_ UNIVERSITAT GREIFSWALD FRIEDRICH-ALEXANDER
Wissen lockt. Seit 1456 R ANGEN-NURNBERG

Erlangen Regional
Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitéat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 9: More MPI — point-to-point communication

Outline of course

= Introduction to the Message Passing Interface (MPI)

Parallel Programming 2020 2020-12-07

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Blocking point-to-point communication

Use case: Next-neighbor communication

* Frequent pattern in message passing: ring shift
Rank O Rank 1 Rank 2 Rank 3

. // my left neighbor
= Simplistic send/recv pairing {.c¢ < (rank B size) % size;

IS not reliable: // my right neighbor
right = (rank + 1) % size;

MPI Send(buffer send, n, MPI_INT, righ@, 1,
MPI_COMM WORLD) ;
MPI Recv(buffer recv, n, MPI INT, left, 1,

MPI COMM WORLD, status);

Parallel Programming 2020 2020-12-07

A simple experiment

// Common use case: next-neighbor data exchange

int dst;

if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof (char));

MPI Send(buffer, count, MPI CHAR, dst, 0, MPI_COMM WORLD) ;
MPI Recv (buffer, count, MPI_ CHAR, dst, 0, MPI_COMM WORLD,

MPI_STATUS IGNORE) ;
tested on SuperMIC@LRZ

$

$ mpiexec -n ./send 10 # OK
$ mpiexec -n ./send 100 # OK
$ mpiexec -n ./send 1000 # OK
$ mpiexec -n ./send 10000 # OK
$ mpiexec -n ./send 100000 # OK
$ mpiexec -n ./send 1000000 # DEADLOCK

N MNDMDMNMNMNDND

Parallel Programming 2020 2020-12-07

The two variants of MPI_Send

Standard send is either buffered or synchronous, depending on the
message size

Buffered send Synchronous send

= Always successful = Completion if receive operation on

= Time of delivery unknown other end has started

= Completion does not (necessarily) = Handshake - synchronization
involve receiver with receiver

= Explicit call: MPI_Bsend () * Explicit call: MPI_Ssend ()

Parallel Programming 2020 2020-12-07 6

Blocking point-to-point communication

= Upon completion:
= Buffer can be reused safely (without interfering with message transmission)
= Variants of (common) send and receive calls:

MPI function type completes when

MPI_ Send synchronous or depends on type
buffered

MPI Bsend buffered buffer has been copied

MPI Ssend synchronous remote starts receive

MPI Recv -- message was received

Parallel Programming 2020 2020-12-07

Buffered send

Caveat: comes at the cost of

additional copy operations
MPI Bsend(buf, count, datatype,

dest, tag, comm) Only one buffer can be

attached to the application
User has to attach ¢ at the same time
extra buffer (see

X
= app MPI MPI app
o Bsend
A > ’ @)
¥ _ copy msg c
: - X
completion post send S
wait for - Recv o)
Bsend completes recv. Je— post recv T
when message has msg . msg
been copied transfer | transfer 3

Q completion

predictable & no
synchronization

Parallel Programming 2020 2020-12-07 8

Attaching a buffer

" MPI Buffer attach(void * buffer, int size);

buffer: address of buffer app MPI
size: buffer size in bytes Buffer_attach
MPI Buffer detach(void ** buffer, int * size); < attach
buffer: returns addr. of detached buffer,
defined as void *, but actually expects void ** Bsend R
size: returns size of the detached buffer) copy msg
wait for
= Size of buffer = (size of all outstanding BSENDSs) + Buffer_detach e
(number of intended BSENDs * MPI_BSEND OVERHEAD) g
= Best way to get required size for one message: transfer
MPI Pack size(int incount, MPI Datatype) detach
datatype, MPI Comm comm, int * s))

size = s + MPI BSEND OVERHEAD

Parallel Programming 2020 2020-12-07

Synchronous send

MPI Ssend(buf, count, datatype, Problems:
= Performance: high latency, risk of
dest, tag, comm) serialization
synchronization of source = Source for potential deadlocks
and destination But: can be used for debugging
Rank O Rank 1
[app] =
Ssend -
1 | post send
2 .
S wait for Recv
= recv e
o - b y ¥
re) < post recv =
4 _ £
h V7
completion sy -] Msg S
transfer transfer =
o A 4
Ssend completes after recv redictable & completion
has been posted at P :
S safe behavior
destination
2020-12-07

