
Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg

Institute of Physics, Universität Greifswald

Lecture 9: More MPI – point-to-point communication

2Parallel Programming 2020

Outline of course

▪ Basics of parallel computer architecture

▪ Basics of parallel computing

▪ Introduction to shared-memory programming with OpenMP

▪ OpenMP performance issues

▪ Introduction to the Message Passing Interface (MPI)

▪ Advanced MPI

▪ MPI performance issues

▪ Hybrid MPI+OpenMP programming

2020-12-07

Blocking point-to-point communication

Use case: Next-neighbor communication

▪ Frequent pattern in message passing: ring shift

▪ Simplistic send/recv pairing

is not reliable:

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

Rank 1Rank 0 Rank 2 Rank 3

// my left neighbor

left = (rank – 1 + size) % size;

// my right neighbor

right = (rank + 1) % size;

MPI_Send(buffer_send, n, MPI_INT, right, 1,
MPI_COMM_WORLD);

MPI_Recv(buffer_recv, n, MPI_INT, left, 1,

MPI_COMM_WORLD, status);

2020-12-07Parallel Programming 2020 4

A simple experiment

2020-12-07 5

// Common use case: next-neighbor data exchange

int dst;

if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof(char));

MPI_Send(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD);

MPI_Recv(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

$ mpiexec –n 2 ./send 10 # OK

$ mpiexec –n 2 ./send 1000000 # DEADLOCK

$ # tested on SuperMIC@LRZ

$ mpiexec –n 2 ./send 100 # OK

$ mpiexec –n 2 ./send 1000 # OK

$ mpiexec –n 2 ./send 10000 # OK

$ mpiexec –n 2 ./send 100000 # OK

Parallel Programming 2020

2020-12-07 6Parallel Programming 2020

The two variants of MPI_Send

Buffered send

▪ Always successful

▪ Time of delivery unknown

▪ Completion does not (necessarily)

involve receiver

▪ Explicit call: MPI_Bsend()

Synchronous send

▪ Completion if receive operation on

other end has started

▪ Handshake → synchronization

with receiver

▪ Explicit call: MPI_Ssend()

Standard send is either buffered or synchronous, depending on the

message size

2020-12-07 7Parallel Programming 2020

Blocking point-to-point communication

▪ Upon completion:

▪ Buffer can be reused safely (without interfering with message transmission)

▪ Variants of (common) send and receive calls:

MPI function type completes when

MPI_Send synchronous or

buffered

depends on type

MPI_Bsend buffered buffer has been copied

MPI_Ssend synchronous remote starts receive

MPI_Recv -- message was received

2020-12-07 8Parallel Programming 2020

Buffered send

MPI_Bsend(buf, count, datatype,

dest, tag, comm)

Rank 0

Bsend

Recv

copy msg

app MPI

wait for

recv

MPI app

Rank 1

post recv

msg

transfer
msg

transfer

post send

completion

completion

b
lo

c
k
in

g

b
lo

c
k
in

g

Bsend completes

when message has

been copied

predictable & no

synchronization

Caveat: comes at the cost of

additional copy operations

User has to attach

extra buffer (see

next slide)

Only one buffer can be

attached to the application

at the same time

2020-12-07 9Parallel Programming 2020

Attaching a buffer

▪ MPI_Buffer_attach(void * buffer, int size);

buffer: address of buffer

size: buffer size in bytes

MPI_Buffer_detach(void ** buffer, int * size);

buffer: returns addr. of detached buffer,

defined as void *, but actually expects void **

size: returns size of the detached buffer

▪ Size of buffer = (size of all outstanding BSENDs) +
(number of intended BSENDs * MPI_BSEND_OVERHEAD)

▪ Best way to get required size for one message:
MPI_Pack_size(int incount, MPI_Datatype

datatype, MPI_Comm comm, int * s)

size = s + MPI_BSEND_OVERHEAD

Buffer_attach

attach

app MPI

Bsend

copy msg

Buffer_detach

transfer

wait for

recv

detach

2020-12-07 10Parallel Programming 2020

Synchronous send

MPI_Ssend(buf, count, datatype,

dest, tag, comm)

