
Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg

Institute of Physics, Universität Greifswald

Lecture 10:

More MPI – collective communication

Distributed-memory system architecture

2Parallel Programming 2020

Outline of course

▪ Basics of parallel computer architecture

▪ Basics of parallel computing

▪ Introduction to shared-memory programming with OpenMP

▪ OpenMP performance issues

▪ Introduction to the Message Passing Interface (MPI)

▪ Advanced MPI

▪ MPI performance issues

▪ Hybrid MPI+OpenMP programming

2020-12-14

Introduction to collectives in MPI

Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

▪ Blocking variants: buffer can be reused after return

▪ Nonblocking variants (since MPI 3.0):
buffer can be used after completion (MPI_Wait*/MPI_Test*)

▪ May or may not synchronize the processes

▪ Cannot interfere with point-to-point communication

▪ Completely separate modes of operation!

2020-12-14Parallel Programming 2020 4

2020-12-14 5Parallel Programming 2020

Collectives in MPI

▪ Rules for all collectives

▪ Data type matching

▪ No tags

▪ Count must be exact, i.e., there is only one message length, buffer must be

large enough

▪ Types:

▪ Synchronization (barrier)

▪ Data movement (broadcast, scatter, gather, all to all)

▪ Collective computation (reduction, scan)

▪ Combinations of data movement and computation (reduction + broadcast)

▪ General assumption: MPI does a better job at collectives than you trying to

emulate them with point-to-point calls

Global communication

2020-12-14 7Parallel Programming 2020

Barrier

▪ Explicit synchronization of all ranks from specified
communicator

MPI_Barrier(comm);

▪ Ranks only return from call after every rank has called
the function

▪ MPI_Barrier() rarely needed

▪ Debugging

2020-12-14 8Parallel Programming 2020

Broadcast

▪ Send buffer contents from one rank (“root”) to all ranks

MPI_Bcast(buf, count, datatype, int root, comm);

▪ no restrictions on which rank is root – often rank 0

1 2 3buffer

count = 3

MPI_Bcast(buffer, 3, MPI_INT, 1, MPI_COMM_WORLD)

int

1 2 3 1 2 3 1 2 3 1 2 3buffer

0 1 2 3rank
root

2020-12-14 9Parallel Programming 2020

Scatter

▪ Send the i-th chunk of an array to the i-th rank

MPI_Scatter(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

root, comm);

▪ In general, sendcount = recvcount

▪ This is the length of the chunk

▪ sendbuf is ignored on non-root ranks because there is nothing to send

2020-12-14 10Parallel Programming 2020

Scatter

sendbuf

MPI_Scatter(sendbuf, 1, MPI_INT, recvbuf, 1, MPI_INT,

root, MPI_COMM_WORLD)

int

1 2 3 4

0 1 2 3rank
root

1 2 3 4

recvbuf

1 2 3 4sendbuf

recvbuf

2020-12-14 11Parallel Programming 2020

Gather

▪ Receive a message from each rank and place i-th rank’s message at i-th

position in receive buffer

MPI_Gather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

root, comm)

▪ In general, sendcount = recvcount

▪ recvbuf is ignored on non-root ranks because there is nothing to receive

2020-12-14 12Parallel Programming 2020

Gather

recvbuf

MPI_Gather(sendbuf, 1, MPI_INT, recvbuf, 1, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2 3rank root

41 2 3sendbuf

recvbuf 1 2 3 4

41 2 3sendbuf

2020-12-14 13Parallel Programming 2020

Scatterv: more flexible scatter

▪ Send chunks of different sizes to different ranks

MPI_Scatterv(

sendbuf, int sendcounts[], int displs[], sendtype,

recvbuf, recvcount, recvtype,

root, comm);

sendcounts[]: array specifying the number of elements to send to

each rank: send sendcounts[i] elements to rank i

displs[]: integer array specifying the displacements in

sendbuf from which to take the outgoing data to

each rank, specified in number of elements

2020-12-14 14Parallel Programming 2020

Scatterv

displs

MPI_Scatterv() with root = 1

0 1 2 3

rank

sendbuf

sendcounts

recvbuf

recvcount

1 2 3 4 5 6 7

2 1 3 1

5 4 1 0

12 3 1

576 2 3 14

12 3 1

recvbuf

recvcount

0 1 2 3 4 5 6index

2020-12-14 15Parallel Programming 2020

Gatherv: more flexible gather

▪ Receive segments of different sizes from different ranks

MPI_Gatherv(

sendbuf, sendcount, sendtype,

recvbuf, int recvcounts[], int displs[], recvtype,

root, comm)

recvcounts[]: array specifying the number of elements to receive

from each rank: receive recvcounts[i] elements from rank i

displs[]: integer array specifying the displacements where

received data from specific rank is put in recvbuf,

in units of elements:

2020-12-14 16Parallel Programming 2020

Allgather

▪ Combination of gather and broadcast

MPI_Allgather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

comm);

▪ Also available: MPI_Allgatherv() (cf. MPI_Gatherv())

▪ Why not just use gather followed by a broadcast instead?

▪ MPI library has more options for optimization

▪ General assumption: Combined collectives are faster than using separate ones

2020-12-14 17Parallel Programming 2020

Allgather

sendcount

MPI_Allgather() (no root required)

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

0

11 1

1 2 3

1

0 1 2 3recvbuf 0 1 2 3 0 1 2 3 0 1 2 3

2020-12-14 18Parallel Programming 2020

Alltoall

▪ MPI_Alltoall: For all ranks, send i-th chunk to i-th rank

MPI_Alltoall(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

comm);

▪ MPI_Alltoallv: Allows different number of elements to be

send/received by each rank

▪ MPI_Alltoallw: Allows also different data types and displacements in

bytes

2020-12-14 19Parallel Programming 2020

Alltoall

sendcount

MPI_Alltoall() (no root required)

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

11 11

0 4 8 12recvbuf 1 5 9 13 2 6 10 14 3 7 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Global operations

Global operations: reduction

▪ Compute results over distributed data

MPI_Reduce(sendbuf, recvbuf, count,

datatype, MPI_Op op, root, comm);

▪ Result in recvbuf only available on root process

▪ Perform operation on all count elements of an

array

▪ If all ranks require result, use MPI_Allreduce()

▪ If the 12 predefined ops are not enough use
MPI_Op_create/MPI_Op_free to create own ones

0

1

2

3

rank sendbuf

8 9 6 8
recvbuf

on root

MPI_Reduce()

count = 4

op = MPI_MAX

0 9 2 6

5 1 0 4

8 3 4 5

1 0 6 8

m
a

x
()

m
a

x
()

m
a

x
()

m
a

x
()

2020-12-14Parallel Programming 2020 21

2020-12-14 22Parallel Programming 2020

Global operations – predefined operators

Name Operation Name Operation

MPI_SUM Sum MPI_PROD Product

MPI_MAX Maximum MPI_MIN Minimum

MPI_LAND Logical AND MPI_BAND Bit-AND

MPI_LOR Logical OR MPI_BOR Bit-OR

MPI_LXOR Logical XOR MPI_BXOR Bit-XOR

MPI_MAXLOC Maximum+Position MPI_MINLOC Minimum+Position

▪ Define own operations with MPI_Op_create/MPI_Op_free

▪ MPI assumes that the operations are associative

→ be careful with floating-point operations

2020-12-14 23Parallel Programming 2020

“In-place” buffer specification

Override local input buffer with a result

int partial_sum = …, total_sum;

MPI_AllReduce(&partial_sum, &total_sum,

1, MPI_INT,

MPI_SUM, comm);

int partial_sum = …, total_sum;

total_sum = partial_sum;

MPI_AllReduce(MPI_IN_PLACE, &total_sum,

1, MPI_INT,

MPI_SUM, comm);

int partial_sum = …, total_sum;

MPI_Reduce(&partial_sum, &total_sum,

1, MPI_INT,

MPI_SUM, root, comm);

int partial_sum = …, total_sum;

if (rank == root) {

total_sum = partial_sum;

MPI_Reduce(MPI_IN_PLACE, &total_sum,

1, MPI_INT,

MPI_SUM, root, comm);

}

else {

MPI_Reduce(&partial_sum, &total_sum,

1, MPI_INT,

MPI_SUM, root, comm);

}

MPI_Reduce MPI_Allreduce

2020-12-14 24Parallel Programming 2020

MPI_IN_PLACE cheat sheet

Function

MPI_IN_P

LACE

argument

@

rank(s)
Comment [MPI 3.0]

MPI_GATHER send buffer root Recv value at root already in the correct place in receive buffer.

