
Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg

Institute of Physics, Universität Greifswald

Lecture 12: MPI I/O

Outline of course

▪ Basics of parallel computer architecture

▪ Basics of parallel computing

▪ Introduction to shared-memory programming with OpenMP

▪ OpenMP performance issues

▪ Introduction to the Message Passing Interface (MPI)

▪ Advanced MPI

▪ MPI performance issues

▪ Hybrid MPI+OpenMP programming

2021-01-18Parallel Programming 2020 2

MPI Input/Output

Why MPI I/O?

Many parallel applications need …

▪ coordinated parallel access to a file by a group of processes,

▪ simultaneous access to a file,

▪ non-contiguous access to pieces of the file by many processes,

i.e., the data may be distributed amongst the processes according to a

partitioning scheme.

And of course it should

be efficient!

2021-01-18Parallel Programming 2020 4

rank 0 rank 1 rank 2 rank 3 rank 4

file, logical view

file, physical view

2021-01-18 5Parallel Programming 2020

MPI I/O features

▪ MPI I/O Provides a high-level interface to support

▪ data file partitioning among processes

▪ transfer global data between memory and files (“collective” I/O)

▪ asynchronous transfers

▪ strided access

▪ MPI derived data types are used to specify common data access patterns

for maximum flexibility and expressiveness

2021-01-18 6Parallel Programming 2020

MPI I/O: principles

▪ MPI file contains elements of a single MPI data type (etype)

▪ The file is partitioned among processes using an access template (filetype)

▪ All file accesses transfer to/from a contiguous or

non-contiguous user buffer (MPI data type)

▪ Several different ways of reading/writing data:

▪ non-blocking / blocking

▪ collective / individual

▪ individual / shared file pointers, explicit offsets

▪ Automatic data conversion in heterogeneous systems

▪ File interoperability with external representation

Opening & closing files

File open

int MPI_File_open(MPI_Comm comm, const char *filename,

int amode, MPI_Info info,

MPI_File *fh);

▪ Collective call by all processes which are part of comm

▪ filename can be different, but must point to the same file

▪ amode describes access mode (see next slide)

▪ info object, can be MPI_INFO_NULL (see later)

▪ fh represents the file handle, to which comm and the view (see later) are

associated

▪ Process-local file I/O is possible by specifying MPI_COMM_SELF as comm

2021-01-18Parallel Programming 2020 8

2021-01-18 9Parallel Programming 2020

File access modes

Flags can be or’ed together, e.g., MPI_MODE_WRONLY | MPI_MODE_APPEND

Access mode Description

MPI_MODE_RDONLY read only

MPI_MODE_RDWR read and write

MPI_MODE_WRONLY write only

MPI_MODE_CREATE create if it does not exist

MPI_MODE_EXCL error if file exists

MPI_MODE_DELETE_ON_CLOSE file is deleted when closed

MPI_MODE_UNIQUE_OPEN file is not concurrently opened by anybody else

MPI_MODE_SEQUENTIAL
only sequential access will occur (MPI_File_read/write_shared

is allowed)

MPI_MODE_APPEND all file pointers are located at the end of the file

one of these is required

2021-01-18 10Parallel Programming 2020

File open

MPI_File fh;

MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_WRONLY | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);

...

▪ All processes in MPI_COMM_WORLD open the file collectively

▪ Also possible to open file with only one process:

if (rank == 0) {

MPI_File fh;

MPI_File_open(MPI_COMM_SELF, filename,

MPI_MODE_WRONLY | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);

...

}

2021-01-18 11Parallel Programming 2020

File close

int MPI_File_close(MPI_File *fh);

▪ Collective call by all processes in the communicator the file was opened in

▪ File state is synchronized, i.e., all data is transferred to disk storage

▪ File handle fh is set to MPI_FILE_NULL

▪ File is deleted if MPI_MODE_DELETE_ON_CLOSE was part of access mode

▪ All outstanding nonblocking requests & split collectives associated with fh must

have been completed

MPI_File fh;

MPI_File_open(MPI_COMM_WORLD, …, &fh);

...

