_ UNIVERSITAT GREIFSWALD FRIEDRICH-ALEXANDER
Wissen lockt. Sgit 1456 R A A JRNBERG

Erlangen Regional
Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitéat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 8: Introduction to the Message Passing Interface




Outline of course

= Introduction to the Message Passing Interface (MPI)

Parallel Programming 2020 2020-11-30



The message passing paradigm

Distributed-memory

architecture: P P P P P
cC C C cC C

Each process(or) can only [ | | |

access its dedicated address | Message M M 1 M

No global shared address
space

Communication netvwork

Data exchange and Message passing library:
communication between
processes is done by explicitly
passing messages through a = Hide communication hardware and software
communication network layers from application developer

= Should be flexible, efficient and portable

Parallel Programming 2020 2020-11-30 3



The message passing paradigm

= Widely accepted standard in HPC / numerical simulation:
Message Passing Interface (MPI)

* Process-based approach: All variables are local!
= Same program on each processor/machine (SPMD)

= The program is written in a sequential language (Fortran/C[++])

= Data exchange between processes: Send/receive messages via MPI
library calls

= No automatic workload distribution

Parallel Programming 2020 2020-11-30



The MPI standard

MPI forum — defines MPI standard / library subroutine interfaces

Latest standard: MPI 3.1 (2015), 868 pages
= MPI1 4.0 under development

Members (approx. 60) of MPI standard forum

= Application developers

= Research institutes & computing centers

= Manufacturers of supercomputers & software designers
Successful free implementations (MPICH, mvapich,
OpenMPIl) and vendor libraries (Intel, Cray, HP,...)
Documents: http://www.mpi-forum.org/

Parallel Programming 2020 2020-11-30 5


http://www.mpi-forum.org/

MPI goals and scope

= Portability is main goal: architecture- and

hardware-independent code Application
MPI
» Fortran and C interfaces (C++
deprecated)
= Features for supporting parallel
libraries

= Support for heterogeneous
environments (e.g., clusters with
compute nodes of different
architectures)

Parallel Programming 2020 2020-11-30



FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

MPI in a nutshell
The beginner’s MPI toolbox




Architecture

= QOperating system view:
Application User - Running processes
= Developer’s view: Library routines for
1 = coordination
. ” MPI| execution = communication
Library calls ) ] L
(>500, 20 essential) environment synchronization
I = User’s view: MPI execution
: environment provides
MPI Library ProL
= resource allocation
I = parallel program startup
Threads / processes / CPUs / - other (implementation-dependent)
network hardware behavior




Parallel execution

in MPI

Program startup

\\

Y YV VYW VY VY
Program shutdown

Processes run throughout program execution

MPI startup mechanism:
= launches tasks/processes

= establishes communication context
(“communicator”)

MPI Point-to-point communication:
= between pairs of tasks/processes
MPI Collective communication:

= between all processes or a subgroup
= Dbarrier, reductions, scatter/gather

Clean shutdown by MPI

Parallel Programming 2020

2020-11-30



C and Fortran interfaces for MPI

= Required header files:

= C: #include <mpi.h>
= Fortran: include 'mpif.h'
= Fortran90: use mpi / use mpi £08
= Bindings:
= C: error = MPI Xxxx(...);
= Fortran: call MPI XXXX(...,ierror)
= MPI constants (global/common): All upper case in C
= Arrays:
= C: indexed from O

=  Fortran: indexed from 1

Parallel Programming 2020 2020-11-30

10



MPI error handling

C routines

= return an int — may be ignored

Fortran MPI routines

= ierror argument — cannot be omitted!

Return value MPI SUCCESS

= Indicates that all is fine

Default: Abort parallel computation in case of other return values

= but can also define error handlers (not covered here)

Par.

allel Programming 2020 2020-11-30

11



Initialization and finalization

= Detalls of MPI startup are implementation defined

= First call in MPI program: initialization of parallel machine

int MPI Init(int *argc, char ***argv);

= Last call: clean shutdown of parallel machine
int MPI Finalize();

Only “master” process is guaranteed to continue after finalize

= Stdout/stderr of each MPI process
= usually redirected to console where program was started
= many options possible, depending on implementation

Parallel Programming 2020 2020-11-30

12



World communicator and rank

= MPI Init () defines “‘communicator’ MPI COMM WORLD comprising all
processes

MPI_COMM WORLD

Process rank

Parallel Programming 2020 2020-11-30

13



Communicator and rank

= Communicator defines a set of processes (MPI_COMM WORLD: all)

