte)
= Data transfer

LD
ST
MUL
ADD

L1-L2 L2-L3 L3-MEM

SEgS

>t [cy]
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Basic x86 out-of-order core architecture

On the example of a Sapphire Rapids chip




Basic processor and core architecture

FRONT END

BACK END -
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Basic processor and core architecture
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BACK END -
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Basic processor and core architecture

FRONT END

BACK END -
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Basic processor and core architecture

FRONT END

AU AU | Lo | Loap | store][ AU AU | sTAa |[sTAQ || STORE | AU || LoAD
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Basic processor and core architecture

FRONT END

BACK END -
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Basic processor and core architecture

FRONT END

BACK END -
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Basic processor and core architecture

FRONT END

i ADD R,.1 € R,1, MEM[RO,}/’

AU AU LOAD LOAD | STOREl AU AU STAGJ || STAGQJ || STORE LOAD

B|E

BACK END -

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 12



Basic processor and core architecture

FRONT END

b
2
:
£
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Basic processor and core architecture

FRONT END

BACK END -

64 B/c
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Basic processor and core architecture

FRONT END
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Basic processor and core architecture

FRONT END
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Basic processor and core architecture

16 Blcy

32 Bley

MoP MOP MOP MOP MOP MOP

6 uOPs

FRONT END

To
L3

uOP  uOP  poOP uyOP  pOP  poOP

AU AU [ store | Au AU |[stAaas | sTA@U |[ STORE

LDAGJ § LDAGQJ LEA LEA

BACK END

64 B/cy
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Basic processor and core architecture

16 Blcy

32 Bley

MoP MOP MOP MOP MOP MOP

6 uOPs

FRONT END

To
L3

uOP  uOP  poOP uyOP  pOP  poOP

[ store | Au AU |[stAaas | sTA@U |[ STORE
LDAQU J| LDAGU LEA LEA

BACK END

64 B/cy
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Basic processor and core architecture

16 Bl/cy

L1 Instruction Cache

32 Blcy

Predecoder

Mop MOP MOP MOP MOP MOP

Decoder

6 UOPs

LSD

Mt ro-F usion

Allocation Queue

uOP uOP uoP

uoP

uoP uoP

Reorder Buffer / Register Renaming

[staa | sTaa | store || Au || Lo

To

L3
=
= AU AU
N LEA LEA

Brach || Int MU
% L St || intOv
© x Vec ALU |[Vec ALU*

O VA || Fvar
N
N 2 DIV T

64 Blcy

[ store | Au AU
LEA LEA
IntMU_ || Branch
Vec AU || snift
FVA

11

11

Load Store Unit (LSU)

L1 Data Cache (48 KB)

LEA LDAGJ

lr
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Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to regl lcy on 2|3]|11
0x04 LOAD from address 0x1f8244de to reg2 lcy on 23|11
0x08 ADD regl and reg2 and save in reg3 lcy on 0|1]|5]6|10
0x0C STORE reg3 to address 0x2010f££08 lcy on 4|9, 1lcy on 7|8

f“I

DIV 1r

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU”
gi FVA || Fwa
o
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Basic processor and core architecture

f“I

DIV 1r

I 0x00 LOAD from address 0x1£8223de to regl lcy on 2|3]|11
0x04 LOAD from address 0x1£8244de to reg2 lcy on 2|3]|11
0x08 ADD regl and reg2 and save in reg3 lcy on 0|1]|5]6|10
0x0C STORE reg3 to address 0x2010f££08 lcy on 4|9, 1lcy on 7|8

["ox00 |
LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA LDAGQJ || LDAGJ LEA LEA LEA LDAGQJ
LIJ Branch || Int MUL IntMUW. || Branch
st || ItV Vec ALU || sift
x Vec ALU ||Vec ALU*
gi FVA || Fvar
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Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to reqgl

lcy on 2|3]|11

I 0x04 LOAD from address 0x1f8244de to reg2

lcy on 2|3]|11

0x08 ADD regl and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010££08

' 0x00 '

0x04

lcy on 0|1]|5]6|10

lcy on 4|9, 1lcy on 7|8

T

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU” FVA
FVA || Fwa
2% DIV 1[
o
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Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to reqgl
0x04 LOAD from address 0x1f8244de to reg2

lcy on 2|3]|11
lcy on 2|3]|11

0x08 ADD regl and reg2 and save in reg3

lcy on 0|1]|5]6|10

0x0C STORE reg3 to address 0x2010££08

' 0x00 '

0x04

0x08

lcy on 4|9, 1lcy on 7|8

DIV 1r

1

I

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU* FVA
&i FVA || Fwa
o
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Basic processor and core architecture

0x00 LOAD from address 0x1£8223de to reqgl
0x04 LOAD from address 0x1f8244de to reg2

0x08 ADD regl and reg2 and save in reg3

lcy on 2|3]|11
lcy on 2|3]|11
lcy on 0|1]|5]6|10

0x0C STORE reg3 to address 0x2010££08

lcy on 4|9, 1lcy on 7|8

' 0x00 '

0x04

0x0C

0x08

0x0C

DIV 1r

1

I

LOAD | LOAD || STORE | | STAQ || STAQU || STORE | LOAD
LEA LEA || LDAQJ | LDAQU LEA LEA LEA | LDAGQU
LIJ Branch || Int MUL IntMW || Branch
Sift || intov Vec ALU || hift
X Vec ALU |[Vec ALU* FVA
&i FVA || Fwa
o
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Code execution on out-of-order CPUs

Terminology and explanation




Code execution on OoO processor cores

Three metrics to estimate the in-core runtime:

rmrP
= Reciprocal Throughput (rTP) — ]

R
-

instr. X m :
I
I
I

i
H H
J
|

LT

= Latency (LT) and Critical Path (CP)

= Loop-carried dependencies (LCD)

Simplified runtime estimation:  t. = max(t,rp, ti.cp) |

Unit “it”: 1 high-level iteration
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Code execution on OoO processor cores

Three metrics to estimate the in-core runtime:
= Reciprocal Throughput (rTP) | |

rTP
—

i i

e B

i i
! !

(R

= Latency (LT) and Critical Path (CP)

| | 1
| | ]

= Loop-carried dependencies (LCD)

Simplified runtime estimation:  t. = max(t,rp, ti.cp)

H
|

LT

J

One assembly loop can easily consist of

Unlt uitu_ 1 high-level iteration dozens of high-level iterations, e.q.:

8x vectorized, 4x unrolled
- 1 assembly iteration = 32 it
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Code execution on OoO processor cores

= Simple HW model:

= Six types of functional units (i.e., types of instructions), each functional unit (FU)
assigned to one port:

@00000®

= Reciprocal throughput for each instruction: 1cy
= Latency for each instruction: 1cy

PO P1 P2 P3 P4 P5

= Port model:

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026 41



Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |

- L00p1: .0.0 B ] [ ] S .
= No dependencies within loop

No intra-loop dependencies

rTP prediction: 1 cy
CP prediction: 1 cy
LCD prediction: -
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= loop1l: @O O O N ) ) ) . -

= No dependencies within loop
No intra-loop dependencies

rTP prediction: 1 cy
CP prediction: 1 cy
LCD prediction: -

0000
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= loop1l: @O O O N ) ) ) . -

= No dependencies within loop
= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -
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Code execution on OoO processor cores

(pPo I[Pt 1L P2 || P3 |[ P4 |[ P5 |
" loopl: @OO® O N D) ) ) e e
= No dependencies within loop
= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -
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Code execution on OoO processor cores

(pPo I[Pt 1L P2 || P3 |[ P4 |[ P5 |
" loopl: @OO® O N D) ) ) e e
= No dependencies within loop
= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

- L00p1: ““ B ] [ ] S .
= No dependencies within loop

= No intra-loop dependencies

= r'TP prediction: 1 cy
= CP prediction: 1 cy
= LCD prediction: -

1 cylit
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

- L00p1: ““ B ] [ ] S .
= No dependencies within loop

= No intra-loop dependencies

= TP prediction: 1 cy e

= CP prediction: 1 cy %%”
- LCD prediction: - 2 O

-
(g)
<
=
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Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to regl lcy on 2|3]|11
0x04 LOAD from address 0x1f8244de to reg2 lcy on 2|3]|11
0x08 ADD regl and reg2 and save in reg3 lcy on 0]11516(10
0x0C STORE reg3 to address 0x2010££08 lcy on 4|9, 1cy on 7|8

ALU ALU LOAD | LOAD || STORE| ALU ALU || STAGU|| STAGU| STORE| ALU LOAD

LEA LEA || LDAGU| LD AGU LEA LEA LEA || LDAGU
Branch || Int MUL IntMUL || Branch

Shift || IntDIV
Vec ALU||Vec ALU
VA || FMA*

BACK END
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Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to

regl

0x04 LOAD from addre 44de to

reg2

0x08 ADD regl and reg2 and save in reg3

0x0C STORE reg3 to address 0x2010££08

lcy on 0|1|5]6]10
lcy on 4|9, 1cy on 7|8

lcy on 2|3]|11
lcy on 2|3]|11

ALU ALU LOAD | LOAD || STORE| ALU ALU

STAGU| STAGU| STORE

LEA LEA || LDAGU| LD AGU LEA LEA

Branch || Int MUL IntMUL || Branch

Shift || IntDIV
Vec ALU||Vec ALU
VA || FMA*

BACK END

ALU

LOAD

LEA

LD AGU
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Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to

regl
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Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to regl

0x04 LOAD from addre

0x08 ADD

0x0C STORE reg3 to address 0x2010££08

regl

and reg2

44de to reg2

regﬂ

lcy on 0|1|5]6]10
lcy on 4|9, 1cy on 7|8

lcy on 2|3]|11
lcy on 2|3]|11

ALU || STAGU|| STAGU| STORE

0 ALU |[ ALU |[ LOAD |[ LOAD |[ STORE|| ALU
LEA || LEA |[LDAGU| LD AGU EA || LEA

E Branch || IntMUL IntMUL || Branch
Shift_|| IntDIV

\¢ Vec ALU|[Vec ALUA

(J VA || FMA*

<

o0

ALU

LOAD

LEA

LD AGU
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Remember slides 17-217

Basic processor and core architecture

0x00 LOAD from address 0x1f8223de to regl
0x04 LOAD from addre 44de to reg2
0x08 ADD regl and reg2 =iy reg3
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Branch || Int MUL IntMUL || Branch

Shift || IntDIV
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |

= Loopz: @..,O N D O [ e

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |

= Loopz: @._,O N D O [ e

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy

CP prediction: 3 cy
LCD prediction: - “( ;
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |

0 Loopz: @._.O B D I D O .

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

® |

@O
@
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |

0 Loopz: @._.O B D I D O .

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

® |

@O
@
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= |oop 2: “\“ B ) O [ . .

= Dependencies within loop body
= No loop-carried dependencies

= r'TP prediction: 1 cy
= CP prediction: 3 cy
= LCD prediction: -
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= |oop 2: “\“ B ) O ) e .

= Dependencies within loop body
= No loop-carried dependencies

= r'TP prediction: 1 cy
= CP prediction: 3 cy
= LCD prediction: -

k3
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= |oop 2: “\“ B ) O ) e .

= Dependencies within loop body
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= r'TP prediction: 1 cy
= CP prediction: 3 cy
= LCD prediction: -
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= |oop 2: “\“ B ) O ) e .

