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Outline of course

▪ Basics of parallel computer architecture

▪ Basics of parallel computing

▪ Introduction to shared-memory programming with OpenMP

▪ OpenMP performance issues

▪ Introduction to the Message Passing Interface (MPI)

▪ Advanced MPI

▪ MPI performance issues

▪ Hybrid MPI+OpenMP programming
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Blocking point-to-point communication



Use case: Next-neighbor communication

▪ Frequent pattern in message passing: ring shift

▪ Simplistic send/recv pairing 

is not reliable:

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

Rank 1Rank 0 Rank 2 Rank 3

// my left neighbor

left = (rank – 1 + size) % size;

// my right neighbor

right = (rank + 1) % size;

MPI_Send(buffer_send, n, MPI_INT, right, 1, 
MPI_COMM_WORLD); 

MPI_Recv(buffer_recv, n, MPI_INT, left, 1, 

MPI_COMM_WORLD, status);
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A simple experiment
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// Common use case: next-neighbor data exchange

int dst;

if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof(char));

MPI_Send(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD);

MPI_Recv(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

$ mpiexec –n 2 ./send 10      # OK

$ mpiexec –n 2 ./send 1000000 # DEADLOCK

$ # tested on SuperMIC@LRZ

$ mpiexec –n 2 ./send 100     # OK

$ mpiexec –n 2 ./send 1000    # OK

$ mpiexec –n 2 ./send 10000   # OK

$ mpiexec –n 2 ./send 100000  # OK
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The two variants of  MPI_Send

Buffered send

▪ Always successful

▪ Time of delivery unknown

▪ Completion does not (necessarily) 

involve receiver

▪ Explicit call: MPI_Bsend()

Synchronous send

▪ Completion if receive operation on 

other end has started 

▪ Handshake → synchronization  

with receiver

▪ Explicit call: MPI_Ssend()

Standard send is either buffered or synchronous, depending on the 

message size
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Blocking point-to-point communication

▪ Upon completion:

▪ Buffer can be reused safely (without interfering with message transmission)

▪ Variants of (common) send and receive calls:

MPI function type completes when

MPI_Send synchronous or 

buffered

depends on type

MPI_Bsend buffered buffer has been copied

MPI_Ssend synchronous remote starts receive

MPI_Recv -- message was received
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Buffered send 

MPI_Bsend(buf, count, datatype, 

dest, tag, comm)

Rank 0

Bsend

Recv

copy msg

app MPI

wait for 

recv

MPI app

Rank 1

post recv

msg

transfer
msg

transfer

post send

completion

completion

b
lo

c
k
in

g

b
lo

c
k
in

g

Bsend completes 

when message has 

been copied

predictable & no 

synchronization

Caveat: comes at the cost of 

additional copy operations

User has to attach 

extra buffer (see 

next slide)

Only one buffer can be 

attached to the application 

at the same time
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Attaching a buffer

▪ MPI_Buffer_attach(void * buffer, int size);

buffer:  address of buffer

size:    buffer size in bytes

MPI_Buffer_detach(void ** buffer, int * size);

buffer:  returns addr. of detached buffer,

defined as void *, but actually expects void **

size:    returns size of the detached buffer

▪ Size of buffer = (size of all outstanding BSENDs) + 
(number of intended BSENDs * MPI_BSEND_OVERHEAD)

▪ Best way to get required size for one message:
MPI_Pack_size(int incount, MPI_Datatype

datatype, MPI_Comm comm, int * s)

size = s + MPI_BSEND_OVERHEAD

Buffer_attach

attach

app MPI

Bsend

copy msg

Buffer_detach

transfer

wait for 

recv

detach
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Synchronous send

MPI_Ssend(buf, count, datatype, 

dest, tag, comm)

Rank 0

Ssend

Recv

post send

app MPI

wait for 

recv

MPI app

Rank 1

post recv

msg

transfer
msg

transfer

completion

completion

b
lo

c
k
in

g

b
lo

c
k
in

g

Ssend completes after recv

has been posted at 

destination

synchronization of source 

and destination

predictable & 

safe behavior

Problems:

