
Winter term 2020/2021

Parallel Programming with OpenMP and MPI
Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg
Institute of Physics, Universität Greifswald

Lecture 7: ccNUMA and wavefront parallelization with OpenMP

2Parallel Programming 2020

Outline of course
 Basics of parallel computer architecture
 Basics of parallel computing
 Introduction to shared-memory programming with OpenMP
 OpenMP performance issues
 Introduction to the Message Passing Interface (MPI)
 Advanced MPI
 MPI performance issues
 Hybrid MPI+OpenMP programming

2020-11-23

Efficient programming of ccNUMA nodes

ccNUMA – The other affinity to care about
 ccNUMA:

 Whole memory is transparently
accessible by all cores

 but physically distributed across
multiple locality domains (LDs)

 with varying bandwidth and latency
 and potential contention (shared

memory paths)
 How do we make sure that

memory access is always as
"local" and "distributed" as
possible?

Note: Page placement is
implemented in units of OS pages
(often 4kB, possibly more)

2020-11-23 5Parallel Programming 2020

How much does nonlocal access cost?
Example: AMD “Naples” (Zen) 2-socket system
(8 chips, 2 sockets, 48 cores):
STREAM Triad bandwidth measurements [Gbyte/s]

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node

M
EM

 n
od

e

So
ck

et
 0

So
ck

et
 1

2020-11-23 6Parallel Programming 2020

Enforcing memory locality with numactl
 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node>

and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across

all <nodes>

 Examples:
for m in `seq 0 7`; do
for c in `seq 0 7`; do
env OMP_NUM_THREADS=6 \
numactl --membind=$m likwid-pin –c M${c}:0-5 ./a.out

done
done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./a.out

 But what is the default without numactl?

ccNUMA map scan

Advanced affinity
enforcement with
LIKWID  see
separate lectures

2020-11-23 7Parallel Programming 2020

ccNUMA default placement policy
“Golden Rule” of ccNUMA:

A memory page gets mapped into the local memory of the processor that
touches it first!
(Except if there is not enough local memory available)

 Caveat: “to touch” means “to write,” not “to allocate”
 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)
huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

2020-11-23 8Parallel Programming 2020

Coding for ccNUMA data locality
Most simple case: explicit initialization
const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));

...

for(int i=0; i<n; ++i)
a[i] = 0.;

...

#pragma omp parallel for
for(int i=0; i<n; ++i)

b[i] = function(a[i]);

const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));
...

#pragma omp parallel
{
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)

a[i] = 0.;
...
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)

b[i] = function(a[i]);
}

2020-11-23 9Parallel Programming 2020

Coding for Data Locality
 Required condition: OpenMP loop schedule of initialization must be the same as in

all computational loops
 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to be sure…
 Imposes some constraints on possible optimizations (e.g., load balancing)
 Presupposes that all worksharing loops with the same loop length have the same thread-

chunk mapping
 If dynamic scheduling/tasking is unavoidable, the problem cannot be solved completely if

a team of threads spans more than one LD
 Static parallel first touch is still a good idea

 How about global objects?
 If communication vs. computation is favorable, might consider properly placed copies of

global data
 C++: Arrays of objects and std::vector<> are by default initialized sequentially

 STL allocators provide an elegant solution

2020-11-23 10Parallel Programming 2020

NUMA-aware allocator for C++ std::vector<>
template <class T> class NUMA_Allocator {
public:

T* allocate(size_type numObjects, const void
*localityHint=0) {

size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {

ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
};

Application:
vector<double,NUMA_Allocator<double> > x(10000000);

2020-11-23 11Parallel Programming 2020

Diagnosing bad ccNUMA locality
 Bad locality limits scalability

(whenever a ccNUMA node boundary is
crossed)
 Just an indication, not a proof yet

 Running with numactl --interleave
might give you a hint

 Important:
This is all only relevant if the code is
actually sensitive to memory access!

serial init.