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -

°e°
°e°
e’

1 cylit
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= | oop 2: “\“ N O [ ) S

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= | oop 2: “\“ N O [ ) S

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: -
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= | oop 2: “\“ N O [ ) S

= Dependencies within loop body
No loop-carried dependencies

rTP prediction: 1 cy e

= CP prediction: 3 cy p”edl.o”
= LCD prediction: - X %
1 cylit
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 3 cy %O
LCD prediction: 3 cy
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m S o e ) e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

@O
@
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m ) [ e e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m T e ) e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

O |

oo
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m S o e ) e

= Dependencies within loop body

Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

@O
@
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m ) [ e e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

Q0 |

‘f‘f
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m T e ) e

= Dependencies within loop body

Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
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Code execution on OoO processor cores
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= Dependencies within loop body
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CP prediction: 3 cy
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m ) [ e e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy O
LCD prediction: 3 cy
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m T e ) e

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

278 °%e
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

*e %8 °%e”
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 3 cy
LCD prediction: 3 cy

3 cylit

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
f
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy e CPILCD

4 /]
e L

CP prediction: 3 cy
LCD prediction: 3 cy

3 cylit

o o e o e o o o e e —
<
o o o e e o o e e
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Code execution on OoO processor cores

LpPo JLP1t JL P2 |[ P3 |[ P4 |[P5 |

= Loop 3: m T e T .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy e CPILCD

4 /]
e L

CP prediction: 3 cy
LCD prediction: 3 cy

3 cylit

o o e o e o o o e e —
<
o o o e e o o e e
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Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |
= Loop 4: M . e e ) .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy W‘
LCD prediction: 3 cy
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |
= Loop 4: M D o e o . .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy |
CP prediction: 5 cy

LCD prediction: 3 cy
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Code execution on OoO processor cores

(PO JLP1 ][ P2 [ P3 |J[ P4 |[P5 |
= Loop 4: M I O 0 D .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

(PO I[Pt [ P2 |[ P3 |[ P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy q
LCD prediction: 3 cy

olo-®
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |
= Loop 4: M D o o O .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

PP

@
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Code execution on OoO processor cores

[P0 P11 [Pz (P31 [CPa] [CF5]
O Loop 4- M N ) [ O

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy W
LCD prediction: 3 cy

0@
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Code execution on OoO processor cores

(PO I[Pt [ P2 |[ P3 |[ P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

(PO I[Pt [ P2 |[ P3 |[ P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

(PO J[LP1T J[ P2 | P3 [ P4 |[P5 |
= Loop 4: M D o o O .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

[P0 P11 [Pz (P31 [CPa] [CF5]
O Loop 4- M N ) [ O

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

im
©
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Code execution on OoO processor cores

(PO I[Pt [ P2 |[ P3 |[ P4 |[P5 |
= Loop 4: M e P e e—

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

ole-®
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Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy
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Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy
CP prediction: 5 cy
LCD prediction: 3 cy

/ i < i
;'I’}‘{/‘/l"ti/llllj
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Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy 1
LCD prediction: 3cy 1

/ i < i
;'I’}‘{/‘/l"ti/llllj
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Code execution on OoO processor cores

PO P11 P2 |[P3 | P4 || P5 |
= Loop 4: M I O e T e .

= Dependencies within loop body
Loop-carried dependency

rTP prediction: 1 cy

CP prediction: 5 cy 1
LCD prediction: 3cy 1

]

: '('I’I‘Z/‘// I’/f/lli’J

Other limitations:
= Reorder buffer
= Loop length
= Resources (not enough ports, ...)
= Decoder

Data t
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Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #0:
Out-of-Order Execution

=> https://go-nhr.de/CLPE-ex0



https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0
https://go-nhr.de/CLPE-ex0

Hands-On: Out-of-Order Execution

Machine model:
LPo | [Pt P2 || P3 | P4 ][ P5]

N ) T ) .

Dot product

Instructions: @O Q00 @®

each with a reciprocal throughput
and latency of 1 cy

- Moodle, hands-on #0 (both Multiple-Choice and Drag&Drop)
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Introduction to the x86 ISA
(Instruction Set Architecture)




Basics of the x86-64 ISA

Instructions have 0 to 5 operands (and possibly more suppressed operands)

= Operands can be registers (%), memory references ((...)) or immediates ($)

Addressing Mode:

= Intel: BASE + INDEX * SCALE + DISPLACEMENT

= AT&T: DISPLACEMENT(BASE, INDEX, SCALE)
C: A[i] equivalentto * (A+i) (a pointer has a type: A+i*8)
Suffixes: AT&T often uses (optional) suffixes based on the operand size

Opcodes (binary representation of instructions) vary from 1 to 15 bytes

There are two assembler syntax forms: Intel (left) and AT&T (right)

= b (byte): 8 bits, w (word): 16 bits, 1 (long): 32 bits, g (quad): 64 bits

Intel syntax
movaps [rdi + rax*8+48], xmm3
add rax, 8
js 1b

movaps
addq

Js

AT&T syntax

$xmm3, 48 (%rdi, %$rax, 8)
$8, %rax
..Bl1.4
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Basics of the x86-64 ISA with extensions

16 general purpose registers (64bit):
rax, rbx, rcx, rdx, rsi, rdi, rsp,
alias with eight 32-bit register set:

eax, ebx, ecx, edx, esi, edi, esp,

rax
rbx
rcv
rdx
rsi
rdi
rsp (stack pointer)

rbp (base pointer)

rbp,

ebp

r8-rl5

e*x, esi, edi, esp (stack pointer), ebp (base pointer)

A
4 A
*x
A
r A
< 8bits
« 32 bits « 1B bls >
ah al
bh bl
ch cl
dh dl

A

v

64 bits
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Basics of the x86-64 ISA with extensions

Floating Point SIMD registers (aliased):
xmmO-xmml5 (...xmm31) SSE (128bit)

ymmO-ymml5 (...ymm31) AVX (256bit)

8 opmask registers (64 bit, AVX512 only):
k0-k7

zmmO0 - zmm31 AVX-512 (512bit)
' 128-bit
et
Zmm A
N ( \
4 \
SIMD | j
register : :
\ J
e
256-bit
AVX, AV X2
ymm*

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

57



Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)
... and many more
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)

... and many more
Examples:

vmulpd
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)

... and many more
Examples:

vmulpd - Multiply Packed Double-Precision Floating-Point Values
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)
... and many more
Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4
Operation: mul, add, fmadd, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)
Width: scalar (s), packed (p)
Data type: single (s), double (d)
... and many more
Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026

58



Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd - Add Scalar Double-Precision Floating-Point Values
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd - Add Scalar Double-Precision Floating-Point Values
vmovntdg
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Basics of the x86-64 ISA with extensions

SIMD instructions are distinguished by:

VEX/EVEX prefix: \'4

Operation: mul, add, fmadd, mov

Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h), low (1)

Width: scalar (s), packed (p)

Data type: single (s), double (d)

... and many more

Examples:
vmulpd - Multiply Packed Double-Precision Floating-Point Values
vfmadd213ps > Fused Multiply-Add of Packed Single-Precision Floating-Point Values
addsd - Add Scalar Double-Precision Floating-Point Values
vmovntdg - Store Packed Integers Using Non-Temporal Hint
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Case Study: Sum reduction (DP)

sum 0.0;

To get object code use

for (int i=0; i<size; i++) { objdump -don ob!ect flle or
_ executable or compile with -s
sum += data[i];

Assembly code w/ -01 (AT&T syntax, Intel compiler):

.label:
addsd 0 (%rdi, %rax, ) ,%xmmO
inc srax
cmp ¥rsi, %srax
Jjl .label
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Case Study: Sum reduction (DP)

sum 0.0;

To get object code use

for (int i=0; i<size; i++) { objdump -don ob!ect flle or
_ executable or compile with -s
sum += data[i];

Assembly code w/ -01 (AT&T syntax, Intel compiler):

.label:
addsd 0 (%rdi, %rax, ) ,%xmmO
inc srax
- Intel syntax:
o o
cmp PESL, wrax addsd xmm0, [rdi + rax * ]
Jjl .label
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Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd
vaddpd
vaddpd
vaddpd
addg
cmpgq
jb

vaddpd

vaddpd

vaddpd
# [... SNIP

-]

(%rl3,%rcx,8), %zmm5, %$zmmb

64 (%rl3,%rcx,8), %$zmm4,

% zmmé

128 (%rl3,%rcx,8), %$zmm3, %$zmm3

192 (%rl3,%rcx,8), %$zmm2,

$32, %$rcx
$rbx, %rcx

$zmm4, $zmm5, %$zmmd
$zmm2, %$zmm3, %$zmm2
$zmm2, %$zmm4d, %$zmmb

%$zmm2

vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2

vaddpd
vpermpd
vaddpd
vpermpd
vaddpd
vaddsd

$zmm5, %$zmm2, %zmm3
$78, %$zmm3, %$zmmd
$zmm4, %$zmm3, %zmmb
$177, %$zmm5, $%$zmm6
%zmm6, $zmm5, %$zmm7
$xmml, $xmm7, %$xmml
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Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd

(%rl3,%rcx,8), %zmm5, %$zmmb
vaddpd 64 (%rl3,%rcx,8), %zmm4, %$zmm4
vaddpd 128 (%rl3,%rcx,8), %zmm3, $%$zmm3
vaddpd 192 (%rl3,%rcx,8), %zmm2, $%$zmm2
addgq $32, %rcx
cmpq %rbx, %rcx
jb
vaddpd $zmm4, $zmm5, %$zmmd
vaddpd $zmm2, %$zmm3, %$zmm2
vaddpd $zmm2, %$zmm4, %zmmb

# [... SNIP ...]
vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2
vaddpd zmm5, %$zmm2, %zmm3
vpermpd $78, %zmm3, %$zmm4
vaddpd %$zmm4, %$zmm3, %zmmb
vpermpd $177, %zmm5, %$zmmé
vaddpd %zmm6, $zmm5, %$zmm7
vaddsd $xmml, $xmm7, %$xmml

~

>

Bulk loop code
(8x4-way unrolled)
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Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd
vaddpd
vaddpd
vaddpd
addg
cmpgq
jb

vaddpd

vaddpd

vaddpd
# [... SNIP

(%rl3,%rcx,8), %zmm5, %$zmmb

64 (%rl3,%rcx,8), %zmm4, %$zmm4
128 (%rl3,%rcx,8), %$zmm3, %$zmm3
192 (%rl3,%rcx,8), %$zmm2, %zmm2

$32, %$rcx
$rbx, %rcx

$zmm4, $zmm5, %$zmmd
$zmm2, %$zmm3, %$zmm2
$zmm2, %$zmm4d, %$zmmb

] «—

<«

vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2

vaddpd
vpermpd
vaddpd
vpermpd
vaddpd
vaddsd

$zmm5, %$zmm2, %zmm3
$78, %$zmm3, %$zmmd
$zmm4, %$zmm3, %zmmb
$177, %$zmm5, $%$zmm6
%zmm6, $zmm5, %$zmm7
$xmml, $xmm7, %$xmml

Remainder omitted

~

\

Bulk loop code
(8x4-way unrolled)
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Sum reduction (DP) — AVX512

Assembly code w/ -03 -xCORE-AVX512 -gopt-zmm-usage=high:

vaddpd
vaddpd
vaddpd
vaddpd
addg
cmpgq
jb

vaddpd

vaddpd

vaddpd
# [... SNIP

(%rl3,%rcx,8), %zmm5, %$zmmb

64 (%rl3,%rcx,8), %zmm4, %$zmm4

128 (%rl3,%rcx,8), %$zmm3, %$zmm3
192 (%rl3,%rcx,8), %zmm2, $%$zmm2

$32, %$rcx
$rbx, %rcx

$zmm4, $zmm5, %$zmmd
$zmm2, %$zmm3, %$zmm2
$zmm2, %$zmm4d, %$zmmb

] «—

<«

Remainder omitted

vshuff32x4 $238, %$zmm5, %$zmm5, %$zmm2

vaddpd
vpermpd
vaddpd
vpermpd
vaddpd
vaddsd

$zmm5, %$zmm2, %zmm3
$78, %$zmm3, %$zmmd
$zmm4, %$zmm3, %zmmb
$177, %$zmm5, $%$zmm6
%zmm6, $zmm5, %$zmm7
$xmml, $xmm7, %$xmml