MPI_File_close(&fh);

Info objects

Info objects I

▪ Opaque object, storing key/value pairs

▪ Often used to provide system-specific information

▪ via info argument in function calls

▪ for MPI I/O, process management, memory allocation,

…

▪ Keys

▪ All keys may be ignored

▪ MPI defines a set of reserved keys

▪ Implementations may provide additional keys

▪ Keys/values are strings and converted to other

types as required

▪ Use MPI_INFO_NULL if you do not want to provide

additional information

MPI_Info info;

New, empty object:
int MPI_Info_create(

MPI_Info *info);

Add entry to existing object:
int MPI_Info_set(

MPI_Info info,

const char *key,

const char *value);

2021-01-18Parallel Programming 2020 13

2021-01-18 14Parallel Programming 2020

Info objects II

▪ Delete entry from info object
int MPI_Info_delete(MPI_Info info, const char *key);

▪ Retrieve value associated with key
int MPI_Info_get(MPI_Info info, const char *key,

int valuelen, char *value, int *flag);

▪ flag = true: a value is associated with the key and returned in value

▪ flag = false: no value associated with the key, value is unchanged

▪ valuelen: size of the buffer value points to,

if associated value is larger, data is truncated

▪ Free info object
int MPI_Info_free(MPI_Info *info);

▪ Length restriction:

▪ keys: MPI_MAX_INFO_KEY

▪ values: MPI_MAX_INFO_VAL

2021-01-18 15Parallel Programming 2020

Info objects for striping

Striping:

▪ relevant only when file is created, i.e. in MPI_File_open

▪ must be the same for all processes

▪ is only a hint

Keys for info object:

striping_factor int number of I/O devices the file

should be striped across

striping_unit int number of consecutive bytes

stored on one I/O device

before the next is used

I/O devices

file

striping unit

striping factor

2021-01-18 16Parallel Programming 2020

Info objects for collective buffering

▪ Each process might access I/O devices

▪ Can generate high load

▪ Collective buffering to mitigate this problem

process

node

2021-01-18 17Parallel Programming 2020

Info objects for collective buffering

Collective buffering

▪ Optimization for collective accesses

▪ Access performed on behalf of all processes by

some target nodes

Keys for info object:
collective_buffering bool true if application might

benefit from collective

buffering, false if not

cb_block_size int target nodes access data in

chunks of this size

cb_buffer_size int buffer size on target node

used for collective

buffering, usually a multiple

of the block size

cb_nodes int number of target nodes

target node

process

node

2021-01-18 18Parallel Programming 2020

Info object example

Example: create MPI info object for MPI_File_open

MPI_Info info;

MPI_Info_create(&info);

// Hint: stripe over 10 I/O devices

MPI_Info_set(info, "striping_factor", "10");

// Hint: enable collective buffering

MPI_Info_set(info, "collective_buffering", "true");

// Hint: use 4 target nodes for buffering

MPI_Info_set(info, "cb_nodes", "4");

...

MPI_File_open(comm, filename, amode, info, &fh);

...

MPI_Info_free(&info);

2021-01-18 19Parallel Programming 2020

Query info of open file (I)
// Error handling omitted for brevity

MPI_Info info;

char keyName[MPI_MAX_INFO_KEY + 1], * value;

int nKeys, nValue, keyDefined;

MPI_File_get_info(fh, &info);

MPI_Info_get_nkeys(info, &nKeys);

for (int i = 0; i < nKeys; ++i) {

MPI_Info_get_nthkey(info, i, keyName);

MPI_Info_get_valuelen(info, keyName, &nValue, &keyDefined);

if (!keyDefined) continue;

value = (char *)malloc(sizeof(char *) * (nValue + 1));

MPI_Info_get(info, keyName, nValue, value, &keyDefined);

printf("info get [%2d] %s: %s\n", i, keyName, value);

free(value);

}

MPI_Info_free(&info);