cc
N

U
M

A
do

m
ai

n
bo

un
da

ry

2020-11-23 12Parallel Programming 2020

Using performance counters for diagnosis
 Intel Ivy Bridge EP node (running 2x5 threads):

measure NUMA traffic per core with likwid-perfctr

 Summary output:
+--------------------------------------+--------------+-------------+-------------+--------------+
| Metric | Sum | Min | Max | Avg |
+--------------------------------------+--------------+-------------+-------------+--------------+
Runtime (RDTSC) [s] STAT	4.050483	0.4050483	0.4050483	0.4050483
Runtime unhalted [s] STAT	3.03537	0.3026072	0.3043367	0.303537
Clock [MHz] STAT	32996.94	3299.692	3299.696	3299.694
CPI STAT	40.3212	3.702072	4.244213	4.03212
Local DRAM data volume [GByte] STAT	7.752933632	0.735579264	0.823551488	0.7752933632
Local DRAM bandwidth [MByte/s] STAT	19140.761	1816.028	2033.218	1914.0761
Remote DRAM data volume [GByte] STAT	9.16628352	0.86682464	0.957811776	0.916628352
Remote DRAM bandwidth [MByte/s] STAT	22630.098	2140.052	2364.685	2263.0098
Memory data volume [GByte] STAT	16.919217152	1.690376128	1.69339104	1.6919217152
Memory bandwidth [MByte/s] STAT	41770.861	4173.27	4180.714	4177.0861
+--------------------------------------+--------------+-------------+-------------+--------------+

About half of the overall
memory traffic is caused by
the remote domain!

$ likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

2020-11-23 13Parallel Programming 2020

OpenMP STREAM triad on AMD Epyc 7451 (6 cores per LD)

 Parallel init: Correct parallel initialization
 LD0: Force data into LD0 via numactl –m 0

 Interleaved:
numactl --interleave ...

2020-11-23 14Parallel Programming 2020

A weird observation
 Experiment: memory-bound Jacobi solver with sequential data initialization

 No parallel data placement at all!
 Expect no scaling across LDs

 Convergence threshold 𝛿𝛿 determines runtime
 The smaller 𝛿𝛿, the longer the run

 Observation
 No scaling across LDs @ large 𝛿𝛿 (runtime 0.5 s)
 Scaling gets better with smaller 𝛿𝛿

up to almost perfect efficiency 𝜀𝜀 (runtime 91 s)

 Conclusion
 Something seems to “heal” the bad

access locality on a time scale of tens of seconds

Lo
ng

er
ru

nt
im

e

2020-11-23 15Parallel Programming 2020

Riddle solved: NUMA balancing
 Linux kernel supports automatic page migration:

$ cat /proc/sys/kernel/numa_balancing
0
$ echo 1 > /proc/sys/kernel/numa_balancing # activate

 Active on current Linux distributions
 Parameters control aggressiveness

 Default behavior is “take it slow”  it takes some time to “kick in”
 Do not rely on it! Parallel first touch is still a good idea!

$ ll /proc/sys/kernel/numa*
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_delay_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_max_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_min_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_size_mb

2020-11-23 16Parallel Programming 2020

Summary on ccNUMA issues
 Identify the problem

 Is ccNUMA an issue in your code?
 Simple test: run with numactl --interleave

 Apply first-touch placement
 Look at initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Slow process, may take many seconds (configurable), not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Still a good idea to do parallel first touch

Case study: Parallelizing a Gauss-Seidel Solver

3D matrix-free Gauss-Seidel smoother
 Matrix-free iterative solver for 𝐴𝐴𝐴𝐴 = 𝑏𝑏

 Here used for Dirichlet boundary value (PDE) problem Δ𝑥𝑥 = 0
for(it=0; it<itmax; ++it) { // or convergence check
for(k=1; k<kmax-1; ++k) {
for(j=1; j<jmax-1; ++j) {
for(i=1; i<imax-1; ++i) {
x[k][j][i] = (x[k][j][i-1] + x[k][j][i+1]

+ x[k][j-1][i] + x[k][j+1][i]
+ x[k-1][j][i] + x[k+1][j][i])/6.0;

} } } } “old data”“new data”