~

Bulk loop code
(8x4-way unrolled)

Sum up 32

partial sums into
xmml
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Example for masked execution

Masking is very helpful in cases such as, e.g., remainder loop handling or
conditionals

Available on x86 starting with AVX-512

Example: wvaddps %$zmmO, %$zmml, %zmm2{%kl}

< 16 bits >

(o 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 ) k1
1 bit

EA[O] Al1] [A[2] [ A[3] [ A[4] [ A[5] |A[6] | A[7] | A[8] [ A[9] [A[10]]|A[11][A[12]|A[13][A[24] A[15]3 Zmmo
s SRR + + + + + + + +

(B[o]|B[1]|B[2]|B[3]|B[4]|B[5]|B[6]|B[7]|B[8]]B[9][B[10][B[11]|B[12][B[13]|B[14](B[15]) zmm1

(clol|cla]]cl2]|c[3]|clal|c[5]|c[6]|c[7]|c8]]|c[9]]|c[1o]|c[1a]{c[12]|C[13]]|C[14]|C[15]) Zzmm2
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SIMD with masking — sum reduction with condition

double sum =

for (int i=0;

if (
sum +=

0.0;

i<size;
> 0.0)

14

i++) {

..Bl1.38:

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

$rl5,%rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, %k4

%$zmm6, %$zmm5, %$zmm5{%kl}
%$zmm7, %$zmm4, %zmm4d{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}

$32, %rcx
%$rl4d, %rcx
..B1.38
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SIMD with masking — sum reduction with condition

double sum =

for (int i=0;

if (
sum +=

i<size;

0.0;

i++) {
> 0.0)

14

Bulk loop code
(8x4-way unrolled)

..Bl1.38:

Z

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

$rl5,%rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, , %k4
%$zmm6, $zmm5, $zmmb5{%kl}
%$zmm7, %$zmm4d, $zmmd{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}
$32, %rcx

%$rl4d, %rcx

..B1.38
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SIMD with masking — sum reduction with condition

double sum
for (int i=0;

sum +=

0.0;

i<size; i++) {
> 0.0)

14

Bulk loop code
(8x4-way unrolled)

..Bl1.38:

Z

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

(%$rl5, %rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, , %k4

%$zmm6, %$zmm5, %$zmm5{%kl}
%$zmm7, %$zmm4, %zmm4d{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}

$32, %rcx
%$rl4d, %rcx
..B1.38

SIMD mask
generation
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SIMD with masking — sum reduction with condition

double sum
for (int i=0;

sum +=

0.0;

i<size; i++) {
> 0.0)

14

Bulk loop code
(8x4-way unrolled)

..B1.38:

Z

vmovups
vmovups
vmovups
vmovups
vemppd
vemppd
vemppd
vemppd
vaddpd
vaddpd
vaddpd
vaddpd
addq
cmpq

jb

(%$rl5, %rcx,8),

64 (%$rl5,%rcx, 8),
128 (%rl5,%rcx,8),
192 (%rl5,%rcx,8),

$14, %$zmmlO, , %kl
$14, %$zmmlO, , %k2
$14, %$zmmlO, , %k3
$14, %$zmmlO, , %k4
%zmm6, %$zmm5, %$zmm5{%kl}
%zmm7, %$zmmd, %$zmmd{3k2}
%$zmm8, %$zmm3, $zmm3{%k3}
%$zmm9, $zmm2, %zmm2{%k4d}
$32, %$rcx

%$rl4d, %rcx

..B1.38

G

N

SIMD mask
generation

= masked SIMD

J

ADDs
(accumulates)
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STREAM Triad

A pen & paper in-core analysis




STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 PO || P10 || P11
ALU | [ALU] [ LD LD sT | [ALU| [ALU] [ ST ST ST | [ ALU | [ 256b
glLAU][AW | [ LD | [ LD | [ ST |[AU]] IRy 50
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
[ N [Be ]
= MUL MUL
3 INT o
@ [ AvX DIV ALU
W | ALU | [256b
FMA
ALU
FMA
—
DIV_| | FmMA

STREAM TRIAD
a[i] = b[i] + s * c[1]
..B2.42:

vmovups %$rld ,%rdx,8), %zmml
vfmadd213pd (%rl5,%rdx,8), %zmm2, %zmml
vmovupd %$zmml, (%rl2,%rdx, 8)
addg $8, %rdx
cmpg rsi, %Srdx
jb ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

64



STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD w AL | [ALU | [ LD | [ D | [ sT | [Aw | [A || ST | [ sT || ST |[ALU] [256b
= AGU AGU LD
S[Lea] [LEA | [acu] [AcU] [ LEA ] [LEA] LEA
i] = b[i * c[i S oL INT | [ BR |
al[i] = b[i] + s cl[i] IS MUL MUL
3 INT X
Q [Avx| LDV ALU
W [ ALU | [256b =
B2.42: ALY
vmovups %$rld ,%rdx,8), %$zmml DIV FMA
vfmadd213pd (%rl5,%rdx,8), %$zom2, %$zmml
vmovupd $zmml, (%rl2,%rdx,8)
addq $8 , % rdx : : : :.:
cmpgq %$rsi, %rdx ! ! ! ! '
jb ..B2.42
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STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
S[Lea] [LEA | [acu] [AcU] [LEA ]| [ LEA | LEA
i] = bl * ol s Cee ] [0 NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 INT o
@ [ AvX DIV ALU
W | ALU | [256b =
.B2.42; AL
vmovups %$rld,%$rdx,8), %zmml DIV EMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd %$zmml, (%rl2,%rdx, 8)
addg $8, %rdx
cmpg rsi, %Srdx i i
jb ..B2.42
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STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
i] = bl * ol s Ce ] [T NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 NT —
2 [Avx| LDIV ALU
W | ALU | [256b =
..B2.42; AL
vmovups %$rld,%$rdx,8), %zmml DIV EMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8) i i
addgq $8, %rdx
cmpg rsi, %Srdx i i
jb ..B2.42
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STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
i] = bl * ol s Ce ] [T NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 NT —
2 [Avx| LDIV ALU
W | ALU | [256b =
..B2.42; AL
vmovups %$rld ,%rdx,8), %$zmml DIV FMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8) i i
addqg $8, %rdx
cmpg rsi, %Srdx i i
jb ..B2.42
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STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
i] = bl * ol s Ce ] [T NT| (&R |
a[i] = b[i] + s cl[i] I5 MUL VUL
3 NT —
2 [Avx| LDIV ALU
W | ALU | [256b =
..B2.42; AL
vmovups %$rld ,%rdx,8), %$zmml DIV FMA
vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8) i i
addqg $8, %rdx
cmpq rsi, %Srdx i i
ib ..B2.42

Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026



STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [ AvX DIV ALU
W [ ALU 2A5L6t5) =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

addqg $8, %rdx
cmpq %$rsi, %rdx
jb ..B2.42

R FVA
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STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [ AvX DIV ALU
W [ ALU isle? =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

PO VA 10 | LD FSTR ADD [SRSE STR I I

addg $8, %rdx ! ! ! ! ! ! !
cmpq brsi, trdx IS7R FVA SN LD | LD STR ADD|
ib ..B2.42
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STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [ AvX DIV ALU
W [ ALU isle? =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

S ooz @ ICREEEGEED B o
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STREAM TRIAD on Intel Sapphire Rapids

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | | P10 | | P11
STREAM TRIAD o |ALU | [ALU | [ LD | [ LD | [ ST | |ALU | |[ALU | | ST | [ ST || ST | [ALU | |256b
= AGU AGU LD
:C)|LEA||LEA||AGU||AGU| [LEA | [ LEA ] LEA
i] = b[i * ol s o= [0 M=
a[i] = b[i] + s c[i] IS MUL MUL
3 INT T
@ [ AvX DIV ALU
W [ ALU isle? =
..B2.42: FMA =
vmovups $rld ,%rdx,8), %$zmml DIV FMA

vfmadd213pd (%rl5,%rdx,8), %zmm2, $zmml

mompd " taemd, oot EY  EENEEEETIERCOOED
s SN ooz G OGN SRR 0 i |

1cy/8it )
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Hands-On #1:
Dot product

=> https://go-nhr.de/CLPE-ex1



https://go-nhr.de/CLPE-ex1
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https://go-nhr.de/CLPE-ex1

Hands-On: Benchmarking Dot Product

Dot product

s = s + a[i] * b[i] * B

VAVAVAVAVAVAVY/

- Moodle, hands-on #1
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Dot Product on SPR

PO || Pt || P2||P3||Pa||P5||P6||P7T|]|P8|]|PO|]|Pi0]]Pi1
ALU ] [AL] [0 | [to ] [sT ] [Au] [Au] [ST | [sT ] [ ST | [ALU] [256D
%:LEAHLEAHAGUHAGUll |:LEAHLEA: AcY AGUL Flea | 22
E
C
S [SHFT] T —
2 [Avx] LDV ALU
W [ ALU | [256D
FMA
FMA | LAY
2560
DIV_| [ FMA
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Friedrich-Alexander-Universitat
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Hands-On #2:
Dot product (with Compiler Explorer)

=> https://go-nhr.de/CLPE-ex2
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DOt PrOdUCt On SPR - CE V|eW - Moodle, hands-on #2

@ E)?#P R More~ Templates Share~ Other~ Set ASM compiler
C++source #1 2 D | x86-64 icpc 2021.6.0 (Editor #1) & X 0 X compiler and flags
. a vim 2 Cpplnsights @ Quick-bench [C Y - x86-64 icpc 2021.6.0 v @ @ -Ofast -qopenmp-simd -xHost -qopt-zmm-usage=high -fargument-noalias -funroll-l
Add new compiler :