2021-01-18 20Parallel Programming 2020

Query info of open file (II)
RRZE’s Meggie cluster, Intel MPI, one process, one file striped over 32 I/O devices

on Lustre file system

info get [0] direct_read: false

info get [1] direct_write: false

info get [2] romio_lustre_co_ratio: 1

info get [3] romio_lustre_coll_threshold: 0

info get [4] romio_lustre_ds_in_coll: enable

info get [5] cb_buffer_size: 16777216

info get [6] romio_cb_read: automatic

info get [7] romio_cb_write: automatic

info get [8] cb_nodes: 1

info get [9] romio_no_indep_rw: false

info get [10] romio_cb_pfr: disable

info get [11] romio_cb_fr_types: aar

info get [12] romio_cb_fr_alignment: 1

info get [13] romio_cb_ds_threshold: 0

info get [14] romio_cb_alltoall: automatic

info get [15] ind_rd_buffer_size: 4194304

info get [16] ind_wr_buffer_size: 524288

info get [17] romio_ds_read: automatic

info get [18] romio_ds_write: automatic

info get [19] cb_config_list: *:1

info get [20] romio_filesystem_type: LUSTRE:

info get [21] romio_aggregator_list: 0

info get [22] striping_unit: 1048576

info get [23] striping_factor: 32

info get [24] romio_lustre_start_iodevice: 0

2021-01-18 21Parallel Programming 2020

Miscellaneous file manipulation routines

▪ Pre-allocating space for a file (may be expensive)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size);

▪ Resizing a file (may speed up first write to a file)

int MPI_File_set_size(MPI_File fh, MPI_Offset size);

▪ Querying file size

int MPI_File_get_size(MPI_File fh, MPI_Offset *size);

▪ Querying file access mode

int MPI_File_get_amode(MPI_File fh, int *amode);

▪ File info object

int MPI_File_set_info(MPI_File fh, MPI_Info info);

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used);

File views

MPI I/O file views

▪ Visible and accessible data from a file

▪ Each process has its own view

▪ View is described via (displacement , etype , filetype)

▪ Pattern of filetype is repeated beginning at displacement

▪ Views can be changed, but this is a collective operation

▪ Default view: linear byte stream (0, MPI_BYTE , MPI_BYTE)

file

filetypeetype

visible and accessible data
displacement

(from MPI 3.1

standard document)

holes

2021-01-18Parallel Programming 2020 23

2021-01-18 24Parallel Programming 2020

The default file view

▪ After file open, each file has the default view

▪ Default view: linear byte stream

▪ displacement = 0

▪ etype = MPI_BYTE

▪ filetype = MPI_BYTE

▪ MPI_BYTE matches with any data type

etype = filetype = MPI_BYTE

file 0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

view of

process 2

process 1

process 0

2021-01-18 25Parallel Programming 2020

A custom file view

etype elementary datatype

filetype process 2

filetype process 0

filetype process 1

0 4

1 5

2 3 6 7 view of process 2

view of process 0

view of process 1

example from MPI 3.1

standard document

0 41 5

tiling a file with filetypes:

2 3 6 7file

displacement in bytes

holes

2021-01-18 26Parallel Programming 2020

Definitions

file ▪ ordered collection of data items

displacement
▪ position from the beginning of the file

▪ marks the start of the view, can be different on each process

▪ unit: byte

etype

▪ elementary data type

▪ unit of data access and positioning

▪ type displacements must be: nonnegative, monot. nondecreasing, and nonabsolute

▪ same for all processes

filetype

▪ single or multiple etypes

▪ size of holes must be multiples of etype extent

▪ repeated pattern after displacement

▪ type displacements must be: nonnegative, monot. nondecreasing, nonabsolute

▪ can be different for all processes

view
▪ accessible data of a file by a process
▪ defined by displacement, etype, filetype

offset
▪ position in file relative to current view
▪ type MPI_Offset in C, INTEGER(KIND=MPI_OFFSET_KIND) in Fortran

▪ unit: etype

2021-01-18 27Parallel Programming 2020

Setting and getting the view

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,

MPI_Datatype etype, MPI_Datatype filetype,

const char *datarep, MPI_Info info);