Parallel Programming 2020

Possible solutions for the deadlock situation

MPI1_Bsend: provided internal buffer takes care of everything 0 1
int dst; if (rank == 0) { dst = 1; } else { dst = 0; }
char * buffer = malloc(count * sizeof (char)) ; Bsend Bsend
e
MPI Bsend(buffer, count, MPI_CHAR, dst, 0, MPI_COMM WORLD) ;
MPI Recv(buffer, count, MPI_CHAR, dst, 0, MPI_COMM WORLD, — _
MPI_STATUS_IGNORE) ; Recv ReCVﬁ

MPI_Ssend: ensure matching send/receive pairs by choosing right order

int dst; if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof (char));

if (rank == 0) { 0 1
MPI_Ssend (buffer, count, MPI CHAR, 1, 0, MPI_COMM WORLD) ;
MPI_Recv (buffer, count, MPI CHAR, 1, 0, MPI_COMM WORLD, Ssend Recv

MPI STATUS_ IGNORE),
} else {

MPI Recv (buffer, count, MPI_CHAR, 1, 0, MPI_COMM WORLD,
MPI_STATUS IGNORE) ;

MPI Ssend(buffer, count, MPI_CHAR, 1, 0, MPI_COMM WORLD) ;
}

Recv) Ssend

a

Parallel Programming 2020 2020-12-07

Combining send and receive: MPI_Sendrecv

= Syntax: simple combination of send and receive arguments:

MPI Sendrecv (
buffer send, sendcount, sendtype, dest,

buffer recv, recvcount, recvtype, source,

sendtag,
recvtagqg,

comm, status);

= MPI takes care that no deadlocks occur disjoint send/receive buffers
_ can have different count &
// my left neighbor data type
left = (rank - 1 + size) % size;
// my right neighbor

right = (rank + Dm/‘ blocking call

MPI_ Sendrecv (
buffer send, n, MPI_INT, right, O,
buffer recv, n, MPI INT, left, 0, MPI_COMM WORLD, status);

Parallel Programming 2020 2020-12-07 12

Using MPI_Sendrecv

= MPI_Sendrecv () matches with *send/*recv point-to-point calls
= MPI PROC NULL as source/destination acts as no-op
= send/recv with MPI_PROC_NULL return as soon as possible, buffers are not altered

= Useful for open chains/non-circular shifts:
left = rank - 1; if (left < 0) { left = MPI PROC NULL; }

right = rank + 1; if (right >= siz¢) {right = MPI PROC_NULL; }
MPI_ Sendrecv (%\\\\-___‘

b , n, MPI INT, right, O,
buffer recv, n, MPI INT, left, 0, MPI COMM WORLD, &status);

1 2 3

send buffer send buffer and buffe
receive buffer receive buffer receive buffer

Parallel Programming 2020 2020-12-07

Pattern: ghost cell exchange

Many iterative algorithms require exchange of domain boundary layers

2D domain distributed to ranks
(here 4 x 3), each rank gets
one tile

Each rank’s tile is surrounded

After each sweep over a tile, perform i1

1
ghost cell exchange, i.e., update i i ‘ RN
ghost cells with new values of ! A kud

neighbor cells

Possible implementation:

1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor
3. copy new data into ghost cells

I LI | L]
1 1 1 1
by ghost cells, representing the MPI Sendrecv (: T :‘ T | MPI_Sendrecv (
. sb 3j 1 : 11 : 1 sb i
cells of the neighbors romr Ly l RN : Ly
e mem] rb, ., j,) L—dg WL 1, b, ., i, .)
1]
: | step2 S -1- Y- step 2
1 1
1 1
: 1/ ghost cells Sbu <
1
b rb rb
Parallel Programming 2020 2020-12-07 14

In-place communication: MPI_Sendrecv_replace ()

= When only one single buffer is required:
MPI Sendrecv replace (//////////////‘ =S Lliisl GONIAG CEiE)
—_ —_ type for send & receive
buf, count, datatype,
dest, sendtag, source, recvtag,

comm, status);
= MPI ensures that no deadlocks occur

left = (rank - 1 + size) % size;
right = (rank + 1) % size;

MPI Sendrecv_replace (

buf, n, MPI INT, right, 0, left, 0, MPI_COMM WORLD, &status);

3

0 1 2
| LU | NG ;o RO :

Parallel Programming 2020 2020-12-07

15

Case study: MPI-parallel dense MVM

= Remember OpenMP?

