_ UNIVERSITAT GREIFSWALD FRIEDRICH-ALEXANDER
Wissen lockt. Sgit 1456 R A A JRNBERG

Erlangen Regional
Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitéat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 12: MPI I/O

Outline of course

= Advanced MPI

Parallel Programming 2020 2021-01-18

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

MPI Input/Output

Why MPI 1/0?

Many parallel applications need ...

= coordinated parallel access to a file by a group of processes,

= simultaneous access to a file,

= non-contiguous access to pieces of the file by many processes,

l.e., the data may be distributed amongst the processes according to a
partitioning scheme. rank0 rank1 rank2 rank3 rank4

BH B O
And of course it should me,mgicm\,iew\ \ t / /

be efficient! t t t t t
@ @ @ @ @ file, physical view

Parallel Programming 2020 2021-01-18

MPI 1/O features

= MPI I/O Provides a high-level interface to support
= data file partitioning among processes
= transfer global data between memory and files (“collective” I/O)
= asynchronous transfers
= strided access

= MPI derived data types are used to specify common data access patterns
for maximum flexibility and expressiveness

Parallel Programming 2020 2021-01-18

MPI I/O: principles

= MPI file contains elements of a single MPI data type (etype)
= The file is partitioned among processes using an access template (filetype)
= All file accesses transfer to/from a contiguous or

non-contiguous user buffer (MPI data type)

= Several different ways of reading/writing data:
= non-blocking / blocking
= collective / individual
= individual / shared file pointers, explicit offsets

= Automatic data conversion in heterogeneous systems
= File interoperability with external representation

Parallel Programming 2020 2021-01-18 6

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Opening & closing files

File open

int MPI File open (MPI Comm comm, const char *filename,
int amode, ,
MPI File *fh);

= Collective call by all processes which are part of comm

= filename can be different, but must point to the same file
= amode describes access mode (see next slide)

o object, can be (see later)

= fh represents the file handle, to which comm and the view (see later) are
associated

= Process-local file 1/O is possible by specifying MPI_cOMM SELF as comm

Parallel Programming 2020 2021-01-18

File access modes

Access mode
MPI_MODE_RDONLY
MPI_MODE_RDWR
MPI_MODE_WRONLY

MPI_MODE_CREATE
MPI_MODE_EXCL
MPI_MODE DELETE ON_CLOSE
MPI_MODE_UNIQUE OPEN

MPI MODE SEQUENTIAL

MPI_MODE APPEND

Description .
read only
read and write > one of these is required

write only

create if it does not exist

error if file exists

file is deleted when closed

file is not concurrently opened by anybody else

only sequential access will occur (MPI_File read/write shared
is allowed)

all file pointers are located at the end of the file

Flags can be or'ed together, e.g., MPI_MODE WRONLY | MPI MODE APPEND

Parallel Programming 2020

2021-01-18

File open

MPI_File fh;

MPI File open(MPI_COMM WORLD, filename,
MPI MODE WRONLY | MPI MODE CREATE, MPI INFO NULL, &fh);

= All processes in MPI_COMM_WORLD open the file collectively
= Also possible to open file with only one process:

if (rank == 0) {
MPI File fh;
MPI File open(MPI COMM SELF, filename,
MPI_MODE WRONLY | MPI_MODE CREATE, MPI_INFO NULL, &fh);

}

Parallel Programming 2020 2021-01-18

10

File close

int MPI File close(MPI File *fh);

= Collective call by all processes in the communicator the file was opened in
= File state is synchronized, i.e., all data is transferred to disk storage

= File handle £h is setto MPI_FILE NULL

= File is deleted if MPI_MODE DELETE ON CLOSE was part of access mode

= All outstanding nonblocking requests & split collectives associated with £h must
have been completed

MPI File fh;
MPI_File open (MPI_COMM WORLD, .., &fh);

MPI File close(&fh);

Parallel Programming 2020 2021-01-18

11

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Info objects

Info objects |

» Opaque object, storing key/value pairs

= QOften used to provide system-specific information
= via info argument in function calls
= for MPI I/O, process management, memory allocation,

