_ UNIVERSITAT GREIFSWALD RIEDRICH-ALEXANDER
Wissen lockt. Seit 1456 UNIVERSITAT

Erlangen Regional ERLANGEN-NURNBERG

Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitéat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 10:
More MPI — collective communication

Distributed-memory system architecture

Outline of course

= Introduction to the Message Passing Interface (MPI)

Parallel Programming 2020 2020-12-14

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Introduction to collectives in MPI

Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

= Blocking variants: buffer can be reused after return

Nonblocking variants (since MPI 3.0):
buffer can be used after completion (MPI_Wait*/MPI Test*)

May or may not synchronize the processes

Cannot interfere with point-to-point communication
= Completely separate modes of operation!

Parallel Programming 2020 2020-12-14

Collectives in MPI

= Rules for all collectives
= Data type matching
= No tags

= Count must be exact, i.e., there is only one message length, buffer must be
large enough

= Types:
= Synchronization (barrier)
= Data movement (broadcast, scatter, gather, all to all)
= Collective computation (reduction, scan)
= Combinations of data movement and computation (reduction + broadcast)

= General assumption: MPI does a better job at collectives than you trying to
emulate them with point-to-point calls

Parallel Programming 2020 2020-12-14 5

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Global communication

Barrier

= Explicit synchronization of all ranks from specified
communicator

MPI_Barrier (comm) ;

= Ranks only return from call after every rank has called
the function

= MPI Barrier () rarely needed
= Debugging

Parallel Programming 2020 2020-12-14

Broadcast

= Send buffer contents from one rank (“root”) to all ranks

MPI Bcast(buf, count, datatype, int root, comm);

= Nno restrictions on which rank is root — often rank O

rank 0

buffer 11213
\“v"/
count = 3

root

int

1

\
MPI Bcast(buffer, 3, MPI_INT, 1, MPI_COMM WORLD)

buffer 11213

112

3

2

3

2

3

Parallel Programming 2020

2020-12-14

Scatter

= Send the iI-th chunk of an array to the i-th rank

MPI Scatter (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype,

root, comm) ;

* |n general, sendcount = recvcount
= This is the length of the chunk

* sendbuf is ignored on non-root ranks because there is nothing to send

Parallel Programming 2020 2020-12-14

Scatter

rank

sendbuf

recvbuf

int

MPI_Scatter (sendbuf, 1, MPI_INT, recvbuf, 1, MPI_INT,

sendbuf

recvbuf

root, MPI_COMM WORLD)

1

2

3

4

Parallel Programming 2020

2020-12-14

10

Gather

= Receive a message from each rank and place i-th rank’s message at i-th
position in receive buffer

MPI Gather (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype,

root, comm)

* |n general, sendcount = recvcount
= recvbuf is ignored on non-root ranks because there is nothing to receive

Parallel Programming 2020 2020-12-14 11

Gather

rank

sendbuf

recvbuf

1 —¥oot o

int

1

MPI Gather (sendbuf, 1, MPI INT, recvbuf, 1, MPI INT,
root, MPI_ COMM WORLD)

sendbuf

recvbuf

1

2 3

Parallel Programming 2020

2020-12-14

12

Scatterv: more flexible scatter

= Send chunks of different sizes to different ranks

MPI Scatterv(

sendbuf, int sendcounts[], int displs[], sendtype,

recvbuf, recvcount, recvtype,
root, comm) ;

sendcounts []: array specifying the number of elements to send to
each rank: send sendcounts[i] elementsto rank i

displs[]: integer array specifying the displacements in
sendbuf from which to take the outgoing data to
each rank, specified in number of elements

Parallel Programming 2020 2020-12-14

13

Scatterv

0 1 2
rank index 0 1 2 3 4 5 6
sendbuf 112|3]|4 6|7
sendcounts Z 311
5 110
recvbuf
recvcount 2 1 3

MPI Scatterv() withroot=1

recvbuf 6|7 21314

recvcount 2 1 3

Parallel Programming 2020 2020-12-14

Gatherv: more flexible gather

= Receive segments of different sizes from different ranks

MPI Gatherv (
sendbuf, sendcount, sendtype,
recvbuf, int recvcounts|[], int displs[], recvtype,
root, comm)

recvcounts []: array specifying the number of elements to receive
from each rank: receive recvcounts[i] elements from rank i

displs[]: integer array specifying the displacements where
received data from specific rank is put in recvbuf,