▪ Changes the process’s view of the data

▪ Collective operation

▪ Local and shared file pointers are reset to zero

▪ etype and filetype must be committed types

▪ datarep is a string specifying the format data is written to a file:
native, internal, external32, or user-defined (see next slide)

▪ Same etype extent and same datarep on all processes

▪ disp: MPI_Offset in C, INTEGER(KIND=MPI_OFFSET_KIND) in Fortran

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp,

MPI_Datatype *etype, MPI_Datatype *filetype, char *datarep);

2021-01-18 28Parallel Programming 2020

Data representations

native

▪ data stored in file identical to memory
▪ on homogeneous systems no loss in precision or I/O performance due to type

conversions
▪ loss of interoperability on heterogeneous systems
▪ no guarantee that MPI files accessible from C/Fortran

internal

▪ data stored in implementation-specific format
▪ can be used with homogeneous or heterogeneous environments
▪ implementation will perform type conversions if necessary
▪ no guarantee that MPI files accessible from C/Fortran

external32

▪ follows standardized representation (big endian IEEE)
▪ all input/output operations are converted from/to external32
▪ files can be exported/imported between different MPI environments
▪ due to type conversions from (to) native to (from) external32 data precision and

I/O performance may be lost
▪ internal may be implemented as equal to external32
▪ can be read/written also by non-MPI programs

2021-01-18 29Parallel Programming 2020

A simple file view example

Basic example: File view for one process

▪ View contains holes with respect to original file

etype = MPI_INT

filetype: two MPI_INTs followed by a gap

of four MPI_INTs

filetype filetype

© R. Thakur

file

holes

displacement:

5 x MPI_INT

2021-01-18 30Parallel Programming 2020

A simple file view example: C code

MPI_Offset disp;

MPI_Datatype etype, filetype;

int sizes[] = { 6 };

int sub_sizes[] = { 2 };

int start_idxs[] = { 0 };

MPI_Type_create_subarray(1, sizes, sub_sizes, start_idxs,

MPI_ORDER_C, MPI_INT, &filetype);

MPI_Type_commit(filetype);

disp = 5 * 4; // 4 = size of MPI_INT in bytes

etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

MPI_MODE_CREATE | MPI_MODE_RDWR,

MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native", MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

f
i
l
e
t
y
p
e

subarray

holes2 int

Based on code

by R. Thakur

Reading and writing data

2021-01-18 32Parallel Programming 2020

Reading and writing from/to files

▪ Direction: Read / Write

▪ Positioning (realized via routine names)
▪ explicit offset (_AT)

▪ individual file pointer (no positional qualifier)

▪ shared file pointer (_SHARED or _ORDERED)
(different names used depending on whether non-collective or collective)

▪ Coordination
▪ non-collective

▪ collective (_ALL)

▪ Synchronization
▪ blocking

▪ non-blocking (_I…) and split collective (_BEGIN, _END)

▪ Atomicity (implemented with a separate API: MPI_File_set_atomicity)

▪ atomic

▪ non-atomic

2021-01-18 33Parallel Programming 2020

All data access routines

Positioning Synchronization Non-collective Collective

Explicit offsets

blocking
Reat_at Read_at_all

Write_at Write_at_all

non-blocking
Iread_at Iread_at_all

Iwrite_at Iwrite_at_all

split collective
Read_at_all_(begin|end)

Write_at_all_(begin|end)

Individual file

pointers

blocking Read Read_all

Write Write_all

non-blocking
Iread Iread_all

Iwrite Iwrite_all

split collective Read_all_(begin|end)

Write_all_(begin|end)

Shared file pointers

blocking Read_shared Read_ordered

Write_shared Write_ordered

non-blocking
Iread_shared

Iwrite_shared

split collective Read_ordered_(begin|end)

Write_ordered_(begin|end)

2021-01-18 34Parallel Programming 2020

Individual file pointers vs. explicit offsets

▪ Each process maintains its own individual file pointer:

▪ Explicit offsets do not affect

file pointers

0 1 2 3 4 5 6 7 8 9 10 11file

0: read

0
:
f
p

1
:
f
p

0
:
f
p

0: read

1: read

1
:
f
p

0
:
f
p

1
:
f
p

1: read

0 1 2 3 4 5 6 7 8 9 10 11file

0: read

0
:
f
p

0
:
f
p

0: read

0
:
f
p

0: read_at

2021-01-18 35Parallel Programming 2020

Explicit offsets

int MPI_File_read_at(MPI_File fh, MPI_Offset offset,

void *buf, int count, MPI_Datatype datatype,

MPI_Status *status);

▪ Read data starting at offset

▪ Read count elements of datatype

▪ Starting offset * units of etype from begin of view (displacement)

▪ Sequence of basic datatypes of datatype (= signature of datatype) must match

contiguous copies of the etype of the current view

▪ EOF can be detected by noting that the amount of data read is less than count

▪ i.e., EOF is no error

▪ use MPI_Get_count(&status, datatype, &recv_count);

▪ Explicit offset routines do not alter file pointer

2021-01-18 36Parallel Programming 2020

Individual file pointers

int MPI_File_read(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status);

▪ Arguments have same meaning as for MPI_File_reat_at

▪ offset is individual file pointer of calling process

▪ Individual file pointer is automatically incremented by

fp = fp + count * elements(datatype)/elements(etype)

▪ I.e., it points to the next etype after the last one that will be accessed (formula is

not valid if EOF is reached)

▪ Behaves nearly like standard serial file I/O

2021-01-18 37Parallel Programming 2020

Individual file pointers

▪ Set offset of individual file pointer fp:
int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence);

▪ Get offset of individual file pointer:
int MPI_File_get_position(MPI_File fh, MPI_Offset *offset);

▪ Get absolute byte position from offset for current view
int MPI_File_get_byte_offset(MPI_File fh,

MPI_Offset offset, MPI_Offset *disp);

whence description

MPI_SEEK_SET set fp to offset

MPI_SEEK_CUR set fp to fp + offset

MPI_SEEK_END set fp to EOF + offset

2021-01-18 38Parallel Programming 2020

Shared file pointers

int MPI_File_read_shared(MPI_File fh,

void *buf, int count, MPI_Datatype datatype,

MPI_Status *status);

▪ One shared file pointer per MPI_File_open

▪ All processes must have the same view

▪ Individual file pointers are not affected

▪ Ordering during serialization is not deterministic

▪ Use *ordered (collective call) if determinism is required

▪ Use *shared routines to get/set file pointer

Examples and use cases

Example: global matrix subarray

▪ Task

▪ read a global matrix of size 20x30 from a file

▪ store a subarray into a local array on each process

▪ according to a given distribution scheme

▪ 2-dimensional distribution scheme: (BLOCK,BLOCK)

▪ larray = local array in each MPI process

= subarray of the global array garray

▪ Remember: Contiguous index is language dependent

▪ Fortran: (1,1), (2,1), (3,1), ... , (1,10), (2,10), (3,10), ..., (20,30)

▪ C/C++:[0][0], [0][1], [0][2], ... , [10][0], [10][1], [10][2], ..., [20][30]

▪ same ordering on file (garray) and in memory (larray)

2021-01-18 41Parallel Programming 2020

Global matrix subarray

▪ Process topology: 2x3

▪ global array on the file:

20x30

▪ distributed on local arrays

in each processor: 10x10

(0,0)

(19,29)

F
o

rt
ra

n

C (contiguous indices on the file and in memory)

2021-01-18 42Parallel Programming 2020

Golbal matrix subarray

double larray[10][10];

MPI_Offset disp, offset, disp = 0, offset = 0;

ndims=2;

psizes[0]=2; period[0]=0;

psizes[1]=3; period[1]=0;

MPI_Cart_create(MPI_COMM_WORLD, ndims, psizes, period, 1, &comm);

MPI_Comm_rank(comm, &rank) ;

MPI_Cart_coords(comm, rank, ndims, coords);

gsizes[0]=20; lsizes[0]=10; starts[0]=coords[0]*lsizes[0];

gsizes[1]=30; lsizes[1]=10; starts[1]=coords[1]*lsizes[1];