Rank 0

Ssend

Recv

post send

app MPI

wait for

recv

MPI app

Rank 1

post recv

msg

transfer
msg

transfer

completion

completion

b
lo

c
k
in

g

b
lo

c
k
in

g

Ssend completes after recv

has been posted at

destination

synchronization of source

and destination

predictable &

safe behavior

Problems:

▪ Performance: high latency, risk of

serialization

▪ Source for potential deadlocks

But: can be used for debugging

2020-12-07 11Parallel Programming 2020

Possible solutions for the deadlock situation

int dst; if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof(char));

if (rank == 0) {

MPI_Ssend(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

MPI_Recv(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

} else {

MPI_Recv(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

MPI_Ssend(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

}

int dst; if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof(char));

MPI_Bsend(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD);

MPI_Recv(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

0 1

Ssend Recv

Recv Ssend

0 1

Bsend Bsend

Recv Recv

MPI_Bsend: provided internal buffer takes care of everything

MPI_Ssend: ensure matching send/receive pairs by choosing right order

2020-12-07 12Parallel Programming 2020

Combining send and receive: MPI_Sendrecv

▪ Syntax: simple combination of send and receive arguments:

MPI_Sendrecv(

buffer_send, sendcount, sendtype, dest, sendtag,

buffer_recv, recvcount, recvtype, source, recvtag,

comm, status);

▪ MPI takes care that no deadlocks occur

// my left neighbor

left = (rank – 1 + size) % size;

// my right neighbor

right = (rank + 1) % size;

MPI_Sendrecv(

buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0, MPI_COMM_WORLD, status);

blocking call

disjoint send/receive buffers

can have different count &

data type

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

Rank 1Rank 0 Rank 2 Rank 3

2020-12-07 13Parallel Programming 2020

Using MPI_Sendrecv

▪ MPI_Sendrecv() matches with *send/*recv point-to-point calls

▪ MPI_PROC_NULL as source/destination acts as no-op

▪ send/recv with MPI_PROC_NULL return as soon as possible, buffers are not altered

▪ Useful for open chains/non-circular shifts:

left = rank – 1; if (left < 0) { left = MPI_PROC_NULL; }

right = rank + 1; if (right >= size) {right = MPI_PROC_NULL; }

MPI_Sendrecv(

buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0, MPI_COMM_WORLD, &status);

receive buffer

send buffer send buffer

receive buffer

send buffer

receive buffer

10 2 3

2020-12-07 14Parallel Programming 2020

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

ji

sb sb

rbrb

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

MPI_Sendrecv(

sb, …, i,

rb, …, i, …)

MPI_Sendrecv(

sb, …, j,

rb, …, j, …)

step 2 step 2

2020-12-07 15Parallel Programming 2020

In-place communication: MPI_Sendrecv_replace()

▪ When only one single buffer is required:

MPI_Sendrecv_replace(

buf, count, datatype,

dest, sendtag, source, recvtag,

comm, status);

▪ MPI ensures that no deadlocks occur

Same buffer, count, data

type for send & receive

left = (rank – 1 + size) % size;

right = (rank + 1) % size;

MPI_Sendrecv_replace(

buf, n, MPI_INT, right, 0, left, 0, MPI_COMM_WORLD, &status);

bufbuf buf buf
1 2 30

2020-12-07 16Parallel Programming 2020

Case study: MPI-parallel dense MVM

▪ Remember OpenMP?

𝑦𝑖 = 𝑦𝑖 +

𝑗=1

𝑁

𝐴𝑖𝑗𝑥𝑗#pragma omp parallel for

for(int r=0; r<N; ++r)

for(int c=0; c<N; ++c)

y[r] += a[r][c] * x[c];

*= +

T0

T1

T2

T3

2020-12-07 17Parallel Programming 2020

Case study: MPI-parallel dense MVM

▪ MPI: Data distribution across ranks

(matrix and vectors)

*= +

0 1 2 3

𝑦𝑖 = 𝑦𝑖 +

𝑗=1

𝑁

𝐴𝑖𝑗𝑥𝑗

2020-12-07 18Parallel Programming 2020

MPI-parallel dense MVM

X= +

X= +
Step2: MVM on

next subdiag blocks

Ring shift of

vector r

Step1: MVM on

diagonal blocks

2020-12-07 19Parallel Programming 2020

Implementation

int num = size / ranks; int rest = size % ranks;

l_neighbor = (rank + 1) % ranks;

r_neighbor = (rank – 1 + ranks) % ranks;

int n_start=rank*my_size+min(rest,rank), cur_size=my_size;