#pragma omp parallel for
for(int r=0; r<N; ++r)

for(int c=0; c<N; ++c)
ylr] += a[r][ec] * x[c];

T0

T1

T2

T3

N
=Y + z AUX]
=1

Parallel Programming 2020

2020-12-07

16

Case study: MPI-parallel dense MVM

= MPI: Data distribution across ranks n
(matrix and vectors)
=yt ZAUxJ

Parallel Programming 2020 2020-12-07

MPI-parallel dense MVM

Stepl: MVM on
diagonal blocks

Ring shift of

vector r

Step2: MVM on
next subdiag blocks

Parallel Programming 2020

2020-12-07

18

Implementation

int num = size / ranks; int rest = size % ranks;
1l neighbor = (rank + 1) % ranks;
r neighbor = (rank - 1 + ranks) % ranks;
int n_start=rank*my size+min(rest,rank), cur size=my size;
// loop over RHS ring shifts
for (int rot=0; rot<ranks; rot++) {

for (int m=0; m<my size; m++) {

for(int n=n_start; n<n_start+cur size; n++) {
y[m] += a[m*size+n] * x[n-n_start];

}
}

n_start += cur size;

if (n_start>=size) n_start=0; // wrap around

cur_size = size of rank(l _neighbor,ranks,size);

if (rot!=ranks-1) MPI Sendrecv_replace(x, numt(rest?1:0),
MPI DOUBLE, r neighbor, O,
1l neighbor, 0, MPI_COMM WORLD, &status);

Parallel Programming 2020 2020-12-07

19

Blocking point-to-point: summary

= Blocking MPI communication calls '
= Operation locally complete when call returns
- After completion: send/receive buffer can safely be reused @

= Available send communication modes:
= Synchronous (MPI_Ssend):
- Handshake with receiver - performance drawbacks, deadlock dangers
- Buffered (MPI_Bsend):
- Completes after buffer is copied at sender
- User-provided buffer to save messages
- Additional copy operations
= Standard (MPI_Send):
- Either synchronous or buffered
- depending on message length

Parallel Programming 2020 2020-12-07

20

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Nonblocking point-to-point communication

Nonblocking communication

= Opportunities
= Avoiding deadlocks

= Opportunity for truly bidirectional
communication

= Avoid idle time
= Avoid synchronization

= Opportunity for overlapping
communication with useful work

Best case scenario

Rank O Rank 1
app MPI MPI app
Isend .
3 i start send
i request
.
post recv
Wait , msg R msg
B transfer transfer
completion -

Parallel Programming 2020

2020-12-07

22

Standard nonblocking send/receive

" MPI Isend(sendbuf, count, datatype, dest, tag,
comm, MPI Request * request);

MPI Irecv(recvbuf, count, datatype, source, tag,
comm, MPI Request * request);

request: pointer to variable of type MPI_Request,
will be associated with the corresponding operation

= Do not reuse sendbuf/recvbuf before MPI_Isend/MPI Irecv has
been completed

= Return of call does not imply completion
= MPI Irecv has no status argument
= obtained later during completion via MPI_Wait*/MPI Test*

Parallel Programming 2020 2020-12-07

23

Nonblocking send and receive variants

= Completion

= Return of MPI_I* call does not imply completion
= Check for completion via MPI_Wait* / MPI Test*
= Semantics identical to blocking call after successful completion

nonblocking MPI blocking

function MPI function

completes when

MPI Isend MPI_ Send synchronous or depends on type
buffered

MPI Ibsend MPI Bsend buffered buffer has been copied

MPI Issend MPI Ssend synchronous remote starts receive

MP I_I recv MP I_Re cv

-- message was received

Parallel Programming 2020

2020-12-07

24

Test for completion

Two test modes:

= Blocking

« MPI Wait*: Wait until the communication has been completed and buffer can
safely be reused

= Nonblocking
= MPI_Test*: Return true (false) if the communication has (not) completed

Despite the naming, the modes both pertain to honblocking point-to-point
communication!