116 A~ R Output.~ YFilter.v BLibraries / Overrides |l + Add new... #” Add tool...
117 // repeat measurement often enough o T e — —_
118 for(int k=0; k<NITER; ++k) { 283 cmpl fesi, Xeax Add new ana|y5|s
119 if (s == 1.200088) printf("%lu\n”, &s); 284 il ..B1.48 # Prob 5@%
120 " 285 ..Bl.45: # Preds ..Bl.44 tool
121 // benchmark loop 286 movslg %ried, *rie
H H 122 for(int i=@; i<N; ++i) { 287 movslg %eax, Xrsi
nght CIICk and 123 s =5+ a[i] * b[i]; 288 ..Bl.46: # Preds ..B1.46 ..B1.45 Add new exeCUtor
“Reveal I|nked 124 } compile crlEnier 289 VMOVUPS (%rcx,%r1@,8), Xzmmé #123.24
» 125 W 200 vmovups  64(%rcx,%r1e,8), %zmm7 #123.24
code” can heIp you —T= I Change All Occurrences Culre 201 vmovups  128(%rcx,%r1@,8), Lzmms #123.24
. H 127 a[e] = s; Format Document ShiftAlt+F 292 vmovups  192(%rcx,%rle,8), %zmm9 #123.24
find your region of 128 1 203 vimadd231pd (%r8,%r1@,8), %zom6, %zmm2 #123.24
|nterest 129 ioctl(perf fd, PERF_EVENT_IOC_DISABLE, @); et 204 vfmadd231pd 64(%r8,%rl1@,8), Xzmm7, %zmm3 #123.24
13@ wet_end = getTimeStamp(); Copy 205 vfmadd231pd 128(%r8,%rie,8), %zmmg, %zmms #123.24
31 err = read(perf_fd, &ncycles, sizeof(long long)); Paste 296 vfmadd231pd 192(%r8,%r18,8), %zmm2, %zmmd #123.24
132 NITER = NITER*2; Sesrch on Cppreference J. 297 addq $32, %rie #122.7
133 } while (wct_end-wct_start<1.@); // at least 1008 ms 208 cmpq %rsi, %ria #122.7
134 Command Pelefte o 209 jb ..B1.46 # Prob 82% #122.7 .
135 NITER = NITER/2; 300 ..BL.47: # Preds ..B1.46 Click to see your
136 3e1 vaddpd %zmm3, Xzmm2, %zmm2 #123.13 -
137 err = read(perf_fd, &ncycles, sizeof(long long)); 302 vaddpd  %zmm4, %zmmS, %zmm3 #123.13 compller |°g
3 i Z 7 'z H
138 if (err < @) { 3e3 vaddpd Xzmm3, %zmm2, Xzmm2 #123.13 (Warr"ngs and errors)
139 return 1; 304 # Preds ..Bl.44 ..B1.47 .
149 } 305 1(%rax), %esi
141 printf("Size: %.2f kB, ¥d elementsin”, size, N); " _
142 printf("Cycles per high-level iteration: %f\n", (double)(ncycles-ncycles_tmp)/NITER/N); .. RO ] RO (2
iji printf("Total walltime: %Ff, NITER: ¥d\n",wct_end-wct_start,NITER); OSACA %86-64 icpe 2021 6.0 (Edilor #1 Compiler #1) 2 X o x
Set executer 145 free(a); A~ [OWraplines | >_ Arguments| @35
. 146 free(b); ) =
compiler and flags 1w R —_lines 288-299 —-arch spr Set OSACA runtime
(Separately from Executor x86-64 icpc 2021.6.0 (C++, Editor #1) # X o X parameters
- rap lines ibraries verrides " Compilatidii _ Arguments tdin untime tools ompiler output -
ASM com |Ier A Ow Ji B Librari FO id Sy C ati A ] Stdi @ Runti I ®C i P ThroughpL.Jt u'F‘LUnD operation can be hidden behind a past or future STORE instruction
* - Instruction micro-ops not bound to a port
x86-64 icpc 2021.6.0 v [ @ -Ofast-qopenmp-simd -xHost -qopt-zmm-usage=high -fargument-noalias -funroll-loop: I X - No throughput/latency information for this instruction in data file
40
Combined Analysis Report
Progiram returned: @
Ppbgram stdout 7 T R
A Port pressure in cycles
£ize: 39.98 kB, 1786 elements
Cycles per high-level iteration: 9.151948 1@ =G fa =myfafs (lafelelz lale o [xale]i]|
Total welltime: 1.953868, NITER: 8388638 B
. I I I I I I I I I I I | | I
Set runtime 289 | I | .50 | 6.50 | | \ I \ I | 6.500 | 1 | [
208 @.5e 8.5e 8.508
parameters | | lesejese| | | | | I | I | I
201 | I | e.22 ] 8.33 | I I I I I | e.2se | [ I I
292 | | | e.ee | .00 | | I | I | | 1.508 | I | I
293 | e8.5@ | | e.ce | e.se | | e.se | | | | I | [|] 9.8 | |
204 | 8.58 | | a.58 | 8.58 | | e.5e | | | | I | | | |
205 | 8.58 | | @.58 | 8.58 | | e.5e | | | | I | | | |
206 | 8.58 | | e.5e | e.s5e | | 8.58 | | | | | | I | 4.8 |
297 | 8.68 | @.58 | | | | 8.8 | B.58 | | | | -8.81 | I | |
O C E56dicpc202160 | -3 2 ‘752 | a.a6 | a.5a | I | | aaa | A.cA | | 1 I -a.e | I 1 \’ e
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The Open-Source Architecture Code Analyzer
(OSACA)

An introduction




OSACA

= Open Source Architecture Code Analyzer

= Static in-core code analysis
Assumptions
= Steady-state execution (no warm-up/cool-down)
= All data in L1
= Perfect out-of-order scheduling
= (currently) no front-end, i.e., no limit in instruction fetching, decoding, etc...

= Architecture specific model for each pArch

= Python module

pip install osaca
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OSACA — Usage

osaca [-h] [-V] [-—-arch ARCH] [--fixed] [--lines LINES]
[-—ignore-unknown] [--lcd-timeout SECONDS]
[--db-check]

[--import MICROBENCH] [--insert-marker]

[--export-graph GRAPHNAME] [--consider-flag-deps]

[-—out OUT]
FILEPATH

Important flags:

ARCH

[--verbose]

Currently supported: Intel SNB — GNR, AMD ZEN1, ZEN2, ZEN3, ZEN4, ZENS5,
Arm TX2, A72, N1, A64FX, TSV110, M1, V2 (Grace)

L1,L2,L3-1L4,L5:L6 Specify lines to analyze (if no markers are used)

Assume Ocy TP/LAT for unknown instructions
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Marking the region of interest

Comment marker

# OSACA-BEGIN
.L22:
vmovapd 0(%rl3,%rax),%ymnmd
vfmadd213pd (%ri4,%rax),%ymml,%ymmo
x86 vmovapd %ymm@, (%ri12,%rax)
addqg $32,%rax
cmpq %rax,%rls
jne .L22
# OSACA-END

// OSACA-BEGIN

.L18:
ldr g2, [x20, x0]
ldr g1, [x21, x0]

arm fmla vi.2d, v2.2d, ve.2d

str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END
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Marking the region of interest

Comment marker

# OSACA-BEGIN
.L22:
vmovapd 0 (%rl3,%rax),%ymmd
vfmadd213pd (%ri4,%rax),%ymml,%ymmo
x86 vmovapd %ymm@, (%ri12,%rax)
addq $32,%rax
cmpq %rax,%rl5
jne .L22
# OSACA-END

// OSACA-BEGIN

.L18:
ldr g2, [x20, x0]
ldr g1, [x21, x0]

arm fmla v1.2d, v2.2d, ve.2d

str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

Insertion tool

osaca --arch ARCH --insert-marker

Blocks found in assembly file:

Possible blocks to be marked:

Choose block to be marked [
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Marking the region of interest

Comment marker

# OSACA-BEGIN
.L22:

vmovapd 0(%rl3,%rax),%ymnmd
vfmadd213pd (%rl4,%rax),%ymml,%ymmo
x86 vmovapd %ymm@, (%ri12,%rax)

addq $32,%rax
cmpq %rax,%rl5
jne .L22

# OSACA-END

// OSACA-BEGIN
.L18:
ldr g2, [x20, x0]
arm ldr g1, [x21, x0]

fmla v1.2d, v2.2d, ve.2d

str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18

// OSACA-END

Insertion tool

osaca --arch ARCH --insert-marker

Blocks found in assembly file:

Possible blocks to be marked:

Choose block to be marked [

will be marked with byte markers, i.e.:
movl $111,%ebx; .byte 100,103,144; (x86)

movl $222,%ebx; .byte 100,103,144;

mov x1,#111; .byte 213,3,32,31 (aarch64)

mov x1,#222; .byte 213,3,32,31
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Triad on SPR with OSACA

P0||P1||P2||P3||P4||P5||P6||P7||P8||P9||P10||P11|

||LD||Lo||ST||ALu||ALu|--|_\m|_\256b

=
—
C

= Recap: Manual analysis resulted in 1 cy/8 it zEHE = == b =
5 [Acu ]
HESI [
S [SHFT
| ALU 256b
EMA
FMA ADD
FMA ADD
80
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Triad on SPR with OSACA

P0||P1||P2||P3||P4||P5||P6||P7||P8||P9||P10||P11|

||LD||Lo||ST||ALu||ALu|--|_\m|_\256b

=
—
C

= Recap: Manual analysis resulted in 1 cy/8 it zEHE = == b =
5 [Acu ]
HESI [
S [SHFT
| ALU 256b
EMA
FMA ADD
FMA ADD
80
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Triad on SPR with OSACA

= Recap: Manual analysis resulted in 1 cy/8 it

osaca —--arch triad.s
Open Source Architecture Code Analyzer (OSACA) - 0.6.0
Architecture: SPR

* - Instruction micro-ops not bound to a port
X - No throughput/latency information for this instruction in data file

Port pressure in cycles
7 8

vmovups (%rl4,%rdx,8), %$zmml
vfmadd213pd (%rl5,%rdx,8), %$zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8)
addg $8, %rdx
cmpqg %rsi, %Srdx

* jb ..B2.42
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Triad on SPR with OSACA

= Recap: Manual analysis resulted in 1 cy/8 it

osaca --arch triad.s
Open Source Architecture Code Analyzer (OSACA) - 0.6.0
Architecture: SPR

* - Instruction micro-ops not bound to a port
X - No throughput/latency information for this instruction in data file

Port pressure in cycles
7 8 | LCD |

vmovups (%rl4,%rdx,8), %$zmml
vfmadd213pd (%rl5,%rdx,8), %$zmm2, $zmml
vmovupd $zmml, (%rl2,%rdx,8)
addg $8, %rdx
cmpqg %rsi, %Srdx

* jb ..B2.42

Loop-Carried Dependencies Analysis Report
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Hands-On #3:
Dot Product with OSACA

=> https://go-nhr.de/CLPE-ex3



https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3
https://go-nhr.de/CLPE-ex3

Hands-On: Benchmarking Dot Product (DP)

Dot Product

s =s + a[i] * b[i] * =

VAVAVAVAVAVAVY/

- Moodle, hands-on #3
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Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #4:
Pl by integration

=> https://go-nhr.de/CLPE-ex4



https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4
https://go-nhr.de/CLPE-ex4

Hands-On: PI by integration

Pl

_f14d
= o 1+ x2 x

double delta x
double sum =

1./n;
0.0;

(int 1=0; i<n; 1i++)

X = (i + 0.5) * delta x;
sum += (4.0 / (1.0 + x * x));

- Moodle, hands-on #4

T
—l a :4‘5—Z

1 T
tan(a) = 1= 1 = arctan(1) = 7

= m =4 -arctan(1)

4 1 L4
77 arctan(x) = 1+x2=>n=jO 1+x2dx
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AG64F X core architecture and
AArch64 Arm ISA




Node architecture of A64FX — FX700

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2

)
[

Memory Interface

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
\ L2

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2

™

Memory Interface

Memory Interface

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2 J

Memory Interface

48 cores

per node

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

90



Node architecture of A64FX — FX700

— e o o o o o o o E o

-~
L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D \
L2

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
L2
~

Memory Interface

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D
\ L2 L2 J

[ [
Memory Interface Memory Interface 4 8 CO re S

e e

\\
' ! 1 Core Memory
1 Group (CMG)

Memory Interface

—-— e e e e e o o E—
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Node architecture of A64FX — FX700

L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D H L1D

1 Core Memory

l
| |
L2 | |
: Group (CMG)
[ . I
Memory Interface I Memory Interface
|
|
|
' 4 CMGs
per node
L2 L2
I I 48 cores
Memory Interface Memory Interface
T R R
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Port model for the Ab4FX

Fetch & Decode

Reservation
Stations (RSs)

Int ALU | [Predicate| [Int ALU | [IntALU | [IntALU ]
FP arith | L™2"PU (lnt MUL | [FP arith | [IntDiV | [ LD |
FMA [IntST || MUL |

FP DIV

Crypto Load / Store Units

FP ST
addr calc

i

Execution Units
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Port model for the Ab4FX

[0}

©

(o]

O

(0]

0

o

e

&

(0}

L
Frontend

c?