In units of elements:

Parallel Programming 2020 2020-12-14 15

Allgather

= Combination of gather and broadcast

MPI Allgather (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype,

comm) ;

= Also available: MPI Allgatherv() (cf.MPI Gatherv())

= Why not just use gather followed by a broadcast instead?
= MPI library has more options for optimization
= General assumption: Combined collectives are faster than using separate ones

Parallel Programming 2020 2020-12-14

16

Allgather

rank 0 1

sendbuf 0 ! 3
sendcount 1 1 1
recvbuf

recvcount 1 1 1
MPI Allgather() (no rootrequired)

recvbuf 0 2|3 0l1]2 0|1

Parallel Programming 2020

2020-12-14

17

Alltoall

= MPI Alltoall: For all ranks, send i-th chunk to i-th rank

MPI Alltoall (sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,
comm) ;

= MPI Alltoallv: Allows different number of elements to be
send/received by each rank

= MPI Alltoallw: Allows also different data types and displacements in
bytes

Parallel Programming 2020 2020-12-14

18

Alltoall

rank 0 3

sendbuf 0 3 7 1022|1213 14]15
sendcount 1 1

recvbuf

recvcount 1 1

MPI Alltoall()

(no root required)

recvbuf 0

12

13

10

14 3

11

15

Parallel Programming 2020

2020-12-14

19

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Global operations

Global operations: reduction

Compute results over distributed data

MPI Reduce (sendbuf, recvbuf, count,
datatype, MPI Op op, root,

Result in recvbuf only available on root process

Perform operation on all count elements of an
array
If all ranks require result, use MPI_Allreduce ()

If the 12 predefined ops are not enough use

rank sendbuf

0O |0]9]2]6

| | | |

comm) ; 1 ? :II' ? ?

2 1813|145

1 | 1 1

3 11]0}]6]8

L]

MPI Reduce() ¥ ¥ ¥ &

count = 4 g g g é

op = MPI_MAX l l l l

recvbuf slolels
on root

MPI Op create/MPI Op free to create own ones

Parallel Programming 2020

2020-12-14 21

Global operations — predefined operators

Operation Operation
MPI SUM Sum MPI PROD Product
MPI MAX Maximum MPI MIN Minimum
MPI LAND Logical AND MPI BAND Bit-AND
MPI LOR Logical OR MPI BOR Bit-OR
MPI LXOR Logical XOR MPI BXOR Bit-XOR
MPI MAXLOC Maximum+Position MPI MINLOC Minimum-+Position

= Define own operations with MPI Op create/MPI Op free

= MPI assumes that the operations are associative
—> be careful with floating-point operations

Parallel Programming 2020 2020-12-14

22

“In-place” buffer specification

Override local input buffer with a result
MPI Reduce

int partial _sum = .., total_ sum;

MPI Reduce (&partial_sum, &total sum,
1, MPI_INT,
MPI SUM, root, comm);

int partial _sum = .., total_ sum;
if (rank == root) {
total sum = partial sum;
MPI_Reduce (MPI_IN PLACE, &total sum,
1, MPI_INT,
MPI_SUM, root, comm);
}
else {
MPI Reduce (&partial_ sum, &total sum,
1, MPI INT,
MPI_ SUM, root, comm);

MPI_Allreduce

int partial _sum = .., total_ sum;

MPI AllReduce (&partial_ sum, &total_ sum,
1, MPI_INT,
MPI_SUM, comm) ;

int partial _sum = .., total_ sum;

total _sum = partial sum;

MPI_AllReduce (MPI_IN PLACE, &total_ sum,
1, MPI_INT,
MPI_SUM, comm) ;

Parallel Programming 2020

2020-12-14

23

MPI IN PLACE cheat sheet

Function

MPI GATHER

MPI GATHERV

MPI SCATTER

MPI SCATTERV

MPI ALLGATHER

MPI ALLGATHERV

MPI ALLTOALL

MPI ALLTOALLV

MPI REDUCE

MPI ALLREDUCE

MPI_IN_P
LACE
argument

send buffer

send buffer

receive
buffer

receive
buffer

send buffer

send buffer

send buffer

send buffer

send buffer

send buffer

@

rank(s)

root

root

root

root

all

all

all

all

root

all

Comment [MPI 3.0]

Recv value at root already in the correct place in receive buffer.

