
Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg

Institute of Physics, Universität Greifswald

Lecture 8: Introduction to the Message Passing Interface

2Parallel Programming 2020

Outline of course

▪ Basics of parallel computer architecture

▪ Basics of parallel computing

▪ Introduction to shared-memory programming with OpenMP

▪ OpenMP performance issues

▪ Introduction to the Message Passing Interface (MPI)

▪ Advanced MPI

▪ MPI performance issues

▪ Hybrid MPI+OpenMP programming

2020-11-30

2020-11-30 3Parallel Programming 2020

The message passing paradigm

Distributed-memory

architecture:

Each process(or) can only

access its dedicated address

space.

No global shared address

space

Data exchange and

communication between

processes is done by explicitly

passing messages through a

communication network

Message passing library:

▪ Should be flexible, efficient and portable

▪ Hide communication hardware and software

layers from application developer

Message

2020-11-30 4Parallel Programming 2020

The message passing paradigm

▪ Widely accepted standard in HPC / numerical simulation:

Message Passing Interface (MPI)

▪ Process-based approach: All variables are local!

▪ Same program on each processor/machine (SPMD)

▪ The program is written in a sequential language (Fortran/C[++])

▪ Data exchange between processes: Send/receive messages via MPI

library calls

▪ No automatic workload distribution

2020-11-30 5Parallel Programming 2020

The MPI standard

▪ MPI forum – defines MPI standard / library subroutine interfaces

▪ Latest standard: MPI 3.1 (2015), 868 pages

▪ MPI 4.0 under development

▪ Members (approx. 60) of MPI standard forum

▪ Application developers

▪ Research institutes & computing centers

▪ Manufacturers of supercomputers & software designers

▪ Successful free implementations (MPICH, mvapich,

OpenMPI) and vendor libraries (Intel, Cray, HP,…)

▪ Documents: http://www.mpi-forum.org/

http://www.mpi-forum.org/

Application

MPI

Drivers

IB, Eth, shmem,…

2020-11-30 6Parallel Programming 2020

MPI goals and scope

▪ Portability is main goal: architecture- and

hardware-independent code

▪ Fortran and C interfaces (C++

deprecated)

▪ Features for supporting parallel

libraries

▪ Support for heterogeneous

environments (e.g., clusters with

compute nodes of different

architectures)

Hard-

ware

MPI in a nutshell

The beginner’s MPI toolbox

Architecture

▪ Operating system view:

▪ Running processes

▪ Developer’s view: Library routines for

▪ coordination

▪ communication

▪ synchronization

▪ User’s view: MPI execution

environment provides

▪ resource allocation

▪ parallel program startup

▪ other (implementation-dependent)

behavior

Application

Library calls
(>500, 20 essential)

User

MPI execution

environment

MPI Library

Threads / processes / CPUs /

network hardware

2020-11-30 9Parallel Programming 2020

Parallel execution in MPI

+

Program startup ▪ Processes run throughout program execution

▪ MPI startup mechanism:

▪ launches tasks/processes

▪ establishes communication context

(“communicator”)

▪ MPI Point-to-point communication:

▪ between pairs of tasks/processes

▪ MPI Collective communication:

▪ between all processes or a subgroup

▪ barrier, reductions, scatter/gather

▪ Clean shutdown by MPIProgram shutdown

2020-11-30 10Parallel Programming 2020

C and Fortran interfaces for MPI

▪ Required header files:

▪ C: #include <mpi.h>

▪ Fortran: include 'mpif.h'

▪ Fortran90: use mpi / use mpi_f08

▪ Bindings:

▪ C: error = MPI_Xxxx(...);

▪ Fortran: call MPI_XXXX(...,ierror)

▪ MPI constants (global/common): All upper case in C

▪ Arrays:

▪ C: indexed from 0

▪ Fortran: indexed from 1

2020-11-30 11Parallel Programming 2020

MPI error handling

▪ C routines

▪ return an int — may be ignored

▪ Fortran MPI routines

▪ ierror argument — cannot be omitted!