£¢

qJ'-:

3

HOP uOP uOP nOP HOP d P uOP

«» IntALU |Predicate[IntALU | [IntALU | [IntALU | | AGU | | AGU | | BR |

£ [FParin Manipul| (10t MUL | [FP arith | [IntDIV | [ LD |
Backend c [IntST |[ MUL |

= [FPDIV

§ Crypto Load / Store Units

-

FP ST
addr calc
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Port model for the Ab4FX

) L1 Instruction Cache . .

g _ 32 byte/cy Instruction Buffer (48; 8x6 entries)

S 64 KiB, 4-Way

g MOP MOP MOP MOP MOP MOP

S

E 4-Way Decode

\Decoder | |Decoder \ \Decoder \ \Decoder \
Frontend uOP uOP HOP uOP

3

5%

Q é RSEO RSE1 RSAQ RSAT RSBR

& % 20 entries 20 entries 10 entries 10 entries 19 entries
HOP uOP uOP uOP HOP uOP HOP uOP
A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4
FLA PR EXA FLB EXB EAGA EAGB BR

« [INtALU Predipat|e||ntA|_u | [IntALU | [IntALU | | AGU | | AGU | | BR |

I MaNPY | [lnt MUL | [FP arith ] [IntDIV | [ LD |

Backend c [IntST | [ MUL |

E

® Load / Store Units

=

FP ST
addr calc
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AArche4 ISA — differences to x86

= Opcodes are always 32 bits
= Similar to Intel (left) syntax with STORE (STR/STP) as exception
= add

ldr
1dp
str
stp

x1l, x1,
x0, [x1]
x0, x1,
x0, [x1]

x0, x1,

8 #
#
[x2] #
#
[x2] #

x]l € x1 + 8

x0 € mem at x1

x0, x1 € mem at x2

mem at x1 € x0

mem at x2 €< xO0,

= 31 general purpose registers (64 bits):
= x0-x30 (aliases with 32-bit GPRs wO-w30)
= 32n register is stack pointer and zero register

x1

x0

x1

x29
x30

SP/XZR

A

< 32 bits

64 bits

\A4

w0
wl

w29
w30

WSP/WZR

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

92



AArcho4 ISA — differences to x86

= 32 SIMD and FP registers (NEON, 128 bits) 128-bit 32:bit ;’gt
. v0-v31 . N f_jﬁ
= can be optionally specified with SIMD/FP : i ]
shapes and lanes vn . <LANES><SHAPE> register IK ' L y
= a single element can be indexed via brackets [1i] 6}_/bit ?sbej
v0.2d E & h
v0.4s : : : v0.b[1]
:::::::/
| | | | | | | | 128 bits

= 32 scalable vector registers (128—-2048 bits):
= z0-z31, extending v registers, multiples of 128 bits

= size defined in OS
= 16 predicate registers (16—256 bits)

= p0-pl5, multiples of 16 bits
= optional with predication operation /z, /m, /x (zeroing, merging, don’t care)
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AArche4 ISA — differences to x86

= Addressing Modes:

Simple ([BASE])

Offset ([BASE, OFFSET])
Modified Offset

Pre-indexed ([BASE, OFFSET]!)
Post-indexed ([BASE], OFFSET)

ldr
ldr
ldr
ldr
ldr

x0,
x0,
x0,
x0,

x0,

[x1]
[x1,
[x1,
[x1,
[x1],

#64]
x2, 1sl 3]
#6471

#64
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AArcho4 ISA — differences to x86

= Addressing Modes:

- Simple ([BASE]) 1dr x0, [x1]

= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]

= Modified Offset 1dr %0, [x1, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]!

= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64

l1dr x0, [x1]

x1

Memory

!
!
BT
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AArcho4 ISA — differences to x86

= Addressing Modes:

= Simple ([BASE]) ldr x0, [x1]
= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]
= Modified Offset 1dr x0, [x1l, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]"!
= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64
1dr x0, [x1l, #64]
-i-j
Memory

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

96



AArcho4 ISA — differences to x86

= Addressing Modes:

= Simple ([BASE]) 1dr x0, [x1]
= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]
= Modified Offset 1dr x0, [x1l, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]"!
= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64
l1dr x0, [x1, x2, 1lsl 3]
. x2

DN +

Memory
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AArcho4 ISA — differences to x86

= Addressing Modes:

- Simple ([BASE]) 1dr x0, [x1]
= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]
= Modified Offset 1dr %0, [x1, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]!
= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64
1dr x0, [x1, #64]!

Memory

m—l—>
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AArcho4 ISA — differences to x86

= Addressing Modes:

- Simple ([BASE]) 1dr x0, [x1]

= Offset ([BASE, OFFSET]) 1dr x0, [x1l, #64]

= Modified Offset 1dr %0, [x1, x2, 1lsl 3]
= Pre-indexed ([BASE, OFFSET]!) 1dr x0, [x1, #64]!

= Post-indexed ([BASE], OFFSET) ldr x0, [x1l], #64

l1dr x0, [x1],

BT — TN

Memory 1

!

#64

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

99



FAU FAU E.dg“ﬁ' werg




Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Case Study: SpMV on A64FX

Sparse Matrix-Vector Multiplication

Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:
ECM modeling and performance tuning of SoMV and Lattice QCD on A64FX.
Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI:



https://doi.org/10.1002/cpe.6512

Motivation

48

— B | |
z 300 —e— TRIAD
= —— SUM
2600 -
<] SpMV
= 400 |-
S
=
S 200 -
b
- 0 g | |

0 12 24

\

o #£ cores
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Motivation

— B | |

z 300 —e— TRIAD

S e SUM

2 600 | -

<] —=— SpMV

% 400 210 GB/s =

E 117 Blcy

f% 200 Ca

3

- O | |
0 12 24 36

— #£ cores

Thread pinning : Compact

48

Clear memory bandwidth
saturation for STREAM TRIAD
(a[i]l = b[i] + s*c[i])
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Motivation

— B | |
% 300 —e— TRIAD
L —— SUM
2z 600 |- .
@) —=— SpMV Clear memory bandwidth
N saturation for STREAM TRIAD
% 400 | 510 cB/s = (alil = b[i] + s*c[i])
E 117 Blcy
< 200 —{  But why not for
= SUM (s += a[i])and
an 0 | | SPMV (b[:1 = A[:,:1*x[i[:]1)7
0 12 24 30 48
\ J
Y cores
CMG s

Thread pinning : Compact
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Motivation
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=
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1

# cores
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Thread pinning : Compact
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Motivation

z _
£ 60| *
0
<)
< 40 *
e
= 20| g
g
c% .///
SaEEN. |

1

# cores

O Understanding single-core

performance is the key!

Thread pinning : Compact
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SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

b[:]= b[:]+ *

N
General case:
= + o some indirect
>Nr addressing
required!
/

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
bl[i] = b[i] + A[J] * *[col_idx[]]]
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N
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N
General case:
= + o some indirect
>Nr addressing
required!
/

In Compressed Row Storage (CRS) format
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SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

b[:]= b[:]+ *

N
General case: i
= + o some indirect '
> Nr addressing L
required! =l
Y r

In Compressed Row Storage (CRS) format

for i = 0O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop

b[i] = b[i] + A[]J] * =[col_idx[]]]

:

h

i

=

;

4

: |
—5—
| | i

I! I
i
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SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, x20, 1lsl 2]
1d1d .d, p0/z, [ , x20, 1lsl 3]
1d1d .d, p0/z, [ , z0.d, 1lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d

whilelo p0.d, %20, x14
b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[j] * x[col_idx[j]]
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SpMV

Assembly of the short inner-loop

.L6:

4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [ , z0.d, 1lsl 3]
add x20, x20, 8
fmla .d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Lona outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
[i] = b[1] + A[J] * x[col idx[j]]
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SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [ , z0.d, 1lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]
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SpMV

Assembly of the short inner-loop
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SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [ , z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107



SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [ , z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107



SpMV

Assembly of the short inner-loop

.L6:
4 ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] col_idx][j]
1d1d .d, p0/z, [#18, %20, 1lsl 3]
1d1d .d, p0/z, [ , z0.d, 1lsl 3]
add x20, x20, 8 j
fmla zl.d, p0/m, .d, .d
whilelo p0.d, %20, x14

b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format
for i = O0:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col_idx[]j]]

Core-Level Performance Engineering Tutorial | CGO 2026

31 January 2026

107



SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, x20, 1lsl 2]
1d1d .d, p0/z, [x18, x20, 1lsl 3]
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add x20, x20, 8
fmla .d, p0/m, .d, .d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, pl, z1.d

In Compressed Row Storage (CRS) format

for i = O:nrows-1 //Long outer loop
for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
[1] = b[1i] + A[J] * =x[col idx[]]]
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SpMV

Assembly of the short inner-loop

.L6:
ldisw z0.d, p0/z, [x17, x20, 1lsl 2] z1.d
1did .d, p0/z, [x18, x20, 1lsl 3]
lald  -.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla zl.d, p0/m, .d, .d

whilelo p0.d, x20, x14
b.any .L6

faddv d4, pl, zl1l.d

In Compressed Row Storage (CRS) format
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for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop

b[i] = b[i] + A[J] *

[col idx[j]]
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SpMV

Assembly of the short inner-loop
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fmla zl.d, p0/m, .d, .d
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b.any .L6

faddv d4, pl, zl1l.d
\ Horizontal add of
912-bit reqister
latency = 49 cycles
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SpMV

Assembly of the short inner-loop
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ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] FMA: Update z1.d
1d1d z2.d, p0/z, [x18, x20, 1sl 3]
ldld - .d, p0/z, [x30, z0.4, 1sl
add x20, x20, 8
fmla zl.d, p0/m, .d, z2.d
whilelo p0.d, x20, x14 Loop length : 27
b.any .L6 >  HPCG matrix

faddv d4, pl, zl.d
\ Horizontal add of
212-bit register
latency = 49 cycles
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SpMV

Assembly of the short inner-loop

.L6:
ldlsw z0.d, p0/z, [x17, %20, 1lsl 2] FMA: Update z1.d
1d1d z2.d, p0/z, [x18, x20, 1sl 3] .
1d1d .d, p0/z, [x30, z0.d, 1lsl Lo geia el 85 cy per inner loop
add x20, %20, 8 traversal
fmla zl.d, p0/m, .d, .d - 100 GB/s per
whilelo p0.d, x20, x14 Loop length : 27 CMG
b.any .L6 >  HPCG matrix

—> No saturation

faddv d4, pl, zl1l.d
\ Horizontal add of @
912-bit register
latency = 49 cycles
In Compressed Row Storage (CRS) format
for 1 = 0O:nrows-1 //Long outer loop

for j = row ptr[i]:row ptr[i+l]-1 // Short inner loop
b[i] = b[i] + A[]J] * x[col idx[]]]
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osaca --arch a64fx spmv-inner-loop.s

looo]

Combined Analysis Report

ldlisw z0.d, p0/z, [x17,x20,1sl ]
1d1d z2.d, p0/z, [x18,x20,1s1l °]
1d1d z3.d, p0/z, [x30,z0.d,1sl *]
add x20, x20,

fmla z1.d, pO/m, z3.d, z2.d
whilelo p0.d, x20, x14

b.any

Loop-Carried Dependencies Analysis Report

zl.d, p0/m,
x20, x20,
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SIMD-friendly execution of SpMV with SELL-C-o

b

[}

Al:]

+
I

L PP PP rrrry 7
o0

Inner loop goes down one block column

Column-major storage within block
—> consecutive access of matrix

Enables SIMD FMA instructions for column
traversal in block and LHS update

No reductions across SIMD register slots
Longer inner loop (in assembly) than CRS

RHS access still indirect (gather)
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How to choose the parameters?

= C
= n X SIMD width to allow good utilization of SIMD units
= n > 1 useful for hiding ADD pipeline latency

"0
= As small as possible, as large as necessary
= Large o reduces zero padding
= Sorting alters RHS access pattern

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on
modern processors with wide SIMD units. SIAM Journal on Scientific
Computing 36(5), C401-C423 (2014). DOI: 10.1137/130930352,

k y

L C

AN

> C
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12.
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.50
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0

5D
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N N M DNV O o o o
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.50
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.50
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.50
.50

.50
.50
.50
.50
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.00
.00

6D

O O O o

N N M M O o o o

12.