Recv value at root already in the correct place in receive buffer.

Root-th segment of send buffer is not moved.

Root-th segment of send buffer is not moved.

Input data at the correct place were process would receive its own contribution.

Input data at the correct place were process would receive its own contribution.

Data to be sent is taken from receive buffer and replaced by received data, data

sent/received must be of the same type map specified in receive count/receive type.

Data to be sent is taken from receive buffer and replaced by received data. Data

sent/received must be of the same type map specified in receive count/receive type.

The same amount of data and data type is exchanged between two processes.
Data taken from receive buffer, replaced with output data.

Data taken from receive buffer, replaced with output data.

Parallel Programming 2020

2020-12-14

24

Summary of MPI collective communication

MPI (blocking) collectives
= All ranks in communicator must call the function

Communication and synchronization
= Barrier, broadcast, scatter, gather, and combinations thereof

Global operations
= Reduce, allreduce, some more...

In-place buffer specification MPI_IN PLACE
= Save some space if need be

Parallel Programming 2020 2020-12-14

25

RIEDRICH-ALEXANDER

UNIVERSITAT _
ERLANGEN-NURNBERG

Distributed-memory system architecture

Distributed-memory parallel computers today

= Clusters of shared-memory nodes
= ccNUMA per node
= Multiple cores per ccNUMA domain

[~ ol i - - ol e — - ol
gl = =l I11: S =l i al =5
E o o e -l E a o @ o
— — et — | Tt _— — e
E o - o o E o o o - H
— = S e— = — = [
E o o o oH E o oH o oH
e — — f—— ey e — —
E o o e o :E a o a o}
P - - k = HE Ol e i —_ i L
] o He oH | o o o
«~ommunication networ = = =Cll = el = = L=
o - Lo _ J -H i (- - o _J J o H
I I i [[I I
= L He — oH Ha — H o — o
——t e = [e — — rm—
o o o oH iHa oH o oH
— — = — — —— — =
o o Ha o a o o oH
e — e]] e —]
e o Ha o Ha ol o ol
— — —— — — —— — —
Ha o Ho oH o oH a o
— = e e = Ly - = o
o o Ha oH a o[a o
o = e p— e i — e
o Ha - - o a o o[- R ol

Long gone!

NI NI

Communication network

Parallel Programming 2020 2020-12-14 27

Point-to-point data transmission performance

= Simple “Hockney model” for data
transfer time

|74 |74
Teomm = /1+3’ Beff:

Tcomm

A: latency, b: asymptotic BW

= Reality is more complicated
= System topology

6000

S
=

Je
=
=

S
=

2000

Effective bandwidth [Mbyte/s]

— internode
— intersocket

1000 — — intrasocket —
= Protocol switches i 1
L Contentlon eﬁeCtS 0 T vl vl v vl 1ol
' 1w 1w 1w 1w 1w w10
Message length [byte]
Parallel Programming 2020 2020-12-14 28

Characterizing communication networks

= Network bisection bandwidth B}, is a general metric for the data transfer
“capability” of a system:

Minimum sum of the bandwidths of all connections cut when splitting the
system into two equal parts

= More meaningful metric for system
scalability: bisection BW per node: B, /Ny pdes

= Bisection BW depends on
= Bandwidth per link
= Network topology

Parallel Programming 2020 2020-12-14 l 29

Network topologies: bus

= Bus can be used by one connection , , ’

at a time N o
= Bandwidth is shared among ‘ ‘ ‘

all devices

= Bisection BW is constant =2 By, /N, pdes ~ 1/Noodes

= Examples: diagnostic buses, old Ethernet network with hubs, Wi-Fi
channel

= Advantages » Disadvantages
= Low latency = Shared bandwidth, not scalable
= Easy to implement * Problems with failure resiliency (one

defective agent may block bus)
= Large signal power per agent

Parallel Programming 2020 2020-12-14 30

Network topologies: non-blocking crossbar

= Non-blocking crossbar can mediate) ? ? ?
a humber of connections among o

groups of input and output elements . s '
= This can be used as a Q ...
n-port non-blocking @
switch (fold at the secondary diagonal) @—o—0—2 y
. _ _ 2x2
= Switches can be cascaded to form hierarchies sevlv(ietr%fgzg