MPI Info info;
= Keys N

= All keys may be ignored New, empty object:
- MPI defines a set of reserved keys int MPI_Ifflfo;?r:ate.(
= Implementations may provide additional keys MPI_Info *info);
= Keys/values are strings and converted to other Add entry to existing object:
types as required int MPI_InfoTset(
= Use MPI_INFO NULL if you do not want to provide MPI_Info info,

o] _ const char *key,
additional information const char *value) ;

Parallel Programming 2020 2021-01-18 13

Info objects Il

= Delete entry from info object
int MPI_ Info_delete (MPI Info info, const char *key);

» Retrieve value associated with key
int MPI Info get(MPI Info info, const char *key,
int valuelen, char *value, int *flagqg);

= flag = true: a value is associated with the key and returned in value
= flag = false: no value associated with the key, value is unchanged
= valuelen: size of the buffer value points to,

If associated value is larger, data is truncated

= Free info object
int MPI Info free (MPI_Info *info);
= Length restriction:
- keys: MPI_MAX INFO KEY
- values: MPI_MAX INFO VAL

Parallel Programming 2020 2021-01-18

14

Info objects for striping

Striping:
= relevant only when file is created, i.e. in MPI_File open
= must be the same for all processes
= is only a hint

Keys for info object:

striping factor int number of I/O devices the file
should be striped across

striping unit int number of consecutive bytes o _
stored on one I/O device striping unit
before the next is used file
/'—_ «\
2021-01-18 15

Parallel Programming 2020

Info objects for collective buffering

= Each process might access I/O devices
= Can generate high load
= Collective buffering to mitigate this problem

CITTAL
[] process \\\\\ ///

NN =

\

Parallel Programming 2020 2021-01-18

16

Info objects for collective buffering

Collective buffering EEEEEEEE(EEEE

= Optimization for collective accesses
= Access performed on behalf of all processes by

some target nodes EEEE FTT T FTTT11
Keys for info object:

collective buffering bool true if application might O process
benefit from collective [J node

buffering, false if not [target node

cb block size int target nodes access data in
chunks of this size

cb buffer size int buffer size on target node
used for collective
buffering, usually a multiple
of the block size

cb _nodes int number of target nodes

Parallel Programming 2020 2021-01-18 17

Info object example

Example: create MPI info object for MPI _File open
MPI Info info;

MPI Info create(&info);

// Hint: stripe over 10 I/O devices

MPI Info set(info, "striping factor", "10");

// Hint: enable collective buffering

MPI Info set(info, "collective buffering", "true");
// Hint: use 4 target nodes for buffering

MPI Info set(info, "cb nodes", "4");

MPI File open(comm, filename, amode, info, &fh);

MPI_Infq_free(&info);

Parallel Programming 2020 2021-01-18

18

Query info of open file (1)

// Error handling omitted for brevity

MPI Info info;

char keyName [MPI MAX INFO KEY + 1], * value;
int nKeys, nValue, keyDefined;

MPI File get info(fh, &info);
MPI Info get nkeys(info, &nKeys);

for (int i = 0; i < nKeys; ++i) {
MPI Info get nthkey(info, i, keyName) ;
MPI Info get valuelen(info, keyName, &nValue, &keyDefined);

if ('keyDefined) continue;
value = (char *)malloc(sizeof(char *) * (nValue + 1))

MPI Info get(info, keyName, nValue, value, &keyDefined);
printf ("info get [%2d] %s: %s\n", i, keyName, value);

free (value) ;

}

MPI Info free(&info);

Parallel Programming 2020 2021-01-18

19

Query info of open file (1)

RRZE'’s Meggie cluster, Intel MPI, one process, one file striped over 32 I/O devices
on Lustre file system

info get [0] direct_read: false

info get [1] direct write: false

info get [2] romio_lustre co ratio: 1

info get [3] romio_lustre coll threshold: 0

info get [4] romio_lustre _ds_in coll: enable

info get [5] cb_buffer size: 16777216

info get [6] romio_cb_read: automatic info get [18] romio ds write: automatic
info get [7] romio_cb write: automatic info get [19] cb_config list: *:1

info get [8] cb_nodes: 1 info get [20] romio filesystem type: LUSTRE:
info get [9] romio_no_indep_rw: false info get [21] romio aggregator list: 0

info get [10] romio_cb pfr: disable info get [22] striping unit: 1048576

info get [11] romio_cb_fr types: aar info get [23] striping factor: 32

info get [12] romio_cb_ fr alignment: 1 info get [24] romio lustre start iodevice: 0

info get [13] romio_cb ds threshold: 0
info get [14] romio_cb_alltoall: automatic
info get [15] ind_rd buffer size: 4194304
info get [16] ind wr buffer size: 524288
info get [17] romio_ds read: automatic