𝑥𝑥𝑖𝑖
(𝑘𝑘) =

1
𝑎𝑎𝑖𝑖𝑖𝑖

−�
𝑗𝑗=1

𝑖𝑖−1

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
(𝑘𝑘) − �

𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
𝑘𝑘−1 + 𝑏𝑏𝑖𝑖

i

j

k

2020-11-23Parallel Programming 2020 18

2020-11-23 19Parallel Programming 2020

OpenMP parallelization?
 Naïve OpenMP loop parallelzation impossible due to loop-carried

dependency on all spatial loop levels

 Can we solve this in parallel but still keep the dependencies intact?

for(t=0; t<itmax; ++t) {
for(k=1; k<kmax-1; ++k) {
for(j=1; j<jmax-1; ++j) {
for(i=1; i<imax-1; ++i) {
x[k][j][i] = (x[k][j][i-1] + x[k][j][i+1]

+ x[k][j-1][i] + x[k][j+1][i]
+ x[k-1][j][i] + x[k+1][j][i])/6.0;

} } } }

2020-11-23 20Parallel Programming 2020

Idea: wavefront parallelization
 Parallelization approach

 Middle (j) loop is parallel
 Outer dimension: wavefront scheme
 Each block can be updated iff if bottom

neighbor (same threadID) and left
neighbor (threadID-1) are done

 Wi: independent blocks, “wavefronts”
 After each wavefront:

synchronization to maintain
ordering

2020-11-23 21Parallel Programming 2020

Wavefront parallelization
 Wind-up phase

 Not all threads active
 Each wavefront (Wi) is executed

by i threads concurrently

2020-11-23 22Parallel Programming 2020

Wavefront parallelization
 “Full pipeline”: All threads active

 Wind-down phase starts
after T0 has completed its
k loop (not shown)

2020-11-23 23Parallel Programming 2020

Wavefront parallelization with OpenMP in 3D
#pragma omp parallel private(nthreads,istart,iend,tid,kk,it,k,i){

nthreads = omp_get_num_threads();
tid = omp_get_thread_num();
jstart= (jmax-2)/nthreads * tid;
jend = jstart+(jmax-2)/nthreads-1
for(t=0; t<itmax; ++t) {
for(k=1; k<kmax-1+nthreads-1; ++k) {
kk = k – tid;
if(kk>=1 && k<=kmax-1) {
for(j=jstart; j<=jend; ++j) {
for(i=1; i<kmax-1; ++i) {

x[kk][j][i] = (x[kk][j][i-1] + x[kk][j][i+1]
+ x[kk][j-1][i] + x[kk][j+1][i]
+ x[kk-1][j][i] + x[kk+1][j][i])/6.0;

}
}

}
#pragma omp barrier

}
}

}

Chop j loop into
nthreads chunks

Wind-up/-down

Wavefront sync

2020-11-23 24Parallel Programming 2020

Wavefront parallelization – open questions
 Global barrier per middle loop sweep (i.e., kmax-2 barriers overall)

 Remedy?

 Is there a global performance limit?
 Minimum data traffic: update whole array once
 minimum traffic = read and write imax*jmax*kmax elements
 16 byte/update

 Should SMT give better performance?
 There’s a dependency after all…

 How about ccNUMA?
 Is placement an issue here?

	Winter term 2020/2021�Parallel Programming with OpenMP and MPI
	Outline of course
	Efficient programming of ccNUMA nodes
	ccNUMA – The other affinity to care about
	How much does nonlocal access cost?
	Enforcing memory locality with numactl
	ccNUMA default placement policy
	Coding for ccNUMA data locality
	Coding for Data Locality
	NUMA-aware allocator for C++ std::vector<>
	Diagnosing bad ccNUMA locality
	Using performance counters for diagnosis
	OpenMP STREAM triad on AMD Epyc 7451 (6 cores per LD)
	A weird observation
	Riddle solved: NUMA balancing
	Summary on ccNUMA issues
	Case study: Parallelizing a Gauss-Seidel Solver
	3D matrix-free Gauss-Seidel smoother
	OpenMP parallelization?
	Idea: wavefront parallelization
	Wavefront parallelization
	Wavefront parallelization
	Wavefront parallelization with OpenMP in 3D
	Wavefront parallelization – open questions