(common case)
= Allows scalable communication at high hardware/energy costs

= Crossbars are rarely used as interconnects for large scale computers
- NEC SX9 vector system (“IXS”)

Parallel Programming 2020 2020-12-14 31

Network topologies: switches and fat trees

= Standard clusters are built with switched networks
= Compute nodes (“devices”) are split up in groups — each group is
connected to single (non-blocking crossbar-)switch (“leaf switches”)

= Leaf switches are connected with each other using an additional switch
hierarchy (“spine switches”) or directly (for small configurations)

= Switched networks: “Distance” between any two devices is heterogeneous
(number of “hops” in switch hierarchy)

= Diameter of network: The maximum number of hops required to connect
two arbitrary devices (e.g., diameter of bus=1)

= “Perfect” world: “Fully non-blocking?, i.e. any choice of N,,,4.5/2 disjoint
node (device) pairs can communicate at full speed

Parallel Programming 2020 2020-12-14 32

Fat tree switch hierarchies

= “Fully non-blocking”
N, ,qes/2 €nd-to-end con-nections with full BW

9Bb=BXIVnodes/ziBb/]Vnodes:B/2 SW 1 SW 2 i SW 3 SW 4

Sounds good, but see next slide B#“‘ ““ ““ ““

= “Oversubscribed” W “spine” switch

Spine does not support N,,,ges/2 k=3 |
full BW end-to-end connections
By, /N, o4es = const.= B/(2k), |

: = SW SW | 1| sw SW
with k = oversubscription factor ! 9““““ *‘N““ﬁﬁ‘

Resource management
(job placement) is crucial node “leaf” switch

Parallel Programming 2020 2020-12-14 33

Fat trees and static routing

If all end-to-end data paths are preconfigured (“static routing”), not all
possible combinations of N agents will get full bandwidth

Example: = = = = is a collision-free pattern here (125, 2->6,32>7, 4->8)
Change (2-26,32>7)to (227,326); —- = - = has collisions if no other
connections are re-routed at the Z=---p=----- == ---k=
same time ri .
. _ . ;@

Static routing: potential collisions
even for full fat tree

. _ _ N —(7)
Dynamic/adaptive routing: 5
collision mitigation T —=©

Parallel Programming 2020

2020-12-14

34

A “single” 288-port InfiniBand DDR switch

[Spine switch level; 12 switghes

Al

/.

RN LSRR

ke

xxxxxxx

+.5.

=

o0

288 ports

Parallel Programming 2020

2020-12-14

35

Examples for fat tree networks in HPC

= Ethernet
= 1 Gbit/s &10 & 100 Gbit/s variants

* [nfiniBand: Dominant high-performance “commodity” interconnect
= DDR: 20 Gbit/s per link and direction (Building blocks: 24-port switches)

= QDR: 40 Ghbit/s per link and direction, building blocks: 36-port switches
- “Large” 36x18=648-port switches

= FDR-10 / FDR: 40/56 Gbit/s per link and direction
= EDR: 100 Gbit/s per link and direction, HDR: 200 Gbit/s

= EXxpensive & complex to scale to very high node counts

Parallel Programming 2020 2020-12-14 36

Mesh networks

= Fat trees can become prohibitively expensive in large systems

= Compromise: Meshes
= n-dimensional Hypercubes
= Toruses (2D / 3D)
= Many others (including hybrids)

= Each node is a “router”

= Direct connections only between
direct neighbors

Example: 2D
torus mesh

FErErur.

s

Parallel Programming 2020

2020-12-14

Mesh networks

This is not a non-blocking corossbar!
= Intelligent resource management and routing algorithms are essential

Toruses at very large systems:

Cray XE/XK series, IBM Blue Gene

d-1)/d
g Bb~NT(wdeg/ - B,/N,,...—0 forlarge N

nodes nodes

= Sounds bad, but those machines show
good scaling for many codes

= Well-defined and predictable

bandwidth behavior!

g
‘..
‘.

Parallel Programming 2020 2020-12-14

JICas atan

8

Summary of distributed-memory architecture

= “Pure” distributed-memory parallel systems are rare
= Hierarchical parallelism rules

= Simple latency/bandwidth model good for insights, but unrealistic
= Protocol switches, contention

= Wide variety of network topologies available
= Nonblocking crossbar
= Fat tree
= Meshes (torus, hypercube, hybrids)

Parallel Programming 2020 2020-12-14

39