▪ Performance: high latency, risk of 

serialization

▪ Source for potential deadlocks

But: can be used for debugging
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Possible solutions for the deadlock situation

int dst; if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof(char));

if (rank == 0) {

MPI_Ssend(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

MPI_Recv(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

} else {

MPI_Recv(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

MPI_Ssend(buffer, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

}

int dst; if (rank == 0) { dst = 1; } else { dst = 0; }

char * buffer = malloc(count * sizeof(char));

MPI_Bsend(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD);

MPI_Recv(buffer, count, MPI_CHAR, dst, 0, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

0 1

Ssend Recv

Recv Ssend

0 1

Bsend Bsend

Recv Recv

MPI_Bsend: provided internal buffer takes care of everything

MPI_Ssend: ensure matching send/receive pairs by choosing right order
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Combining send and receive: MPI_Sendrecv

▪ Syntax: simple combination of send and receive arguments:

MPI_Sendrecv(

buffer_send, sendcount, sendtype, dest,   sendtag,

buffer_recv, recvcount, recvtype, source, recvtag, 

comm, status);

▪ MPI takes care that no deadlocks occur

// my left neighbor

left = (rank – 1 + size) % size;

// my right neighbor

right = (rank + 1) % size;

MPI_Sendrecv(

buffer_send, n, MPI_INT, right, 0, 

buffer_recv, n, MPI_INT, left,  0, MPI_COMM_WORLD, status);

blocking call

disjoint send/receive buffers

can have different count & 

data type

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

Rank 1Rank 0 Rank 2 Rank 3
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Using MPI_Sendrecv

▪ MPI_Sendrecv() matches with *send/*recv point-to-point calls 

▪ MPI_PROC_NULL as source/destination acts as no-op

▪ send/recv with MPI_PROC_NULL return as soon as possible, buffers are not altered

▪ Useful for open chains/non-circular shifts:

left = rank – 1; if (left < 0) { left = MPI_PROC_NULL; }

right = rank + 1; if (right >= size) {right = MPI_PROC_NULL; }

MPI_Sendrecv(

buffer_send, n, MPI_INT, right, 0, 

buffer_recv, n, MPI_INT, left,  0, MPI_COMM_WORLD, &status);

receive buffer

send buffer send buffer

receive buffer

send buffer

receive buffer

10 2 3
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Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

ji

sb sb

rbrb

2D domain distributed to ranks

(here 4 x 3), each rank gets 

one tile

Each rank’s tile is surrounded 

by ghost cells, representing the 

cells of the neighbors

ghost cells

After each sweep over a tile, perform 

ghost cell exchange, i.e., update 

ghost cells with new values of 

neighbor cells

Possible implementation: 
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

MPI_Sendrecv(

sb, …, i, 

rb, …, i, …)

MPI_Sendrecv(

sb, …, j, 

rb, …, j, …)

step 2 step 2
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In-place communication: MPI_Sendrecv_replace()

▪ When only one single buffer is required:

MPI_Sendrecv_replace(

buf, count, datatype, 

dest, sendtag, source, recvtag,

comm, status);

▪ MPI ensures that no deadlocks occur

Same buffer, count, data

type for send & receive

left = (rank – 1 + size) % size;

right = (rank + 1) % size;

MPI_Sendrecv_replace(

buf, n, MPI_INT, right, 0, left,  0, MPI_COMM_WORLD, &status);

bufbuf buf buf
1 2 30
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Case study: MPI-parallel dense MVM

▪ Remember OpenMP?

𝑦𝑖 = 𝑦𝑖 +

𝑗=1

𝑁

𝐴𝑖𝑗𝑥𝑗#pragma omp parallel for

for(int r=0; r<N; ++r) 

for(int c=0; c<N; ++c) 

y[r] += a[r][c] * x[c];

*= +

T0

T1

T2

T3
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Case study: MPI-parallel dense MVM

▪ MPI: Data distribution across ranks

(matrix and vectors)

*= +

0 1 2 3

𝑦𝑖 = 𝑦𝑖 +

𝑗=1

𝑁

𝐴𝑖𝑗𝑥𝑗
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MPI-parallel dense MVM