MPI_Type_create_subarray(ndims, gsizes, lsizes, starts,

MPI_ORDER_C, MPI_DOUBLE, &stype);

MPI_Type_commit(&stype);

MPI_File_open(comm, file_name, MPI_MODE_READ, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, MPI_DOUBLE, stype, “native”, MPI_INFO_NULL);

MPI_File_read_at_all(fh, offset,

larray, lsizes[0]*lsizes[1], MPI_DOUBLE,

&status);

Create

virtual

topology

Create

custom

datatype

Open file,

create view,

read data

2021-01-18 43Parallel Programming 2020

Global matrix subarray

▪ All MPI coordinates and indices start with 0,
even in Fortran (i.e., with MPI_ORDER_FORTRAN)

▪ MPI indices (here starts) may differ () from Fortran indices

▪ Block distribution on 2*3 processes:

rank = 0

coords = (0, 0)

starts = (0, 0)

garray(0:9, 0:9)

= larray(0:9, 0:9)

rank = 1

coords = (0, 1)

starts = (0,10)

garray(0:9, 10:19)

= larray (0:9, 0:9)

rank = 2

coords = (0, 2)

starts = (0,20)

garray(0:9, 20:29)

= larray(0:9, 0:9)

rank = 3

coords = (1, 0)

starts = (10, 0)

garray(10:19, 0:9)

= larray(0:9, 0:9)

rank = 4

coords = (1, 1)

starts = (10,10)

garray(10:19, 10:19)

= larray(0:9, 0:9)

rank = 5

coords = (1, 2)

starts = (10,20)

garray(10:19, 20:29)

= larray(0:9, 0:9)

2021-01-18 44Parallel Programming 2020

MPI I/O application scenarios I

▪ Scenario A: Each process has to read the whole file

▪ Solution 1: MPI_File_read_all

collective with individual file pointers, with same view
(displacement+etype+filetype) on all processes

▪ Solution 2: MPI_File_read_all_begin

collective with individual file pointers, with same view
(displacement+etype+filetype) on all processes,

then computing some other initialization,

MPI_File_read_all_end

blocking

nonblocking

2021-01-18 45Parallel Programming 2020

MPI I/O application scenarios II

▪ Scenario B: The file contains a list of tasks,
each task requires different compute time

▪ Solution: MPI_File_read_shared

non-collective with a shared file pointer
(same view is necessary for shared file pointer)

▪ Scenario C: The file contains a list of tasks,
each task requires the same compute time

▪ Solution: MPI_File_read_ordered

collective with a shared file pointer
(same view is necessary for shared file pointer)

▪ or: MPI_File_read_all

collective with individual file pointers,
different views: filetype with
MPI_Type_create_subarray(…, &filetype)

2021-01-18 46Parallel Programming 2020

MPI I/O error handling

▪ File handles have their own error handler

▪ Default is MPI_ERRORS_RETURN, i.e., non-fatal

▪ message passing: MPI_ERRORS_ARE_FATAL

▪ Default is associated with MPI_FILE_NULL

▪ message passing: with MPI_COMM_WORLD

▪ Changing the default, e.g., after MPI_Init
▪ MPI_File_set_errhandler(MPI_FILE_NULL, MPI_ERRORS_ARE_FATAL);

▪ MPI is undefined after first erroneous MPI call,

▪ but a “high-quality implementation” will support I/O error handling facilities

2021-01-18 47Parallel Programming 2020

MPI I/O summary

▪ Rich functionality provided to support various data representations and

access options

▪ MPI I/O routines provide flexibility as well as portability

▪ Collective I/O routines can improve I/O performance

▪ Full implementation of MPI I/O available in all major implementations

▪ Intel MPI

▪ Open MPI

▪ MVAPICH

▪ …

▪ Generally, use of MPI I/O is often limited to special file systems;
do not expect it to work on your average NFS-mounted $HOME

▪ If it works at all, data loss might occur!