Parallel Programming 2020 2020-12-07

25

Test for completion — single request

= Test one communication handle for completion:

MPI Wait (MPI_Request * request,
MPI Status * status);

MPI Test (MPI_Request * request,
MPI Status * status);
request: request handle of type MPI_Request

status: status object of type MPI_Status (cf. MPI_Recv)

variable of type int to test for success

Parallel Programming 2020

2020-12-07

26

Use of walit/test

MPI Wait MPI Test
MPI Request request; MPI Request request;
MPI Status status; MPI Status status;
int flag;
MPI Isend(MPI Isend(
send buffer, count, MPI CHAR, send buffer, count, MPI CHAR,
dst, 0, MPI COMM WORLD, &request); dst, 0, MPI COMM WORLD, &request);
do {
// do some work.. // do some work..
// do not use send buffer // do not use send buffer
MPI Test (&request, &flag, &status);
MPI Wait(&request, &status); } while (!'flag);

// use send buffer // use send buffer

Parallel Programming 2020 2020-12-07

Wait for completion — all requests in a list

= MPI can handle multiple communication requests
= Wait/Test for completion of multiple requests:

MPI Waitall (int count, MPI Request requests]|],
MPI_ Status statuses|[]);

MPI Testall (int count, MPI Request requests]|],
, MPI_ Status statuses[]);

= Waits for/Tests if all provided requests have been completed

Parallel Programming 2020 2020-12-07

28

Use of MPT Waitall

MPI Request requests[2]; __ Aﬂaysofd
MPI Status statuses[2]; requests an
B statuses

MPI Isend(send buffer, .., &(requests[0]));
MPI Irecv(recv buffer, .., &(requests[1]));

number of elements in

// do some work..
the arrays

MPI Waitall (2, requests, statuses)
// Isend & Irecv have been completed

Parallel Programming 2020 2020-12-07 29

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:

1. Copy new data into contiguous send buffers

2. Start nonblocking receives/sends from/to
corresponding neighbors

3. Update local cells that do not need halo cells
for boundary conditions (“bulk update”)

4. Wait with MP1_Waitall for all obtained

requests to complete

Copy received halo data into ghost cells

Update cells that need the halo

o 01

—> Opportunity to overlap communication with bulk update (MPI
Implementation permitting)

Parallel Programming 2020 2020-12-07 30

Wait for completion — one or several requests out of a list

Wait for/Test if exactly one request among many has been completed

" MPI Waitany(int count, MPI Request requests|[],
int * idx, MPI Status * status);

MPI Testany(int count, MPI Request requests][],
int * idx, int * flag,
MPI Status * status);

Wait for/Test if at least one request among many has been completed

" MPI Waitsome (int incount, MPI Request requests[], int * outcount,
int indices[], MPI Status statuses|[]);

MPI Testsome (int incount, MPI Request requests[], int * outcount,
int indices[], MPI Status statuses|[])

Parallel Programming 2020 2020-12-07

31

Use of MPTI Testany

MPI Request requests[2];
MPI_Status status;
int finished = 0;

= completed requests are

automatically set to
MPI Irecv(recv buffer, .., &(requests[l])); MPI_REQUEST_ NULL

do { = completed requests:

t
// do some work.. //////,,//’ requests|]

MPI Testany (2, requests, & , &flag, &status);
if (flag) { ++finished; }
} while (finished < 2);

MPI Isend(send buffer, .., &(requests[0]));

Parallel Programming 2020 2020-12-07

Pitfalls with nonblocking MPI and compiler optimizations

= Fortran:
MPI IRECV (recvbuf, ..., request, ierror)
MPI WAIT (request, status, ierror)
write (*,*) recvbuf

= may be compiled as
MPI IRECV (recvbuf, ..., request, ierror)
registerA = recvbuf
MPI WAIT (request, status, ierror)

write (*,*) registerA)

= j.e., old data is written instead of received data!

= \Workarounds:
= recvbuf may be allocated in a common block, or

MPI might modify recvbuf
after MP1_IRECV returns,
but the compiler has no
idea about this

= calling MPI_GET_ADDRESS (recvbuf, iaddr dummy, ierror)

after MPI_WAIT

Parallel Programming 2020

2020-12-07

33

Nonblocking point-to-point communication

= Standard nonblocking send/recv MPI Isend ()/MPI Irecv ()

= Return of call does not imply completion of operation

= Use MPI Wait* () /MPI Test* () to check for completion using request
handles

= All outstanding requests must be completed!

= Potentials
= Overlapping of communication with work (not guaranteed by MPI standard)
= Overlapping send and receive
= Avoiding synchronization and idle times

= Caveat: Compiler does not know about asynchronous modification of data

Parallel Programming 2020 2020-12-07 35