.50
.50
.50
.50

.50
.50
.50
.50
.00
.00
.00
.00

1.

1.

00

00

11.

28.

nalysi

9.

LCD

0

.L4:
1ldlsw
1ldlsw
1ldlsw
1ldlsw

z16.d,
z17.d4d,
z20.d,
z21.d,

po/z
po/z
po/z
pO/z

add x10, x10, 32

add x
add x

1d1d =z19.
z18.
z25.d
z27.d
.d, p0/z,
d
d

1d1d
1did
1ldid
1ldid
1d1d
1d1d

11,
12,

z22

z23.
z24.
1d1d z26.

x11, 128
x12, 256
d, p0/z,
d, p0/z,
, p0/z,
, P0/z,

, P0/z,
, P0/z,
d, p0/z,

whilelo pl.d, x10

fmla z4.d,
fmla z5.d,
fmla z6.d,
fmla z7.d,

p0/m,
p0/m,
p0/m,
p0/m,

mov p0.b, pl.b

b.any .L4

for AG4FX

, [x11]

, [x11, #1,
, [x11, #2,
, [x11, #3,

mul
mul

mul

[x12, #-4, mul
[x12, #-3,
[x12, #-2,
[x12, #-1, mul
[x3, zl1l6.d,
[x3, z17.d,
[x3, z20.d,
[x3, z21.d,

, X9

z19.d,

z18.d,
z25.d,

z27.4d,

mul

mul

z22.d
z23.d
z24.d
z26.d

vl]
vl]
vl]

vl]
vl]
vl]
vl]

1sl 3]
1sl 3]
1sl 3]
1sl 3]
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add x10, x10, 32

add x
add x

1d1d =z19.
z18.
z25.d
z27.d
.d, p0/z,
d
d

1d1d
1did
1d1d
1d1d
1d1d
1d1d

11,
12,

z22

z23.
z24.
1d1d z26.

x11, 128
x12, 256
d, p0/z,
d, p0/z,
, p0/z,
, P0/z,
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, P0/z,
d, p0/z,

whilelo pl.d, x10

for AG4FX

, [x11]

, [x11, #1,
, [x11, #2,
, [x11, #3,

mul
mul

mul

[x12, #-4, mul
[x12, #-3,
[x12, #-2,
[x12, #-1, mul
[x3, zl1l6.d,
[x3, z17.d,
[x3, z20.d,
[x3, z21.d,

, X9

mul

mul

vl]
vl]
vl]

vl]
vl]
vl]
vl]

1sl 3]
1sl 3]
1sl 3]
1sl 3]

fmla z4.d,
fmla z5.d,
fmla z6.d,
fmla z7.d,

p0/m,
p0/m,
p0/m,
p0/m,

z19.d,
z18.d,
z25.d,
z27.4d,

z22.d
z23.d
z24.d
z26.d

9.

0

mov p0.b, pl.b

b.any .L4
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OSACAa

SE

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

0.00
0.00
0.00

N

O O O O o

4.

.00
.00
.00
.00

.00
.00
.00
.00
.00

00

1.

.00

00

0.00
0.00
0.00

.00
.00
.00
.00
.00

O R KRB R R

0.00
0.00
0.00

B R R R R

.00
.00
.00
.00
.00

.00

1.00
1.00
1.00

LL-32-0 kernel

4.00 5.00 4.00 I 12.0

50 | 6 6D |
I I I
| 0.50 0.50 | 0.50 0.50 |
| 0.50 0.50 | 0.50 0.50 |
| 0.50 0.50 | 0.50 0.50 |
| 0.50 0.50 | 0.50 0.50 |
I I I
I I I
I I I
| 0.50 0.50 | 0.50 0.50 |
| 0.50 0.50 | 0.50 0.50 |
| 0.50 0.50 | 0.50 0.50 |
| 0.50 0.50 | 0.50 0.50 |
| 2.00 2.00 | 2.00 2.00 |
| 2.00 2.00 | 2.00 2.00 |
| 2.00 2.00 | 2.00 2.00 |
| 2.00 2.00 | 2.00 2.00 |
I I I
I I I
I I I
| I
! S
I I
I I

12.0 12.0

11.

nalysi

.L4:
1ldlsw
1ldlsw
1ldlsw
1ldlsw

z16.d,
z17.d,
z20.d,
z21.d,

po/z
po/z
po/z
pO/z

add x10, x10, 32

add x
add x

1d1d =z19.
z18.
z25.d
z27.d
.d, p0/z,
d
d

1d1d
1did
1d1d
1d1d
1d1d
1d1d

11,
12,

z22

z23.
z24.
1d1d z26.

x11, 128
x12, 256
d, p0/z,
d, p0/z,
, p0/z,
, P0/z,

, P0/z,
, P0/z,
d, p0/z,

whilelo pl.d, x10

for AG4FX

, [x11]

, [x11, #1,
, [x11, #2,
, [x11, #3,

mul
mul

mul

[x12, #-4, mul
[x12, #-3,
[x12, #-2,
[x12, #-1, mul
[x3, zl1l6.d,
[x3, z17.d,
[x3, z20.d,
[x3, z21.d,

, X9

mul

mul

vl]
vl]
vl]

vl]
vl]
vl]
vl]

1sl 3]
1sl 3]
1sl 3]
1sl 3]

fmla z4.d,
fmla z5.d,
fmla z6.d,
fmla z7.d,

p0/m,
p0/m,
p0/m,
p0/m,

z19.d,
z18.d,
z25.d,
z27.4d,

z22.d
z23.d
z24.d
z26.d

mov p0.b, pl.b

b.any .L4
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SELL-32-0 kernel OSACA analysis for A64FX

Loop-Carried Dependencies Analysis Report

112 | 9.0 | fmla z7.d, p0O/m, z27.d, z26.d | [112]
111 | 9.0 | fmla z6.d, p0O/m, z25.d, z24.d | [111]
110 | 9.0 | fmla z5.d, p0/m, z18.d, z23.d | [110]
109 | 9.0 | fmla z4.d, p0O/m, z19.d, z22.d | [109]
99 | 1.0 | add x12, x12, 256 | [99]
98 | 1.0 | add x11, x11, 128 | [98]
97 | 1.0 | add x10, x10, 32 | [97]
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SpMV performance with SELL-C-c (1 CMG)

= SELL-C-c separates HPCG-128°
SIMD from sum 30
reduction
= (C>8 allows for reduction q
of fmla latency impact £
£
(o]
T 10
o
0
0 2 4 6 8 10 12

# of active cores

——-FCCCRS -#-FCC SELL-8-1 =-#—=FCC SELL-32-1
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Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Case Study: Domain Wall (DW) Kernel

from Quantum Chromodynamics (QCD)

Based on:

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig:
ECM modeling and performance tuning of SoMV and Lattice QCD on A64FX.
Concurrency and Computation: Practice and Experience, e6512 (2021).

DOI:



https://doi.org/10.1002/cpe.6512

Context

= [attice QCD simulates the strong interaction
= |terative multigrid techniques on regular (4D or 5D) lattices
= Core component: Apply Dirac operator D to quark-field vector ¥

= Domain Wall (DW) formulation: quark field lives on 4D boundary of a 5D
space-time volume V, X L

(Dy)(n, 8)y, =

> 2 AU+ 1)+ s 5)gy + UL 1= (1= 7, )01 = 1,5 |

p=1 p=1 b=1
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DW stencil kernel (simplified)

#define
#define
#define

xpl

X m2

yp 3
#pragma
for{t,z,y,x} =
{ for (int s=0; s<Ls;

{ O[t] [z] [y] [x][s] =

++s)

R(x_p)
R(x _m)
R(y_p)
R(y_m)
R(z_p)
R(z_m)
R(t_p)
R(t _m)

omp parallel for schedule(static)
1:{Lt-2,Lz-2,Ly-2,Lx-2}

- Ulx_pl[t]l[z] [y][x]
- Ulx m] [t] [z] [y] [x]
- Uly_pl[t]l[z] [y] [x]
- Uly_m] [t][z] [y] [x]
- Ulz_pl[t]l[z] [y] [x]
- Ulz_m] [t] [z] [y] [x]
- Ult_pl[t]l[z] [y][x]
- Ult_m] [t][z] [y] [x]

o “Grid” lattice QCD framework
 Uses SVE intrinsics
« Data type: double complex

- P(x_p)
- P(x_m)
- P(y_p)
- P(y_m)
- P(z_p)
- P(z_m)
- P(t_p)
- P(t_m)

- [Tltl[z] [yl [x+1] [s]
- |[Iltl[z] [yl [x-1][s]
- |[Ilt]l[z] [y+1] [x] [s]
~|[Iltl[z] [y-1][x][s]
- |[T[t] [z+1] [y] [x] [s]
- |[T[tl1[z-1]1[y] [x][s]
- |[TIt+11[z] [y] [x] [s]
-|[TIt-111[z] [yl [x] [s]|;

+ 4+ + + + + +
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Complex numbers data layout choice

AoS (standard) |R I/R I R I R IR
A0SO0A RIRIRRIR RRR T I/I/I I|I|[I|I /R|R:-
N . y

vector length
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Observed performance

= Starting point: AoS layout, ACLE intrinsics, GCC/FCC

= 1320 flops/LUP (theoretical) } byte

= Measured code balance: 1500 byte/LUP be ~ 1'14ﬂ_0p

= A64FX (FX1000): B,,, = 0.25% - expect memory bound
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Observed performance

= Starting point: AoS layout, ACLE intrinsics, GCC/FCC

= 1320 flops/LUP (theoretical) } byte

» Measured code balance: 1500 byte/LUP Be~ 11455

= A64FX (FX1000): B,,, = 0.25% - expect memory bound

FCC | . FCC .
GCC | . GCC | }
\ \ | |

\ \ \ \ | \ \
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800
Memory traffic [byte/LUP] Performance [Gflop/s]

AT
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In-core analysis (complex-AoS)

osaca --arch a64fx riri-base-gcc.s

[...]

Combined Analysis Report

Port pressure in cycles
- 5D cp LCD|

1sl w2, wl3, 3

1d1d zl6.d, p0/z, [x11]

add x18, sp, 160

1d1d z18.d, p0/z, [x11l, #-4, mul vl]
sxtw x2, w2

1d1d z19.d, p0/z, [x11, #-3, mul vl]

stld z2.d, p0, [x0, #4, mul vl]
. . stld z13.d, pO0, [x0, #5, mul vl]
0.00 1.00 cmp wl4, wil3
bne .1L41

680 500 30 30 118.5 98.5 118.5 98.5

Loop-Carried Dependencies Analysis Report

add wl3, wl3, | [1360]
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In-core analysis (complex-AoS)

Operation type

m complex arithmetic mload mstore mprefix ops ®FP arithmetic © INT arithmetic ®permutations ®m Compare/Branch
1]

add x18, sp, 160

0.50 0.50 0.50 0.50 1d1d z18.d, p0/z, [x11l, #-4, mul vl]
sxtw x2, w2

0.50 0.50 0.50 0.50 1dld z19.d, p0/z, [x11, #-3, mul vl]

1.00 stld z2.d, p0, [x0, #4, mul vl]
. 1.00 stld z13.d, pO0, [x0, #5, mul vl]
1.00 cmp wl4, wil3
bne .L41
680 500 30 118.5 98.5 118.5 98.5

Loop-Carried Dependencies Analysis Report

add wl3, wl3, | [1360]
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In-core analysis (complex-AoS)

Operation type

m complex arithmetic mload mstore mprefix ops ®FP arithmetic © INT arithmetic ®permutations ®m Compare/Branch

FCMLA Zd, Pg, 42n, Zm, cC 2cy on PO, 1lcy on P2
FCADD 7Zd, Pg, 4n, Zm, cC lcy on PO, 1lcy on P2

1369]| . |
1370]| |
680 118.5 98.5 118.5 98.5

add wl3, wl3, | [1360]
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In-core analysis (complex-AoS)

Operation type

m complex arithmetic mload mstore mprefix ops ®FP arithmetic © INT arithmetic ®permutations ®m Compare/Branch

FCMLA Zd, Pg, 4n, Zm, 2cy on PO, 1lcy on P2
FCADD 7d, Pg, 24n, Zm, lcy on PO, 1lcy on P2

1369]| . |
1370]| |
680 - 8.5 118.5 98.5

add w13, wl3, | [1360] FMLA 7d, Pg, Zn, lcy on PO OR P2
FADD 7d, Pg, Zn, lcy on PO OR P2
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In-core analysis (complex-AoSoA)

osaca --arch a64fx rrii-ol-gcc.s

[...]