= The rank identifies each process within a communicator
= Obtain rank:
int rank;
MPI Comm rank (MPI COMM WORLD, &rank);
= rank = 0,1,2,..., (humber of processes in communicator — 1)

= One process may have different ranks if it belongs to different
communicators

= Obtain number of processes in communicator:

int size;
MPI_Comm;size(MPI_COMM;WORLD, &size) ;

Parallel Programming 2020 2020-11-30

14



MPI “Hello World!" in C

#include <mpi.h>

int main (char argc, char **argv) ({

int rank, size:; Never forget that

these are pointers to
the original varables!
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, &size);
MPI Comm rank (MPI _COMM WORLD, &rank);

printf (“Hello World! I $d of %d\n”, rank, size);
MPI Finalize(); Communicator

required for (almost)
} all MPI calls

Parallel Programming 2020 2020-11-30

15



Compiling and running the code

= Compiling/linking
= Headers and libs must be found by
compiler
= Most implementations provide
wrapper scripts, e.g.,
- mpif77 /mpif90
- mpicc /mpiCC
= Behave like normal
compilers/linkers
= Running
= Details are implementation specific

= Startup wrappers: mpirun,
mpiexec, aprun, poe

$ mpiCC -o hello hello.cc
$ mpirun -np 4 ./hello
Hello World! I am 3 of 4
Hello World! I am 1 of 4
Hello World! I am O of 4
Hello World! I am 2 of 4

= Details are implementation
specific
= Where/how are processes started?
= Can | set the process-core affinity?
= Where does the output go?
= Do | need a shared file system?

Parallel Programming 2020

2020-11-30

16



Point-to-point communication: message envelope

= Which process is sending the message? P P P P P
= Where is the data on the sending process? c c c c c
- What kind of data is being sent? ml (m] [(m]| [m] [m
= How much data is there? | Message |T| |k Nl [Nl W J|

= Which processes are receiving the
message?

= Where should the data be left on the receiving process?
= How much data is the receiving process prepared to accept?

Communication netwrork

= Sender and receiver must pass their information to MPI separately

Parallel Programming 2020 2020-11-30 17



MPI point-to-point communication

* Processes communicate by sending and receiving messages
= MPI message: array of elements of a particular type

sender receiver

= Data types
= Basic
= MPI derived types

Parallel Programming 2020 2020-11-30

18



Predefined data types in MPI (selection)

MPI type C type
MPI_CHAR signed char
MPI_INT signed int
MPI_LONG signed long

MPI_LONG_LONG_INT
MPI_UNSIGNED
MPI_UNSIGNED_LONG_LONG
MPI_INT32_T
MPI_INT64_T
MPI_UINT32_T
MPI_UINT64_T
MPI_FLOAT

MPI_DOUBLE
MPI_C_BOOL
MPI_C_COMPLEX
MPI_C_DOUBLE_COMPLEX

signed long long int
unsigned int

unsigned long long int
int32_t

int6ed t

int32_t

inted t

float

double

_Bool

float _Complex
double _Complex

MPI_BYTE

N/A | 8 binary digits

Data type matching: Same type
in send and receive call
required

Support for heterogeneous
systems: automatic data type
conversion

A similar list exists for
Fortran, of course

Parallel Programming 2020

2020-11-30

19



MPI blocking point-to-point communication

= Point-to-point: one sender, one receiver
= |dentified by rank

= Blocking: After the MPI call returns,
= the source process can safely modify the send buffer
= the receive buffer (on the destination process) contains the entire message.

= This is not the “standard” definition of “blocking”

Parallel Programming 2020 2020-11-30

20



Standard blocking send

int MPI_ Send(const void* buf, int count,
MPI Datatype datatype, int dest, int tag,
MPI Comm comm) ;

buf address of send buffer
count # of elements
datatype MPI data type

dest destination rank

tag message tag

comm communicator

At completion
= Send buffer can be reused as you see fit
= Status of destination is unknown — the message could be anywhere

Parallel Programming 2020 2020-11-30

21



Standard blocking receive

int MPI Recv(void* buf, int count,
MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Status *status);

buf address of receive buffer

count # of elements that fit into receive buffer
datatype MPI data type

source sending process rank

tag message tag

comm communicator

status address of status object

At completion
= Message has been received successfully
= Message length, and probably the tag and the sender, are still unknown

Parallel Programming 2020 2020-11-30

22



Source and tag wildcards

= MPI_Recv accepts wildcards for the source and tag arguments:
MPI_ ANY SOURCE, MPI_ANY TAG

= Actual source and tag values are available in the status object:

MPI Status s;

MPI Recv(buf, count, datatype, MPI ANY SOURCE,
MPI ANY TAG, MPI_COMM WORLD, &s);

printf (“Received from rank %d with tag %d\n”,
s.MPI_SOURCE, s.MPI TAG) ;

Parallel Programming 2020 2020-11-30

23



Recelved message length

int MPI Get count(const MPI Status *status,
MPI Datatype datatype, int *count)

status address of status object
datatype MPI data type
count address of element count variable

= Determines number of elements received

int count;
MPI Get count(&s, MPI DOUBLE, &count);

Parallel Programming 2020 2020-11-30

24



Requirements for poit-to-point communication

For a communication to succeed:

sender must specify a valid destination

receiver must specify a valid source rank
(or MPI_ANY SOURCE)

communicator must be the same
(e.g., MPI_COMM WORLD)

tags must match
(or MPI_ANY TAG for receiver)

message data types must match
receiver’s buffer must be large enough

From: source rank
tag

To:
destination rank

item-1
item-2
item-3 | ,count®

item-4 | elements

item-n y

Parallel Programming 2020

2020-11-30

25



Beginner’'s MPI toolbox

Basic point-to-point communication and support functions:

MPI_Init()
MPI Comm size()
MPI Comm rank ()
MPI Send()
MPI Recv ()
MPI Get count()
MPI Finalize()

let's get going

how many are we?

who am 1?

send data to someone else
receive data from some-/anyone
how many items have | received?
finish off

Send/receive buffer may safely be reused after the call has completed
= MPI Send() must have a specific target/tag, MPI_Recv () does not
So far no explicit synchronization!

Parallel Programming 2020

2020-11-30

26



Example: parallel integration in MPI

MPI Status status; // rank 0 collects partial results
MPI Comm size (MPI_COMM WORLD, &size); if (O==rank) {
MPI_Comm rank (MPI_COMM WORLD, &rank); res = psum; // local result
// integration limits for (int i=1l; i<size; ++i) {
double a=0., b=2., res=0., tmp; MPI Recv (tmp, // receive buffer
// limits for "me" 1, // array length
mya = a + rank * (b-a)/size; MPI DOUBLE, // data type
myb = mya + (b-a)/size; i, // rank of source
// integrate f(x) over my own chunk 0, // tag (unused here)
psum = integrate (mya,myb) ; MPI COMM WORLD,
&status); //status object
b .
Task: calculate [’ f(x)dx using )
(existing) function integrate (x,y) printf("Result: %.151f\n", res);
} else { // ranks '= 0 send results to rank 0
MPI_ Send (psum, // send buffer
= Split up interval [a,b] into equal L J mEGEEE e
R MPI DOUBLE,// data type
dlSjOlnt chunks 0, // rank of destination
= Compute partial results in parallel s J BRG] (ERREEEl mzaag)

MPI_COMM WORLD) ;
| |
}

Parallel Programming 2020 2020-11-30 27



Remarks on parallel integration example

= Gathering results from processes is a very common task in MPI — there are more
efficient and elegant ways to do this (see later).

= This is a reduction operation (summation). There are more efficient and elegant
ways to do this (see later).

= The “master” process waits for one receive operation to be completed before the
next one is initiated. There are more efficient ways... You guessed it!

= “Master-worker” schemes are quite common in MPI programming but scalability to
high process counts may be limited.

= Error checking is rarely done in MPI programs — debuggers are often more efficient
if something goes wrong.

= Every process has its own res variable, but only the master process actually uses
it = it's typical for MPI codes to use more memory than actually needed.

Parallel Programming 2020 2020-11-30 28



Some useful MPI calls

" double MPI Wtime () ;
Returns current time stamp

" double MPI Wtick();
Returns resolution of timer

" int MPI Abort(MPI Comm comm, int errorcode);

= “Best effort” attempt to abort all tasks in communicator, deliver error code to
calling environment

= This is a last resort; if possible, shut down the program via MPI_Finalize ()

Parallel Programming 2020 2020-11-30

29



Summary of beginner’s MPI toolbox

= Starting up and shutting down the “parallel program” with MPTI Init ()
and MPI_Finalize ()

= MPI task (“process”) identified by rank (MPI Comm rank())
= Number of MPI tasks: MPI Comm size ()
= Startup process is very implementation dependent

= Simple, blocking point-to-point communication with MPI _Send () and
MPI Recv()

= “Blocking” == buffer can be reused as soon as call returns
= Message matching

= Timing functions

Parallel Programming 2020 2020-11-30

30