X= +

X= +
Step2: MVM on

next subdiag blocks

Ring shift of

vector r

Step1: MVM on 

diagonal blocks
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Implementation

int num = size / ranks; int rest = size % ranks;                                                                                                    

l_neighbor = (rank + 1) % ranks;

r_neighbor = (rank – 1 + ranks) % ranks;

int n_start=rank*my_size+min(rest,rank), cur_size=my_size; 

// loop over RHS ring shifts

for(int rot=0; rot<ranks; rot++) {

for(int m=0; m<my_size; m++) {

for(int n=n_start; n<n_start+cur_size; n++) {

y[m] += a[m*size+n] * x[n-n_start];

}

}

n_start += cur_size;

if(n_start>=size) n_start=0; // wrap around

cur_size = size_of_rank(l_neighbor,ranks,size);

if(rot!=ranks-1) MPI_Sendrecv_replace(x, num+(rest?1:0), 

MPI_DOUBLE, r_neighbor, 0,

l_neighbor, 0, MPI_COMM_WORLD, &status);

}
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Blocking point-to-point: summary

▪ Blocking MPI communication calls

▪ Operation locally complete when call returns

▪ After completion: send/receive buffer can safely be reused

▪ Available send communication modes:

▪ Synchronous (MPI_Ssend): 

▪ Handshake with receiver → performance drawbacks, deadlock dangers

▪ Buffered (MPI_Bsend):

▪ Completes after buffer is copied at sender

▪ User-provided buffer to save messages

▪ Additional copy operations

▪ Standard (MPI_Send): 

▪ Either synchronous or buffered 

▪ depending on message length



Nonblocking point-to-point communication



Nonblocking communication

▪ Opportunities

▪ Avoiding deadlocks

▪ Opportunity for truly bidirectional 

communication

▪ Avoid idle time 

▪ Avoid synchronization

▪ Opportunity for overlapping 

communication with useful work

Rank 0

Isend

start send

app MPI

wait for 

recv

msg

transfer

request

Wait

w
o
rk

completion

post recv

msg

transfer

MPI app

Recv

Best case scenario

Rank 1
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Standard nonblocking send/receive

▪ MPI_Isend(sendbuf, count, datatype, dest,   tag, 

comm, MPI_Request * request);

MPI_Irecv(recvbuf, count, datatype, source, tag, 

comm, MPI_Request * request);

request: pointer to variable of type MPI_Request, 

will be associated with the corresponding operation

▪ Do not reuse sendbuf/recvbuf before MPI_Isend/MPI_Irecv has 
been completed

▪ Return of call does not imply completion

▪ MPI_Irecv has no status argument
▪ obtained later during completion via MPI_Wait*/MPI_Test*
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Nonblocking send and receive variants

▪ Completion

▪ Return of MPI_I* call does not imply completion

▪ Check for completion via MPI_Wait* / MPI_Test*

▪ Semantics identical to blocking call after successful completion

nonblocking MPI 

function

blocking 

MPI function
type completes when

MPI_Isend MPI_Send synchronous or 

buffered

depends on type

MPI_Ibsend MPI_Bsend buffered buffer has been copied

MPI_Issend MPI_Ssend synchronous remote starts receive

MPI_Irecv MPI_Recv -- message was received
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Test for completion

Two test modes:

▪ Blocking

▪ MPI_Wait*: Wait until the communication has been completed and buffer can 

safely be reused

▪ Nonblocking

▪ MPI_Test*: Return true (false) if the communication has (not) completed

Despite the naming, the modes both pertain to nonblocking point-to-point 

communication!
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Test for completion – single request

▪ Test one communication handle for completion:

MPI_Wait(MPI_Request * request, 

MPI_Status * status);

MPI_Test(MPI_Request * request, int * flag, 

MPI_Status * status); 

request: request handle of type MPI_Request

status: status object of type MPI_Status (cf. MPI_Recv)

flag: variable of type int to test for success
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Use of wait/test

MPI_Request request;

MPI_Status status;

MPI_Isend(

send_buffer, count, MPI_CHAR, 

dst, 0, MPI_COMM_WORLD, &request);

// do some work… 

// do not use send_buffer

MPI_Wait(&request, &status);