Combined Analysis Report

Port pressure in cycles
- 5D cp LCD|

madd x0, x1, x0, x19
str x0, [sp, 1896]
add x1, x1, xO0

str x1, [sp, 1936]
cmp x0, x1

0.00 0.00 1.00 1.00 1dr x0, [sp, 1784]
0.00 1.00 prfd pldl2strm, p0, [x0]

b .L64
.L38:

0.00 . 0.50 0.50 add x1, x1, 1

0.00 . 0.00 1.00 mov x19, O
b .L66

567 . 247 247 488.5 275.5 488.5 275.5

Loop-Carried Dependencies Analysis Report

31 January 2026
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In-core analysis (complex-AoSoA)

Port utilization

x1l, x0, x19
1896]

1936]
m AoS

HAoSoA

Active cycles for one
iteration across all ports

3000

2000

1000
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In-core analysis (complex-AoSoA)

Port utilization

x1l, x0, x19
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1936]
m AoS

HAoSoA

Active cycles for one
iteration across all ports

3000
~2X

2000

1000
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In-core analysis (complex-AoSoA)

Port utilization

Perfor@nce gain

x1l, x0, x19

6 P6D

[sp, 1896]
x1, xO0
[sp, 1936]
mAoS
HAoSoA
Active cycles for one
iteration across all ports
3000
~2X
2000
I I I 1000
l N
PO P1 P2 P3 P4 P5 P5D P
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DW kernel optimizations

DW kernel

= A A AN
N B~ OO 00 O

Performance [Gflop/s]
o

SO N B~ O O

GCC
®m AoS baseline  ® A0S prefetch+O1  m AoSoA prefetch+01
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Summary of optimizations for DW

= AoSoA (RRII) data layout
= Prevents use of complex arithmetic instructions £cmla/fcadd

= Removes imbalance between FLA and FLB ports in the core

= Some register spills occur, but still better than AoS (RIRI)
- More instructions but better performance

= Software prefetching decreases L2 data volume

= -01 makes compiler obey the ordering hints in the computational kernel
(more efficient OoO execution)
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Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Hands-On #5:
2D Gauss-Seidel analysis

=> https://go-nhr.de/CLPE-ex5



https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5
https://go-nhr.de/CLPE-ex5

Hands-On: Gauss-Seidel Method

« Limited by loop-carried dependency

 Create code with -Ofast, -funroll-loops

* Analyze for SPR for (int it=0; it<NITER; ++it) {
for (int i=1; i<NI-1; ++i) {
for (int k=1; k<NK-1; ++k) {
phi[i][k] = 0.25 * (
phi[i] [k-1] + phi[i+1][k] +
phi[i] [k+1] + phi[i-1] [k]
) ;
}

}
- Moodle, hands-on #5 }
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Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port presgure in cycles
I I

.00

.00

.00

.00

.00
.00

'Y
w
~
oo

6.

O OO0OO0O0O OO0OO0OO0O OO0OO0OO0O oOoOooo

- 1ov | 2
0.00 | 0.00 .
.50 0.33 | 0.33 0
.50 0.33 | 0.33 0
75 0
.00
0.50
.50 0.33 | 0.33 0
.50 0.33 | 0.33 0
.75 0.33 | 0.33 0
.00
0.50
.50 0.33 | 0.33 0
.50 0.33 | 0.33 0
75 0.33 | 0.33 0
.00
0.50
.50 0.33 | 0.33 0
.25 0.33 | 0.33 0
.00 0.33 | 0.33 1
.00
0.50
.00
0
00 3.67 3.67 2.00 6.

Loop-Carried Dependencies Analysis Report

416 | 1.0 |
419 | 36.0 |
437 | 1.0

inc
vaddsd %$xmml,
| addg $32, %rsi #143.11

$rdx #143.11

I
$xmmd , $xmml #144.15‘

00

L Lo | e |
FNTNTS
wRRP
Jwoo
d e

oo

.50
.50

.00

420,

.50

.50

.50

.50

.00

422, 423,

.50

.50

.50

.50

.00

424,

425,

427,

.50
.50

oo

(ool oOoOOo [elele)

oOOoOOo

.67

428, 429,

OBNNN BN &N BN O

45

430,

OO0OO0OO0O0O OO0OO0O0O OO0OO0OO0O OoOoOOoO o

SN BN BN BN
OO0OO0O0O OO0OO0OO0O OO0OO0OO oo

36

432,

433,

OSl |ACA

..B1.72: # Preds ..B1.72 ..Bl1.71
vmovsd 8 (%$rsi, %$rl0), %$xmm2

incg %rdx

vaddsd 16 (%rsi,%rl5), %$xmm2, $%$xmm3
vaddsd 8 (%$rsi,%rll), $%$xmm3, $xmmd
vaddsd %xmml, %$xmm4, $xmml

vmulsd $xmml, $xmmO, $%xmm5

vmovsd %xmm5, 8 (%rsi,%$rl5)

vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
vaddsd 16 (%rsi,%rll), %xmm7, %$xmm8
vmulsd $xmm8, $%$xmmO, $xmm9

vmovsd $xmm9, 16 (%rsi,%rl5)

vaddsd 24 (%rsi,%rl0), %$xmm9, $%$xmmlO
vaddsd 32 (%rsi,%rl5), %$xmml0, $xmmll
vaddsd 24 (%rsi,%rll), %$xmmll, $xmml2
vmulsd $xmml2, %$xmmO, $xmml3

vmovsd $xmml3, 24 (%rsi,%rlb5)

vaddsd 32 (%rsi,%rl0), %xmml3, %$xmml4
vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
vaddsd 32 (%rsi,%rll), %$xmml5, $xmmlé6
vmulsd $xmml6, $xmmO, %xmml

vmovsd %$xmml, 32 (%$rsi,%$rlb5)
addg $32, 3%rsi

cmpq %rl3, Srdx

* jb ..B1.72 # Prob 28%

434, 435]
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Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port pressure in cycles OSI A‘ A

| 0O -0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |
414 ..B1.72: # Preds ..B1.72 ..Bl.71
415 0.00 0.00 1.00 5.0 vmovsd 8 (%$rsi, %$rl0), %$xmm2
416 0.00 0.00 1.00 0.00 incq %$rdx
417 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 16 (%$rsi,%rl5), %$xmm2, %$xmm3
418 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 8 (%rsi,%rll), %$xmm3, $%$xmmd
419 0.75 0.25 2.0 2.0 vaddsd %xmml, %$xmm4, $xmml
420 1.00 0.00 4.0 4.0 vmulsd $xmml, $xmmO, $%xmm5
421 0.50 0.50 0.50 0.50 vmovsd $xmm5, 8 (%rsi,%rl5)
422 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
423 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
424 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 16 (%rsi,%rll), %$xmm7, $%$xmm8
425 1.00 0.00 4.0 4.0 vmulsd $xmm8, $%$xmmO, $xmm9
426 0.50 0.50 0.50 0.50 vmovsd %$xmm9, 16 (%rsi,%$rlb5)
427 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rl0), %$xmm9, %xmml0
428 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl5), %$xmml0, %xmmll
429 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rll), %$xmmll, %xmml2
430 1.00 0.00 4.0 4.0 vmulsd $xmml2, %$xmmO, $xmml3
431 0.50 0.50 0.50 0.50 vmovsd $xmml3, 24 (%rsi,%rlb5)
432 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl0), %$xmml3, %xmml4
433 0.25 0.33 0.33 0.75 0.33 2.0 2.0 vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
434 0.00 0.33 0.33 1.00 0.33 2.0 2.0 vaddsd 32 (%rsi,%rll), %$xmml5, %xmmlé6
435 1.00 0.00 4.0 4.0 vmulsd $xmml6, $xmmO, %xmml
436 0.50 0.50 0.50 0.50 0.0 vmovsd $xmml, 32 (%rsi,%rl5)
437 0.00 0.00 0.50 0.50 addg $32, 3%rsi
438 0.00 0.00 0.50 0.50 cmpg %rl3, %rdx
439 * jb ..B1.72 # Prob 28%

00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 45 36

Loop-Carried Dependencies Analysis Report Block Throughput 1.50 cy

416 | 1.0 | incg %rdx #143.11 | [416]
419 | 36.0 | vaddsd %xmml, %$xmmd, Sxmml #144.15| [419, 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, 434, 435]
437 | 1.0 | addg $32, %rsi #143.11 | [437]

139
Core-Level Performance Engineering Tutorial | CGO 2026 31 January 2026



Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port pressure in cycles OSI A‘ A

| 0O -0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |

414 ..B1.72: # Preds ..B1.72 ..Bl1.71
415 0.00 0.00 1.00 5.0 vmovsd 8 (%$rsi, %$rl0), %$xmm2
416 0.00 0.00 1.00 0.00 incg %rdx
417 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 16 (%$rsi,%rl5), %$xmm2, %$xmm3
418 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 8 (%rsi,%rll), %$xmm3, $%$xmmd
419 0.75 0.25 2.0 2.0 vaddsd %xmml, %$xmm4, $xmml
420 1.00 0.00 4.0 4.0 vmulsd $xmml, $xmmO, $%xmm5
421 0.50 0.50 0.50 0.50 vmovsd $xmm5, 8 (%rsi,%rl5)
422 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
423 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
424 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 16 (%rsi,%rll), %$xmm7, $%$xmm8
425 1.00 0.00 4.0 4.0 vmulsd $xmm8, $%$xmmO, $xmm9
426 0.50 0.50 0.50 0.50 vmovsd %$xmm9, 16 (%rsi,%$rlb5)
427 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rl0), %$xmm9, %xmml0
428 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%$rl5), %$xmml0, %$xmmll
429 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rll), %$xmmll, %xmml2
430 1.00 0.00 4.0 4.0 vmulsd $xmml2, %$xmmO, $xmml3
431 0.50 0.50 0.50 0.50 vmovsd $xmml3, 24 (%rsi,%rlb5)
432 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%$rl0), %$xmml3, %$xmmld
433 0.25 0.33 0.33 0.75 0.33 2.0 2.0 vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
434 0.00 0.33 0.33 1.00 0.33 2.0 2.0 vaddsd 32 (%rsi,%$rll), %$xmml5, %$xmml6
435 1.00 0.00 4.0 4.0 vmulsd $xmml6, $xmmO, %xmml
436 0.50 0.50 0.50 0.50 0.0 vmovsd $xmml, 32 (%rsi,%rl5)
437 0.00 0.00 0.50 0.50 addg $32, 3%rsi
438 0.00 0.00 0.50 0.50 cmpg %rl3, %rdx
439 * jb ..B1.72 # Prob 28%

00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67 36
Loop-Carried Dependencies Analysis Report Block Throughput 1.50 cy
3%8 I 3é'8 I ing grgx #%43%11 4, % 1 #144 15I Eﬁ%g] 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433