Parallel Programming 2020 2021-01-18 20

Miscellaneous file manipulation routines

= Pre-allocating space for a file (may be expensive)
int MPI File preallocate(MPI File fh, MPI Offset size);

» Resizing a file (may speed up first write to a file)
int MPI File set size(MPI File fh, MPI Offset size);

= Querying file size
int MPI File get size(MPI File fh, MPI Offset *size);

= Querying file access mode
int MPI File get amode (MPI File fh, int *amode) ;

= File info object
int MPI File set info(MPI File fh, MPI Info info);
int MPI File get info(MPI File fh, MPI Info *info used);

Parallel Programming 2020 2021-01-18 21

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

File views

MPI 1/O file views

- (from MP1 3.1
- etype - flletype standard document)

P [[P s
— w—’ "

displacement visible and accessible data

= Visible and accessible data from a file

= Each process has its own view

= View is described via (displacement, etype, filetype)

= Pattern of £iletype IS repeated beginning at displacement
= Views can be changed, but this is a collective operation

= Default view: linear byte stream (0, MPI_BYTE , MPI BYTE)

Parallel Programming 2020 2021-01-18 23

The default file view

= After file open, each file has the default view
= Default view: linear byte stream

= displacement = 0

= etype

= filetype

= MPI_BYTE Mmatches with any data type

file

= filetype

> view of <

—MPI_BYTE etype

= MPI_BYTE

ol1l2]3]a4 9 [10|11] 2
ol1l2]3]4 90 [10]11 %
o[1]|2(3|4 9 [10|11] 2
ol1l2]3]4 9 [10|11] 2

= MPI BYTE

" process 0

process 1

_ process 2

Parallel Programming 2020

2021-01-18

24

A custom file view

etype elementary datatype

filetype process 0

. filetype process 1
- filetype process 2
W_J
holes

0|4
[1]5]
[2[3]e]7]

tiling a file with filetypes:

file 0 E
H_J
displacement in bytes

view Of process 0
view Of process 1
view oOf process 2

example from MPI 3.1
standard document

Parallel Programming 2020

2021-01-18 25

Definitions

file

displacement

etype

filetype

view

offset

ordered collection of data items

position from the beginning of the file
marks the start of the view, can be different on each process
unit: byte

elementary data type

unit of data access and positioning

type displacements must be: nonnegative, monot. nondecreasing, and nonabsolute
same for all processes

single or multiple etypes

size of holes must be multiples of etype extent

repeated pattern after displacement

type displacements must be: nonnegative, monot. nondecreasing, nonabsolute
can be different for all processes

accessible data of a file by a process
defined by displacement, etype, filetype

position in file relative to current view
type MPI_Offset in C, INTEGER (KIND=MPI_OFFSET_ KIND) in Fortran

unit: etype

Parallel Programming 2020

2021-01-18

26

Setting and getting the view

int MPI File set view(MPI File fh, MPI Offset disp,
MPI Datatype etype, MPI Datatype filetype,
const char *datarep, MPI Info info);

= Changes the process’s view of the data

= Collective operation

» Local and shared file pointers are reset to zero
= etype and filetype must be committed types

= datarep IS a string specifying the format data is written to a file:
native, internal, external32, or user-defined (see next slide)

= Same etype extent and same datarep oOn all processes
= disp: MPI_Offset iN C, INTEGER (KIND=MPI_ OFFSET_ KIND) in Fortran

int MPI File get view(MPI File fh, MPI Offset *disp,

MPI Datatype *etype, MPI Datatype *filetype, char *datarep);