MPI_GATHERV send buffer root Recv value at root already in the correct place in receive buffer.

MPI_SCATTER
receive

buffer
root Root-th segment of send buffer is not moved.

MPI_SCATTERV
receive

buffer
root Root-th segment of send buffer is not moved.

MPI_ALLGATHER send buffer all Input data at the correct place were process would receive its own contribution.

MPI_ALLGATHERV send buffer all Input data at the correct place were process would receive its own contribution.

MPI_ALLTOALL send buffer all
Data to be sent is taken from receive buffer and replaced by received data, data

sent/received must be of the same type map specified in receive count/receive type.

MPI_ALLTOALLV send buffer all

Data to be sent is taken from receive buffer and replaced by received data. Data

sent/received must be of the same type map specified in receive count/receive type.

The same amount of data and data type is exchanged between two processes.

MPI_REDUCE send buffer root Data taken from receive buffer, replaced with output data.

MPI_ALLREDUCE send buffer all Data taken from receive buffer, replaced with output data.

2020-12-14 25Parallel Programming 2020

Summary of MPI collective communication

▪ MPI (blocking) collectives

▪ All ranks in communicator must call the function

▪ Communication and synchronization

▪ Barrier, broadcast, scatter, gather, and combinations thereof

▪ Global operations

▪ Reduce, allreduce, some more…

▪ In-place buffer specification MPI_IN_PLACE

▪ Save some space if need be

Distributed-memory system architecture

Distributed-memory parallel computers today

▪ Clusters of shared-memory nodes

▪ ccNUMA per node

▪ Multiple cores per ccNUMA domain

Long gone!

2020-12-14Parallel Programming 2020 27

2020-12-14 28Parallel Programming 2020

Point-to-point data transmission performance

▪ Simple “Hockney model” for data

transfer time

𝑇𝑐𝑜𝑚𝑚 = 𝜆 +
𝑉

𝑏
, 𝐵eff =

𝑉

𝑇𝑐𝑜𝑚𝑚

𝜆: latency, 𝑏: asymptotic BW

▪ Reality is more complicated

▪ System topology

▪ Protocol switches

▪ Contention effects

2020-12-14 29Parallel Programming 2020

Characterizing communication networks

▪ Network bisection bandwidth 𝐵𝑏 is a general metric for the data transfer

“capability” of a system:

Minimum sum of the bandwidths of all connections cut when splitting the

system into two equal parts

▪ More meaningful metric for system

scalability: bisection BW per node: 𝐵𝑏/𝑁𝑛𝑜𝑑𝑒𝑠

▪ Bisection BW depends on

▪ Bandwidth per link

▪ Network topology

2020-12-14 30Parallel Programming 2020

Network topologies: bus

▪ Bus can be used by one connection

at a time

▪ Bandwidth is shared among

all devices

▪ Bisection BW is constant → 𝐵𝑏/𝑁𝑛𝑜𝑑𝑒𝑠 ~ 1/𝑁𝑛𝑜𝑑𝑒𝑠
▪ Examples: diagnostic buses, old Ethernet network with hubs, Wi-Fi

channel

▪ Advantages

▪ Low latency

▪ Easy to implement

▪ Disadvantages

▪ Shared bandwidth, not scalable

▪ Problems with failure resiliency (one

defective agent may block bus)

▪ Large signal power per agent

2020-12-14 31Parallel Programming 2020

Network topologies: non-blocking crossbar

▪ Non-blocking crossbar can mediate

a number of connections among

groups of input and output elements

▪ This can be used as a

n-port non-blocking

switch (fold at the secondary diagonal)

▪ Switches can be cascaded to form hierarchies

(common case)

▪ Allows scalable communication at high hardware/energy costs

▪ Crossbars are rarely used as interconnects for large scale computers

▪ NEC SX9 vector system (“IXS”)

2x2

switching

element

2020-12-14 32Parallel Programming 2020

Network topologies: switches and fat trees

▪ Standard clusters are built with switched networks

▪ Compute nodes (“devices”) are split up in groups – each group is

connected to single (non-blocking crossbar-)switch (“leaf switches”)

▪ Leaf switches are connected with each other using an additional switch

hierarchy (“spine switches”) or directly (for small configurations)