// loop over RHS ring shifts

for(int rot=0; rot<ranks; rot++) {

for(int m=0; m<my_size; m++) {

for(int n=n_start; n<n_start+cur_size; n++) {

y[m] += a[m*size+n] * x[n-n_start];

}

}

n_start += cur_size;

if(n_start>=size) n_start=0; // wrap around

cur_size = size_of_rank(l_neighbor,ranks,size);

if(rot!=ranks-1) MPI_Sendrecv_replace(x, num+(rest?1:0),

MPI_DOUBLE, r_neighbor, 0,

l_neighbor, 0, MPI_COMM_WORLD, &status);

}

2020-12-07 20Parallel Programming 2020

Blocking point-to-point: summary

▪ Blocking MPI communication calls

▪ Operation locally complete when call returns

▪ After completion: send/receive buffer can safely be reused

▪ Available send communication modes:

▪ Synchronous (MPI_Ssend):

▪ Handshake with receiver → performance drawbacks, deadlock dangers

▪ Buffered (MPI_Bsend):

▪ Completes after buffer is copied at sender

▪ User-provided buffer to save messages

▪ Additional copy operations

▪ Standard (MPI_Send):

▪ Either synchronous or buffered

▪ depending on message length

Nonblocking point-to-point communication

Nonblocking communication

▪ Opportunities

▪ Avoiding deadlocks

▪ Opportunity for truly bidirectional

communication

▪ Avoid idle time

▪ Avoid synchronization

▪ Opportunity for overlapping

communication with useful work

Rank 0

Isend

start send

app MPI

wait for

recv

msg

transfer

request

Wait

w
o
rk

completion

post recv

msg

transfer

MPI app

Recv

Best case scenario

Rank 1

2020-12-07Parallel Programming 2020 22

2020-12-07 23Parallel Programming 2020

Standard nonblocking send/receive

▪ MPI_Isend(sendbuf, count, datatype, dest, tag,

comm, MPI_Request * request);

MPI_Irecv(recvbuf, count, datatype, source, tag,

comm, MPI_Request * request);

request: pointer to variable of type MPI_Request,

will be associated with the corresponding operation

▪ Do not reuse sendbuf/recvbuf before MPI_Isend/MPI_Irecv has
been completed

▪ Return of call does not imply completion

▪ MPI_Irecv has no status argument
▪ obtained later during completion via MPI_Wait*/MPI_Test*

2020-12-07 24Parallel Programming 2020

Nonblocking send and receive variants

▪ Completion

▪ Return of MPI_I* call does not imply completion

▪ Check for completion via MPI_Wait* / MPI_Test*

▪ Semantics identical to blocking call after successful completion

nonblocking MPI

function

blocking

MPI function
type completes when

MPI_Isend MPI_Send synchronous or

buffered

depends on type

MPI_Ibsend MPI_Bsend buffered buffer has been copied

MPI_Issend MPI_Ssend synchronous remote starts receive

MPI_Irecv MPI_Recv -- message was received

2020-12-07 25Parallel Programming 2020

Test for completion

Two test modes:

▪ Blocking

▪ MPI_Wait*: Wait until the communication has been completed and buffer can

safely be reused

▪ Nonblocking

▪ MPI_Test*: Return true (false) if the communication has (not) completed

Despite the naming, the modes both pertain to nonblocking point-to-point

communication!

2020-12-07 26Parallel Programming 2020

Test for completion – single request

▪ Test one communication handle for completion:

MPI_Wait(MPI_Request * request,

MPI_Status * status);

MPI_Test(MPI_Request * request, int * flag,

MPI_Status * status);

request: request handle of type MPI_Request

status: status object of type MPI_Status (cf. MPI_Recv)

flag: variable of type int to test for success

2020-12-07 27Parallel Programming 2020

Use of wait/test

MPI_Request request;

MPI_Status status;

MPI_Isend(

send_buffer, count, MPI_CHAR,

dst, 0, MPI_COMM_WORLD, &request);

// do some work…

// do not use send_buffer

MPI_Wait(&request, &status);

// use send_buffer

MPI_Request request;

MPI_Status status;

int flag;