▪ Return value MPI_SUCCESS

▪ Indicates that all is fine

▪ Default: Abort parallel computation in case of other return values

▪ but can also define error handlers (not covered here)

2020-11-30 12Parallel Programming 2020

Initialization and finalization

▪ Details of MPI startup are implementation defined

▪ First call in MPI program: initialization of parallel machine

int MPI_Init(int *argc, char ***argv);

▪ Last call: clean shutdown of parallel machine

int MPI_Finalize();

Only “master” process is guaranteed to continue after finalize

▪ Stdout/stderr of each MPI process

▪ usually redirected to console where program was started

▪ many options possible, depending on implementation

2020-11-30 13Parallel Programming 2020

World communicator and rank

▪ MPI_Init() defines “communicator” MPI_COMM_WORLD comprising all

processes

0
1

2

3 4

56

7

MPI_COMM_WORLD

Process rank

2020-11-30 14Parallel Programming 2020

Communicator and rank

▪ Communicator defines a set of processes (MPI_COMM_WORLD: all)

▪ The rank identifies each process within a communicator

▪ Obtain rank:

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

▪ rank = 0,1,2,…, (number of processes in communicator – 1)

▪ One process may have different ranks if it belongs to different

communicators

▪ Obtain number of processes in communicator:

int size;

MPI_Comm_size(MPI_COMM_WORLD, &size);

2020-11-30 15Parallel Programming 2020

MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf(“Hello World! I am %d of %d\n”, rank, size);

MPI_Finalize();

}

Never forget that

these are pointers to

the original varables!

Communicator

required for (almost)

all MPI calls

2020-11-30 16Parallel Programming 2020

Compiling and running the code

▪ Compiling/linking

▪ Headers and libs must be found by

compiler

▪ Most implementations provide

wrapper scripts, e.g.,

▪ mpif77 / mpif90

▪ mpicc / mpiCC

▪ Behave like normal

compilers/linkers

▪ Running

▪ Details are implementation specific

▪ Startup wrappers: mpirun,

mpiexec, aprun, poe

$ mpiCC -o hello hello.cc

$ mpirun -np 4 ./hello

Hello World! I am 3 of 4

Hello World! I am 1 of 4

Hello World! I am 0 of 4

Hello World! I am 2 of 4

▪ Details are implementation

specific

▪ Where/how are processes started?

▪ Can I set the process-core affinity?

▪ Where does the output go?

▪ Do I need a shared file system?

2020-11-30 17Parallel Programming 2020

Point-to-point communication: message envelope

▪ Which process is sending the message?

▪ Where is the data on the sending process?

▪ What kind of data is being sent?

▪ How much data is there?

▪ Which processes are receiving the

message?

▪ Where should the data be left on the receiving process?

▪ How much data is the receiving process prepared to accept?

▪ Sender and receiver must pass their information to MPI separately

Message

2020-11-30 18Parallel Programming 2020

MPI point-to-point communication

▪ Processes communicate by sending and receiving messages

▪ MPI message: array of elements of a particular type

▪ Data types

▪ Basic

▪ MPI derived types

rank 𝑖 rank 𝑗

sender receiver

2020-11-30 19Parallel Programming 2020

Predefined data types in MPI (selection)

A similar list exists for

Fortran, of course8 binary digits

Data type matching: Same type
in send and receive call
required

Support for heterogeneous
systems: automatic data type
conversion

2020-11-30 20Parallel Programming 2020

MPI blocking point-to-point communication

▪ Point-to-point: one sender, one receiver

▪ Identified by rank

▪ Blocking: After the MPI call returns,

▪ the source process can safely modify the send buffer

▪ the receive buffer (on the destination process) contains the entire message.

▪ This is not the “standard” definition of “blocking”

2020-11-30 21Parallel Programming 2020

Standard blocking send

At completion

▪ Send buffer can be reused as you see fit

▪ Status of destination is unknown – the message could be anywhere

int MPI_Send(const void* buf, int count,

MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm);

buf address of send buffer

count # of elements

datatype MPI data type

dest destination rank

tag message tag

comm communicator

2020-11-30 22Parallel Programming 2020

Standard blocking receive

At completion

▪ Message has been received successfully

▪ Message length, and probably the tag and the sender, are still unknown

int MPI_Recv(void* buf, int count,

MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status);

buf address of receive buffer

count # of elements that fit into receive buffer

datatype MPI data type

source sending process rank

tag message tag

comm communicator

status address of status object

2020-11-30 23Parallel Programming 2020

Source and tag wildcards

▪ MPI_Recv accepts wildcards for the source and tag arguments:

MPI_ANY_SOURCE, MPI_ANY_TAG

▪ Actual source and tag values are available in the status object:

MPI_Status s;

