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Outline of course
 Basics of parallel computer architecture
 Basics of parallel computing
 Introduction to shared-memory programming with OpenMP
 OpenMP performance issues
 Introduction to the Message Passing Interface (MPI)
 Advanced MPI
 MPI performance issues
 Hybrid MPI+OpenMP programming
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Efficient programming of ccNUMA nodes



ccNUMA – The other affinity to care about
 ccNUMA:

 Whole memory is transparently 
accessible by all cores

 but physically distributed across 
multiple locality domains (LDs)

 with varying bandwidth and latency
 and potential contention (shared 

memory paths)
 How do we make sure that 

memory access is always as 
"local" and "distributed" as 
possible?

Note: Page placement is 
implemented in units of OS pages 
(often 4kB, possibly more)
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How much does nonlocal access cost?
Example: AMD “Naples” (Zen) 2-socket system
(8 chips, 2 sockets, 48 cores):
STREAM Triad bandwidth measurements [Gbyte/s]

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5
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Enforcing memory locality with numactl
 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes>  a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node> 

# and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across

# all <nodes>

 Examples:
for m in `seq 0 7`; do
for c in `seq 0 7`; do 
env OMP_NUM_THREADS=6 \
numactl --membind=$m likwid-pin –c M${c}:0-5 ./a.out

done
done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./a.out

 But what is the default without numactl?

ccNUMA map scan

Advanced affinity 
enforcement with 
LIKWID  see 
separate lectures
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ccNUMA default placement policy
“Golden Rule” of ccNUMA:

A memory page gets mapped into the local memory of the processor that 
touches it first!
(Except if there is not enough local memory available)

 Caveat: “to touch” means “to write,” not “to allocate”
 Example: 

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)
huge[i] = 0.0;  

 It is sufficient to touch a single item to map the entire page

Memory not 
mapped here yet

Mapping takes 
place here
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Coding for ccNUMA data locality
Most simple case: explicit initialization 
const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));

...

for(int i=0; i<n; ++i)
a[i] = 0.;

...

#pragma omp parallel for
for(int i=0; i<n; ++i) 

b[i] = function(a[i]);

const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));
...

#pragma omp parallel
{
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)

a[i] = 0.;
...
#pragma omp for schedule(static)
for(int i=0; i<n; ++i) 

b[i] = function(a[i]);
}
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Coding for Data Locality
 Required condition: OpenMP loop schedule of initialization must be the same as in 

all computational loops
 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to be sure…
 Imposes some constraints on possible optimizations (e.g., load balancing)
 Presupposes that all worksharing loops with the same loop length have the same thread-

chunk mapping
 If dynamic scheduling/tasking is unavoidable, the problem cannot be solved completely if 

a team of threads spans more than one LD
 Static parallel first touch is still a good idea

 How about global objects?
 If communication vs. computation is favorable, might consider properly placed copies of 

global data
 C++: Arrays of objects and std::vector<> are by default initialized sequentially

 STL allocators provide an elegant solution
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NUMA-aware allocator for C++ std::vector<>
template <class T> class NUMA_Allocator {
public:

T* allocate(size_type numObjects, const void  
*localityHint=0) {

size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {

ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
};

Application:
vector<double,NUMA_Allocator<double> > x(10000000);
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Diagnosing bad ccNUMA locality
 Bad locality limits scalability 

(whenever a ccNUMA node boundary is 
crossed)
 Just an indication, not a proof yet

 Running with  numactl --interleave 
might give you a hint

 Important: 
This is all only relevant if the code is 
actually sensitive to memory access!

serial init.
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Using performance counters for diagnosis
 Intel Ivy Bridge EP node (running 2x5 threads):

measure NUMA traffic per core with likwid-perfctr

 Summary output:
+--------------------------------------+--------------+-------------+-------------+--------------+
|                Metric |      Sum |     Min     |     Max     |      Avg |
+--------------------------------------+--------------+-------------+-------------+--------------+
|       Runtime (RDTSC) [s] STAT       |   4.050483   |  0.4050483  |  0.4050483  |   0.4050483  |
|       Runtime unhalted [s] STAT      |    3.03537   |  0.3026072  |  0.3043367  |   0.303537   |
|           Clock [MHz] STAT           |   32996.94   |   3299.692  |   3299.696  |   3299.694   |
|               CPI STAT               |    40.3212   |   3.702072  |   4.244213  |    4.03212   |
|  Local DRAM data volume [GByte] STAT |  7.752933632 | 0.735579264 | 0.823551488 | 0.7752933632 |
|  Local DRAM bandwidth [MByte/s] STAT |   19140.761 |   1816.028  |   2033.218  |   1914.0761  |
| Remote DRAM data volume [GByte] STAT |  9.16628352  |  0.86682464 | 0.957811776 |  0.916628352 |
| Remote DRAM bandwidth [MByte/s] STAT |   22630.098 |   2140.052  |   2364.685  |   2263.0098  |
|    Memory data volume [GByte] STAT   | 16.919217152 | 1.690376128 |  1.69339104 | 1.6919217152 |
|    Memory bandwidth [MByte/s] STAT   |   41770.861 |   4173.27   |   4180.714  |   4177.0861  |
+--------------------------------------+--------------+-------------+-------------+--------------+

About half of the overall
memory traffic is caused by
the remote domain!

$ likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out
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OpenMP STREAM triad on AMD Epyc 7451 (6 cores per LD)

 Parallel init: Correct parallel initialization
 LD0: Force data into LD0 via  numactl –m 0

 Interleaved: 
numactl --interleave ...
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A weird observation
 Experiment: memory-bound Jacobi solver with sequential data initialization

 No parallel data placement at all!
 Expect no scaling across LDs

 Convergence threshold 𝛿𝛿 determines runtime
 The smaller 𝛿𝛿, the longer the run

 Observation
 No scaling across LDs @ large 𝛿𝛿 (runtime 0.5 s)
 Scaling gets better with smaller 𝛿𝛿

up to almost perfect efficiency 𝜀𝜀 (runtime 91 s)

 Conclusion
 Something seems to “heal” the bad

access locality on a time scale of tens of seconds
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Riddle solved: NUMA balancing
 Linux kernel supports automatic page migration:

$ cat /proc/sys/kernel/numa_balancing
0
$ echo 1 > /proc/sys/kernel/numa_balancing # activate

 Active on current Linux distributions
 Parameters control aggressiveness

 Default behavior is “take it slow”  it takes some time to “kick in”
 Do not rely on it! Parallel first touch is still a good idea!

$ ll /proc/sys/kernel/numa* 
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_delay_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_max_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_min_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_size_mb
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Summary on ccNUMA issues
 Identify the problem

 Is ccNUMA an issue in your code?
 Simple test: run with numactl --interleave 

 Apply first-touch placement
 Look at initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Slow process, may take many seconds (configurable), not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Still a good idea to do parallel first touch



Case study: Parallelizing a Gauss-Seidel Solver



3D matrix-free Gauss-Seidel smoother
 Matrix-free iterative solver for 𝐴𝐴𝐴𝐴 = 𝑏𝑏

 Here used for Dirichlet boundary value (PDE) problem Δ𝑥𝑥 = 0
for(it=0; it<itmax; ++it) { // or convergence check
for(k=1; k<kmax-1; ++k) {
for(j=1; j<jmax-1; ++j) {
for(i=1; i<imax-1; ++i) {
x[k][j][i] = ( x[k][j][i-1] + x[k][j][i+1] 

+ x[k][j-1][i] + x[k][j+1][i]
+ x[k-1][j][i] + x[k+1][j][i])/6.0;

} } } }    “old data”“new data”

𝑥𝑥𝑖𝑖
(𝑘𝑘) =

1
𝑎𝑎𝑖𝑖𝑖𝑖

−�
𝑗𝑗=1

𝑖𝑖−1

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
(𝑘𝑘) − �

𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
𝑘𝑘−1 + 𝑏𝑏𝑖𝑖

i

j

k

2020-11-23Parallel Programming 2020 18



2020-11-23 19Parallel Programming 2020

OpenMP parallelization?
 Naïve OpenMP loop parallelzation impossible due to loop-carried 

dependency on all spatial loop levels

 Can we solve this in parallel but still keep the dependencies intact?

for(t=0; t<itmax; ++t) {
for(k=1; k<kmax-1; ++k) {
for(j=1; j<jmax-1; ++j) {
for(i=1; i<imax-1; ++i) {
x[k][j][i] = ( x[k][j][i-1] + x[k][j][i+1] 

+ x[k][j-1][i] + x[k][j+1][i]
+ x[k-1][j][i] + x[k+1][j][i])/6.0;

} } } }    
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Idea: wavefront parallelization
 Parallelization approach

 Middle (j) loop is parallel
 Outer dimension: wavefront scheme
 Each block can be updated iff if bottom 

neighbor (same threadID) and left 
neighbor (threadID-1) are done 

 Wi: independent blocks, “wavefronts”
 After each wavefront:

synchronization to maintain 
ordering
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Wavefront parallelization
 Wind-up phase

 Not all threads active
 Each wavefront (Wi) is executed

by i threads concurrently
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Wavefront parallelization
 “Full pipeline”: All threads active

 Wind-down phase starts 
after T0 has completed its 
k loop (not shown) 
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Wavefront parallelization with OpenMP in 3D
#pragma omp parallel private(nthreads,istart,iend,tid,kk,it,k,i){

nthreads = omp_get_num_threads();
tid = omp_get_thread_num();
jstart= (jmax-2)/nthreads * tid;
jend = jstart+(jmax-2)/nthreads-1
for(t=0; t<itmax; ++t) {
for(k=1; k<kmax-1+nthreads-1; ++k) {
kk = k – tid;
if(kk>=1 && k<=kmax-1) {
for(j=jstart; j<=jend; ++j) {
for(i=1; i<kmax-1; ++i) {

x[kk][j][i] = ( x[kk][j][i-1] + x[kk][j][i+1] 
+ x[kk][j-1][i] + x[kk][j+1][i]
+ x[kk-1][j][i] + x[kk+1][j][i])/6.0;

} 
}

}
#pragma omp barrier 

} 
} 

}

Chop j loop into 
nthreads chunks 

Wind-up/-down

Wavefront sync
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Wavefront parallelization – open questions
 Global barrier per middle loop sweep (i.e., kmax-2 barriers overall)

 Remedy? 

 Is there a global performance limit?
 Minimum data traffic: update whole array once
 minimum traffic = read and write imax*jmax*kmax elements
 16 byte/update

 Should SMT give better performance?
 There’s a dependency after all…

 How about ccNUMA?
 Is placement an issue here?
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