▪ Switched networks: “Distance” between any two devices is heterogeneous

(number of “hops” in switch hierarchy)

▪ Diameter of network: The maximum number of hops required to connect

two arbitrary devices (e.g., diameter of bus=1)

▪ “Perfect” world: “Fully non-blocking”, i.e. any choice of 𝑁𝑛𝑜𝑑𝑒𝑠/2 disjoint

node (device) pairs can communicate at full speed

Parallel Programming 2020

Fat tree switch hierarchies

▪ “Fully non-blocking”

▪ Nnodes/2 end-to-end con-nections with full BW

→ 𝐵𝑏 = 𝐵 × 𝑁𝑛𝑜𝑑𝑒𝑠/2, 𝐵𝑏/𝑁𝑛𝑜𝑑𝑒𝑠 = 𝐵/2

▪ Sounds good, but see next slide

▪ “Oversubscribed”

▪ Spine does not support 𝑁𝑛𝑜𝑑𝑒𝑠/2
full BW end-to-end connections

▪ 𝐵𝑏/𝑁𝑛𝑜𝑑𝑒𝑠 = 𝑐𝑜𝑛𝑠𝑡. = 𝐵/(2𝑘),
with 𝑘 = oversubscription factor

▪ Resource management
(job placement) is crucial

𝒌 = 𝟑

B

B

node “leaf” switch

“spine” switch

2020-12-14 33

2020-12-14 34Parallel Programming 2020

Fat trees and static routing

▪ If all end-to-end data paths are preconfigured (“static routing”), not all

possible combinations of 𝑁 agents will get full bandwidth

▪ Example: is a collision-free pattern here (1→5, 2→6,3→7, 4→8)

▪ Change (2→6,3→7) to (2→7,3→6): has collisions if no other

connections are re-routed at the

same time

▪ Static routing: potential collisions

even for full fat tree

▪ Dynamic/adaptive routing:

collision mitigation

2020-12-14 35Parallel Programming 2020

A “single” 288-port InfiniBand DDR switch

288 ports

Spine switch level: 12 switches

Leaf switch level: 24 switches with 24*12 ports to devices

2020-12-14 36Parallel Programming 2020

Examples for fat tree networks in HPC

▪ Ethernet

▪ 1 Gbit/s &10 & 100 Gbit/s variants

▪ InfiniBand: Dominant high-performance “commodity” interconnect

▪ DDR: 20 Gbit/s per link and direction (Building blocks: 24-port switches)

▪ QDR: 40 Gbit/s per link and direction, building blocks: 36-port switches

→ “Large” 36x18=648-port switches

▪ FDR-10 / FDR: 40/56 Gbit/s per link and direction

▪ EDR: 100 Gbit/s per link and direction, HDR: 200 Gbit/s

▪ Expensive & complex to scale to very high node counts

2020-12-14 37Parallel Programming 2020

Mesh networks

▪ Fat trees can become prohibitively expensive in large systems

▪ Compromise: Meshes

▪ n-dimensional Hypercubes

▪ Toruses (2D / 3D)

▪ Many others (including hybrids)

▪ Each node is a “router”

▪ Direct connections only between
direct neighbors

Example: 2D

torus mesh

2020-12-14 38Parallel Programming 2020

Mesh networks

▪ This is not a non-blocking corossbar!

▪ Intelligent resource management and routing algorithms are essential

▪ Toruses at very large systems:
Cray XE/XK series, IBM Blue Gene

▪ 𝐵𝑏 ~ 𝑁𝑛𝑜𝑑𝑒𝑠
(𝑑−1)/𝑑

→ 𝐵𝑏/𝑁𝑛𝑜𝑑𝑒𝑠→0 for large 𝑁𝑛𝑜𝑑𝑒𝑠

▪ Sounds bad, but those machines show
good scaling for many codes

▪ Well-defined and predictable
bandwidth behavior!

2020-12-14 39Parallel Programming 2020

Summary of distributed-memory architecture

▪ “Pure” distributed-memory parallel systems are rare

▪ Hierarchical parallelism rules

▪ Simple latency/bandwidth model good for insights, but unrealistic

▪ Protocol switches, contention

▪ Wide variety of network topologies available

▪ Nonblocking crossbar

▪ Fat tree

▪ Meshes (torus, hypercube, hybrids)