MPI_Recv(buf, count, datatype, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &s);

printf(“Received from rank %d with tag %d\n”,

s.MPI_SOURCE, s.MPI_TAG);

2020-11-30 24Parallel Programming 2020

Received message length

▪ Determines number of elements received

int count;

MPI_Get_count(&s, MPI_DOUBLE, &count);

int MPI_Get_count(const MPI_Status *status,

MPI_Datatype datatype, int *count)

status address of status object

datatype MPI data type

count address of element count variable

2020-11-30 25Parallel Programming 2020

Requirements for poit-to-point communication

For a communication to succeed:

▪ sender must specify a valid destination

▪ receiver must specify a valid source rank
(or MPI_ANY_SOURCE)

▪ communicator must be the same
(e.g., MPI_COMM_WORLD)

▪ tags must match
(or MPI_ANY_TAG for receiver)

▪ message data types must match

▪ receiver’s buffer must be large enough

2020-11-30 26Parallel Programming 2020

Beginner’s MPI toolbox

▪ Basic point-to-point communication and support functions:

▪ MPI_Init() let's get going

▪ MPI_Comm_size() how many are we?

▪ MPI_Comm_rank() who am I?

▪ MPI_Send() send data to someone else

▪ MPI_Recv() receive data from some-/anyone

▪ MPI_Get_count() how many items have I received?

▪ MPI_Finalize() finish off

▪ Send/receive buffer may safely be reused after the call has completed

▪ MPI_Send() must have a specific target/tag, MPI_Recv() does not

▪ So far no explicit synchronization!

2020-11-30 27Parallel Programming 2020

Example: parallel integration in MPI
MPI_Status status;

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

// integration limits

double a=0., b=2., res=0., tmp;

// limits for "me"

mya = a + rank * (b-a)/size;

myb = mya + (b-a)/size;

// integrate f(x) over my own chunk

psum = integrate(mya,myb);

// rank 0 collects partial results

if(0==rank) {

res = psum; // local result

for(int i=1; i<size; ++i) {

MPI_Recv(tmp, // receive buffer

1, // array length

MPI_DOUBLE, // data type

i, // rank of source

0, // tag (unused here)

MPI_COMM_WORLD,

&status); //status object

res += tmp;

}

printf(“Result: %.15lf\n”, res);

} else { // ranks != 0 send results to rank 0

MPI_Send(psum, // send buffer

1, // message length

MPI_DOUBLE,// data type

0, // rank of destination

0, // tag (unused here)

MPI_COMM_WORLD);

}

Task: calculate ׬𝑎
𝑏
𝑓 𝑥 𝑑𝑥 using

(existing) function integrate(x,y)

▪ Split up interval [a,b] into equal

disjoint chunks

▪ Compute partial results in parallel

▪ Collect global sum at rank 0

2020-11-30 28Parallel Programming 2020

Remarks on parallel integration example

▪ Gathering results from processes is a very common task in MPI – there are more

efficient and elegant ways to do this (see later).

▪ This is a reduction operation (summation). There are more efficient and elegant

ways to do this (see later).

▪ The “master” process waits for one receive operation to be completed before the

next one is initiated. There are more efficient ways... You guessed it!

▪ “Master-worker” schemes are quite common in MPI programming but scalability to

high process counts may be limited.

▪ Error checking is rarely done in MPI programs – debuggers are often more efficient

if something goes wrong.

▪ Every process has its own res variable, but only the master process actually uses

it → it’s typical for MPI codes to use more memory than actually needed.

2020-11-30 29Parallel Programming 2020

Some useful MPI calls

▪ double MPI_Wtime();

Returns current time stamp

▪ double MPI_Wtick();

Returns resolution of timer

▪ int MPI_Abort(MPI_Comm comm, int errorcode);

▪ “Best effort” attempt to abort all tasks in communicator, deliver error code to

calling environment

▪ This is a last resort; if possible, shut down the program via MPI_Finalize()

2020-11-30 30Parallel Programming 2020

Summary of beginner’s MPI toolbox

▪ Starting up and shutting down the “parallel program” with MPI_Init()

and MPI_Finalize()

▪ MPI task (“process”) identified by rank (MPI_Comm_rank())

▪ Number of MPI tasks: MPI_Comm_size()

▪ Startup process is very implementation dependent

▪ Simple, blocking point-to-point communication with MPI_Send() and

MPI_Recv()

▪ “Blocking” == buffer can be reused as soon as call returns

▪ Message matching

▪ Timing functions