// use send_buffer

MPI_Request request;

MPI_Status status;

int flag;

MPI_Isend(

send_buffer, count, MPI_CHAR, 

dst, 0, MPI_COMM_WORLD, &request);

do {

// do some work… 

// do not use send_buffer

MPI_Test(&request, &flag, &status);

} while (!flag);

// use send_buffer

MPI_Wait MPI_Test
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Wait for completion – all requests in a list

▪ MPI can handle multiple communication requests

▪ Wait/Test for completion of multiple requests:

MPI_Waitall(int count, MPI_Request requests[], 

MPI_Status statuses[]);

MPI_Testall(int count, MPI_Request requests[], 

int *flag, MPI_Status statuses[]);

▪ Waits for/Tests if all provided requests have been completed
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Use of MPI_Waitall

MPI_Request requests[2];

MPI_Status statuses[2];

MPI_Isend(send_buffer, …, &(requests[0]));

MPI_Irecv(recv_buffer, …, &(requests[1]));

// do some work… 

MPI_Waitall(2, requests, statuses)

// Isend & Irecv have been completed

Arrays of 

requests and 

statuses 

number of elements in 

the arrays
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Ghost cell exchange with nonblocking MPI

Possible implementation: 

1. Copy new data into contiguous send buffers

2. Start nonblocking receives/sends from/to 

corresponding neighbors

3. Update local cells that do not need halo cells 

for boundary conditions (“bulk update”)

4. Wait with MPI_Waitall for all obtained 

requests to complete

5. Copy received halo data into ghost cells

6. Update cells that need the halo

Ghost cell exchange with nonblocking send/recv with all neighbors at once

→ Opportunity to overlap communication with bulk update (MPI 

implementation permitting) 
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Wait for completion – one or several requests out of a list

Wait for/Test if exactly one request among many has been completed

▪ MPI_Waitany(int count, MPI_Request requests[], 

int * idx, MPI_Status * status);

MPI_Testany(int count, MPI_Request requests[], 

int * idx, int * flag, 

MPI_Status * status);

Wait for/Test if at least one request among many has been completed 

▪ MPI_Waitsome(int incount, MPI_Request requests[], int * outcount,

int indices[], MPI_Status statuses[]);

MPI_Testsome(int incount, MPI_Request requests[], int * outcount,

int indices[], MPI_Status statuses[]);
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Use of MPI_Testany

MPI_Request requests[2];

MPI_Status status;

int finished = 0;

MPI_Isend(send_buffer, …, &(requests[0]));

MPI_Irecv(recv_buffer, …, &(requests[1]));

do {

// do some work… 

MPI_Testany(2, requests, &idx, &flag, &status);

if (flag) { ++finished; }

} while (finished < 2);

▪ completed requests are 

automatically set to 
MPI_REQUEST_NULL

▪ completed requests:
requests[idx]
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Pitfalls with nonblocking MPI and compiler optimizations

▪ Fortran:
MPI_IRECV(recvbuf, ..., request, ierror)

MPI_WAIT(request, status, ierror)

write (*,*) recvbuf

▪ may be compiled as
MPI_IRECV(recvbuf, ..., request, ierror)

registerA = recvbuf

MPI_WAIT(request, status, ierror) 

write (*,*) registerA

▪ i.e., old data is written instead of received data!

▪ Workarounds:

▪ recvbuf may be allocated in a common block, or

▪ calling MPI_GET_ADDRESS(recvbuf, iaddr_dummy, ierror) 

after MPI_WAIT

MPI might modify recvbuf

after MPI_IRECV returns, 

but the compiler has no

idea about this
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Nonblocking point-to-point communication

▪ Standard nonblocking send/recv MPI_Isend()/MPI_Irecv()

▪ Return of call does not imply completion of operation

▪ Use MPI_Wait*() / MPI_Test*() to check for completion using request 

handles

▪ All outstanding requests must be completed!

▪ Potentials

▪ Overlapping of communication with work (not guaranteed by MPI standard)

▪ Overlapping send and receive 

▪ Avoiding synchronization and idle times

▪ Caveat: Compiler does not know about asynchronous modification of data