MPI_Isend(

send_buffer, count, MPI_CHAR,

dst, 0, MPI_COMM_WORLD, &request);

do {

// do some work…

// do not use send_buffer

MPI_Test(&request, &flag, &status);

} while (!flag);

// use send_buffer

MPI_Wait MPI_Test

2020-12-07 28Parallel Programming 2020

Wait for completion – all requests in a list

▪ MPI can handle multiple communication requests

▪ Wait/Test for completion of multiple requests:

MPI_Waitall(int count, MPI_Request requests[],

MPI_Status statuses[]);

MPI_Testall(int count, MPI_Request requests[],

int *flag, MPI_Status statuses[]);

▪ Waits for/Tests if all provided requests have been completed

2020-12-07 29Parallel Programming 2020

Use of MPI_Waitall

MPI_Request requests[2];

MPI_Status statuses[2];

MPI_Isend(send_buffer, …, &(requests[0]));

MPI_Irecv(recv_buffer, …, &(requests[1]));

// do some work…

MPI_Waitall(2, requests, statuses)

// Isend & Irecv have been completed

Arrays of

requests and

statuses

number of elements in

the arrays

2020-12-07 30Parallel Programming 2020

Ghost cell exchange with nonblocking MPI

Possible implementation:

1. Copy new data into contiguous send buffers

2. Start nonblocking receives/sends from/to

corresponding neighbors

3. Update local cells that do not need halo cells

for boundary conditions (“bulk update”)

4. Wait with MPI_Waitall for all obtained

requests to complete

5. Copy received halo data into ghost cells

6. Update cells that need the halo

Ghost cell exchange with nonblocking send/recv with all neighbors at once

→ Opportunity to overlap communication with bulk update (MPI

implementation permitting)

2020-12-07 31Parallel Programming 2020

Wait for completion – one or several requests out of a list

Wait for/Test if exactly one request among many has been completed

▪ MPI_Waitany(int count, MPI_Request requests[],

int * idx, MPI_Status * status);

MPI_Testany(int count, MPI_Request requests[],

int * idx, int * flag,

MPI_Status * status);

Wait for/Test if at least one request among many has been completed

▪ MPI_Waitsome(int incount, MPI_Request requests[], int * outcount,

int indices[], MPI_Status statuses[]);

MPI_Testsome(int incount, MPI_Request requests[], int * outcount,

int indices[], MPI_Status statuses[]);

2020-12-07 32Parallel Programming 2020

Use of MPI_Testany

MPI_Request requests[2];

MPI_Status status;

int finished = 0;

MPI_Isend(send_buffer, …, &(requests[0]));

MPI_Irecv(recv_buffer, …, &(requests[1]));

do {

// do some work…

MPI_Testany(2, requests, &idx, &flag, &status);

if (flag) { ++finished; }

} while (finished < 2);

▪ completed requests are

automatically set to
MPI_REQUEST_NULL

▪ completed requests:
requests[idx]

2020-12-07 33Parallel Programming 2020

Pitfalls with nonblocking MPI and compiler optimizations

▪ Fortran:
MPI_IRECV(recvbuf, ..., request, ierror)

MPI_WAIT(request, status, ierror)

write (*,*) recvbuf

▪ may be compiled as
MPI_IRECV(recvbuf, ..., request, ierror)

registerA = recvbuf

MPI_WAIT(request, status, ierror)

write (*,*) registerA

▪ i.e., old data is written instead of received data!

▪ Workarounds:

▪ recvbuf may be allocated in a common block, or

▪ calling MPI_GET_ADDRESS(recvbuf, iaddr_dummy, ierror)

after MPI_WAIT

MPI might modify recvbuf

after MPI_IRECV returns,

but the compiler has no

idea about this

2020-12-07 35Parallel Programming 2020

Nonblocking point-to-point communication

▪ Standard nonblocking send/recv MPI_Isend()/MPI_Irecv()

▪ Return of call does not imply completion of operation

▪ Use MPI_Wait*() / MPI_Test*() to check for completion using request

handles

▪ All outstanding requests must be completed!

▪ Potentials

▪ Overlapping of communication with work (not guaranteed by MPI standard)

▪ Overlapping send and receive

▪ Avoiding synchronization and idle times

▪ Caveat: Compiler does not know about asynchronous modification of data