. vaadas Xmml, <SXmm&, ‘sXmm . 7 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ r 4 ifi
437 | "1.0 | addq $32, sréi #143.11 | [437] Critical Path 11.25 cy
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Hands-On: Gauss-Seidel Method on SPR

Combined Analysis Report

Port pressure in cycles OSI A‘ A

| 0O -0DV | 1 - 1DV | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 || CP | LCD |
414 ..B1.72: # Preds ..B1.72 ..Bl.71
415 0.00 0.00 1.00 5.0 vmovsd 8 (%$rsi, %$rl0), %$xmm2
416 0.00 0.00 1.00 0.00 incq %$rdx
417 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 16 (%$rsi,%rl5), %$xmm2, %$xmm3
418 0.50 0.33 0.33 0.50 0.33 2.0 vaddsd 8 (%rsi,%rll), %$xmm3, $%$xmmd
419 0.75 0.25 2.0 2.0 vaddsd %xmml, %$xmm4, $xmml
420 1.00 0.00 4.0 4.0 vmulsd $xmml, $xmmO, $%xmm5
421 0.50 0.50 0.50 0.50 vmovsd $xmm5, 8 (%rsi,%rl5)
422 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 16 (%rsi,%rl1l0), %$xmm5, $%$xmm6
423 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%rsi,%rl5), %xmm6, $xmm7
424 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 16 (%rsi,%rll), %$xmm7, $%$xmm8
425 1.00 0.00 4.0 4.0 vmulsd $xmm8, $%$xmmO, $xmm9
426 0.50 0.50 0.50 0.50 vmovsd %$xmm9, 16 (%rsi,%$rlb5)
427 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rl0), %$xmm9, %xmml0
428 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl5), %$xmml0, %xmmll
429 0.75 0.33 0.33 0.25 0.33 2.0 2.0 vaddsd 24 (%$rsi,%rll), %$xmmll, %xmml2
430 1.00 0.00 4.0 4.0 vmulsd $xmml2, %$xmmO, $xmml3
431 0.50 0.50 0.50 0.50 vmovsd $xmml3, 24 (%rsi,%rlb5)
432 0.50 0.33 0.33 0.50 0.33 2.0 2.0 vaddsd 32 (%rsi,%rl0), %$xmml3, %xmml4
433 0.25 0.33 0.33 0.75 0.33 2.0 2.0 vaddsd 40 (%rsi,%rl5), %$xmml4, $xmml5
434 0.00 0.33 0.33 1.00 0.33 2.0 2.0 vaddsd 32 (%rsi,%rll), %$xmml5, %xmmlé6
435 1.00 0.00 4.0 4.0 vmulsd $xmml6, $xmmO, %xmml
436 0.50 0.50 0.50 0.50 0.0 vmovsd $xmml, 32 (%rsi,%rl5)
437 0.00 0.00 0.50 0.50 addg $32, 3%rsi
438 0.00 0.00 0.50 0.50 cmpg %rl3, %rdx
439 * jb ..B1.72 # Prob 28%

00 6.00 3.67 3.67 2.00 6.00 2.00 2.00 2.00 2.00 2.00 3.67

Loop-Carried Dependencies Analysis Report

Block Throughput 1.50 cy

416 | 1.0 | incg %rdx #143.11 | [416] |
3%3 I 3%8 I Zggqsg3§:fnuéliéi%mgf1%mml #144.15‘ Eﬁ%g]’ 420, 422, 423, 424, 425, 427, 428, 429, 430, 432, 433, ¢ Critical Path 11.25 cy

Loop-Carried Dep. 9.0 cy
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Hands-On: Gauss-Seidel Method — standard version

dot pdf dependencies.dot

. 2 .
5. vaddsd |2l 6 vaddsd | 2 | .
I T: wmulsd I—-i 8: vmovsd
4

osaca spr

dependencies.dot gs.s
dep graph.pdf

-vaddsd |2
50 Iwml 2 ill;vu‘ldsdl 2 =12:1r|nu|5d 2 IB I

LCD
2 | | vmovsd (%$rsi, %$r9), %$xmm2
3 | | incqg $rdx
4 | | vaddsd 8 (%rsi,%rl0), %xmm2, %$xmm3
5 vaddsd 16 (%rsi,%r9 $xmm3, $xmmé

, rsi,
24 | | addg $rl3, %rsi
25 | | cmpq srl2, Srdx
36.0

14: vaddsd

5.0
- 21: vaddsd
50 2
. 2
I]G:vaddsdl =17: sd | 2

19: vaddsd

2 I 22: wmulsd H 23: vmavsd I
L
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Hands-On: Gauss-Seidel Method — standard version

dependencies.dot gs.s

osaca spr

dot pdf dependencies.dot dep graph.pdf

4]
5: vaddsd H E:waddsd | 2 2 I 22: wmulsd H" 23: vmovsd
I I? wmulsd I—-i 8: vmovsd 21: vaddsd L I
— 5.0 .@ 5.0 20: vaddsd
20 Z 5.0 I]_r.mlhdl 2 I]G:vaddsdl 2 il‘.“:vmulsd
a4 19: vaddsd

- e - e =
- =

LCD
2 | | vmovsd (%$rsi, %$r9), %$xmm2
3 | | incqg $rdx
4 | | vaddsd 8 (%rsi,%rl0), %xmm2, %$xmm3
5 vaddsd 16 (%rsi,%r9 $xmm3, $xmmé

dep chain of 35 cy
7 out of 42 (CP) can overlap

= ratio 14.3%

4
24 | | addg $rl3, %rsi
25 | | cmpg $rl2, %rdx
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Hands-On: Gauss-Seidel Method — opt. version (SPR)

-Ofast / -03 -01
Iil! 10: I

[1]

8:inc
6: vaddsd }—Z-I 11: vaddsd I <
‘ 3:incq }—lﬁ 16: cmpq ‘ 4 2
59 K12 vaddsd 2:vmovsd | 5
] 5

2 5.0 3: vaddsd 2
2 ! 9: vmulsd |—4>{ 10: vmovsd -"""--.. 5
2 I I 4: : 2
7: vaddsd HB: CEEERE ! [4] I 13: vmulsd 2 14: vmovsd I : vaddsd 5: vaddsd

l 5.0
(4] 1 6: vmulsd =2 7: vmovsd
m 1: label 5.0

9: cmpq

LCD

1 | ..B1.72:

2 | | vmovsd 8(%rl0,%rll), %$xmm2 LCD

2 I I incq 4 fé?x 10, 5r11) . 1 | ..B1.34:

VINOV'S 5rl10,%rll), %xmm 2 | |  vmovsd (3rsi,%rdi,8), %xmmO

56’ } } ngg:g %2&?}82:3 gf’:‘m‘;gg gf’;ﬁfn‘:; 3| |  vaddsd  8(%rcx,%rdi,8), %xmm0, Sxmml
° re r.° r.° 4 vaddsd $rax, srdi, 8 $xmml, %$xmm2

7 vaddsd $xmm3, %$xmm4

16 | | cmpg srl5, Srdx
17 | | * Jb ..B1.72
14.0
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Hands-On: Gauss-Seidel Method — opt. version (SPR)

-Ofast / -03 -01
Iil! 10: I

[1]

8:inc
6: vaddsd }—Z-I 11: vaddsd I <
‘ 3:incq }—lﬁ 16: cmpq ‘ 4 2
59 K12 vaddsd 2:vmovsd | 5
] 5

2 5.0 3: vaddsd 2
2 ! 9: vmulsd |—4>{ 10: vmovsd -"""--.. 5
2 I I 4: : 2
7: vaddsd HB: CEEERE ! [4] I 13: vmulsd 2 14: vmovsd I : vaddsd 5: vaddsd

l 5.0
(4] 1 6: vmulsd =2 7: vmovsd
m 1: label 5.0

9: cmpq

LCD

1 | ..B1.72:

2 | | vmovsd 8(%rl0,%rll), %$xmm2 LCD

2 I I incq 4 fé?x 10, 5r11) . 1 | ..B1.34:

VINOV'S 5rl10,%rll), %xmm 2 | |  vmovsd (3rsi,%rdi,8), %xmmO

56’ } } ngg:g %2&?}82:3 gf’:‘m‘;gg gf’;ﬁfn‘:; 3| |  vaddsd  8(%rcx,%rdi,8), %xmm0, Sxmml
° re r.° r.° 4 vaddsd $rax, srdi, 8 $xmml, %$xmm2

7 vaddsd $xmm3, %$xmm4

16 | | cmpg %rl5, %rdx
17 * jb ..B1.72 :
a0 T dep chain of 14 cy

9cy / 23cy CP = 39% overlap
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Hands-On: Gauss-Seidel Method — opt. version (SPR)

-Ofast / -03 -01
Iil! 10: I

4: vmovsd )
t - 3 P 8:incq 1 9: cmpq
5.0 | ©: vaddsd H 11: vaddsd I
2
4

‘ 3:incq }—lﬁ 16: cmpq ‘
5.0 ilz:vaddsd I 2:vmovsd | 5
2 5.0 _f 3: vaddsd

I 4, 2
. 9: Isd 10: d
2 - - — = s, 4: vaddsd 2=l 5: vaddsd | 2
. 7: vaddsd I—IIB: vaddsd ! (a1 I13: vmulsd =2} 14: vmovsdl W Lomn 5.0 i : 4
i (41 | 6: vmulsd 7: vmovsd
m 1: label

5.0

LCD
1 | ..B1.72:
2 | | vmovsd 8(%rl0,%rll), %$xmm2 LCD
2 I I incq 4 fé?x 10, 5r11) . 1 | ..Bl.34:
VINOV'S 5rl10,%rll), %xmm 2 | |  vmovsd (3rsi,%rdi,8), %xmmO
5 | | vaddsd 16(%rl0,%rsi), %$xmm2, %$xmm3 ‘ T an
6 | | vaddsd 24 (%r10,%rsi), Sxmm5, Sxmm7 2 ' | vaddsd 8 (%rcx,%rdi,8), %xmm0, %xmml
7 vaddsd

vaddsd $rax, %rdi, 8 $xmml, %$xmm2
“ I I vmovs! !xmm!, I!rcx,!r!l,!l

8 | | incg Srdi
9 | | cmpg %$rl3, %rdi
10 | | * 1 ..B1.34
8.0
16 | | . cmpq %rl5, %rdx i . f
S R I -B1.72 dep chain of 14 cy dep chain of 6cy

9cy / 23cy CP = 39% overlap 9cy/15cy CP =» 60% overlap
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Hands-On: Gauss-Seidel Method on SPR

Prediction | standard
it ----

icc 2021

icx 2022 9 9 8 8 8 8
icx 2024 9 11 10 8 10 10
GCC 14.2 8 10 10.5 8 6

Cangts 0 10 10 10 |4 |4
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Summary & Caveats

= A code analyzer helps you to predict the in-core runtime of a basic block
= Might be sufficient, but often a full analysis requires a memory model as well!

= An analysis of (loop-carried-)dependencies can help you find
performance limitations!

= Analysis is done on compiler-generated code which always holds a factor
of uncertainty

= There might be additional things slowing you, e.g.:
= Cache trashing
= Loads across cache lines
= Front end limitations
= Bank conflicts
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There is not just THE one code analyzer

= OSACA: https://github.com/RRZE-HPC/OSACA

= uiCA: https://www.uops.info/uiCA.html

= LLVM-MCA: https://llvm.org/docs/CommandGuide/llvm-mca.html

= JACA (Eol):
https://www.intel.com/content/www/us/en/developer/articles/tool/architectur
e-code-analyzer.ntml
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Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Thank you! Questions?

OSACA: |
PIP: © pip install -u osaca

Compiler Explorer:

Survey:



https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://github.com/RRZE-HPC/osaca
https://godbolt.org/
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