Parallel Programming 2020 2021-01-18

27

Data representations

native

internal

external32

data stored in file identical to memory

on homogeneous systems no loss in precision or I/O performance due to type
conversions

loss of interoperability on heterogeneous systems

no guarantee that MPI files accessible from C/Fortran

data stored in implementation-specific format

can be used with homogeneous or heterogeneous environments
implementation will perform type conversions if necessary

no guarantee that MPI files accessible from C/Fortran

follows standardized representation (big endian IEEE)

all input/output operations are converted from/to external32

files can be exported/imported between different MPI environments

due to type conversions from (to) native to (from) external32 data precision and
I/O performance may be lost

internal may be implemented as equal to external32

can be read/written also by non-MPI programs

Parallel Programming 2020

2021-01-18 28

A simple file view example

Basic example: File view for one process
= View contains holes with respect to original file

etype = MPI INT

filetype: two MPI INTs followed by a gap
of four MPI_INTS

\ v J
holes
file
displacement: filetype filetype

5x MPI INT © R. Thakur

Parallel Programming 2020 2021-01-18

29

A simple file view example: C code

MPI Offset disp;
MPI Datatype etype, filetype;
int sizes|[] = {
int sub _sizes[] = {
int start_idxs[] {

};
};
}.

14

o N O
filetype

MPI Type create subarray (l, sizes, sub sizes, start idxs,
MPI_ORDER C, MPI_INT, &filetype);
MPI Type commit (filetype) ;

disp 5 * 4; // 4 = size of MPI_INT in bytes
etype = MPI_ INT;

MPI File open(MPI_COMM WORLD, " /pfs/datafile",
MPI_MODE_CREATE | MPI_MODE RDWR,
MPI_INFO NULL, &fh);

MPI File set view(fh, disp, etype, filetype, "native", MPI_ INFO NULL) ;

MPI File write(fh, buf, 1000, MPI_INT, MPI_STATUS IGNORE) ;

subarray
2 int holes

Based on code
by R. Thakur

Parallel Programming 2020

2021-01-18

30

UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Reading and writing data

Reading and writing from/to files

Direction: Read / Write
Positioning (realized via routine names)
= explicit offset (_AT)
= individual file pointer (no positional qualifier)
= shared file pointer (_SHARED or ORDERED)
(different names used depending on whether non-collective or collective)

Coordination

= non-collective

= collective (_ALL)

Synchronization

= blocking

= non-blocking (_I..) and split collective (_BEGIN, END)

Atomicity (implemented with a separate APl: MPI_File set atomicity)
= atomic

= non-atomic

Parallel Programming 2020 2021-01-18

32

All data access routines

Positioning

Synchronization

Non-collective

Collective

Explicit offsets

Individual file
pointers

Shared file pointers

blocking
non-blocking

split collective

blocking

non-blocking

split collective

blocking

non-blocking

split collective

Reat_at
Write_ at
Iread at
Iwrite_at

Read
Write
Iread
Iwrite

Read shared

Write shared
Iread shared
Iwrit;;shared

Read_at_all
Write at all
Iread at all
Iwrite_at_all

Read at _all (begin]|end)
Write_at all (begin|end)

Read_all

Write all

Iread all

Iwrit;;all

Read all (begin|end)
Write all (begin|end)

Read ordered
Write ordered

Read ordered (begin|end)
Write ordered (begin|end)

Parallel Programming 2020

2021-01-18

33

Individual file pointers vs. explicit offsets

= Each process maintains its own individual file pointer:

1: read 1: read

. »

file Lo|1|2|3|4 5|6 7|8|of10/11]3

¥
n & a
o file o|1|2|3|4 5|6 718 910|11}
= Explicit offsets do not affect 4 ¢ 4
file pointers

Parallel Programming 2020 2021-01-18

Explicit offsets

int MPI File read at(MPI _File fh, MPI Offset offset,
void *buf, int count, MPI Datatype datatype,
MPI Status *status);

* Read data starting at offset
* Read count elements of datatype
= Starting of£set * units of etype from begin of view (displacement)

= Seqguence of basic datatypes of datatype (= signature of datatype) must match
contiguous copies of the etype of the current view

= EOF can be detected by noting that the amount of data read is less than count

= j.e., EOF is no error
= use MPI_Get count(&status, datatype, &recv_count);

Explicit offset routines do not alter file pointer

Parallel Programming 2020 2021-01-18 35

Individual file pointers

int MPI File read(MPI File fh, wvoid *buf, int count,
MPI Datatype datatype, MPI Status *status);

= Arguments have same meaning as for MPI_File reat at
= offset is individual file pointer of calling process

= Individual file pointer is automatically incremented by

fp = fp + count * elements(datatype)/elements (etype)

= |.e., it points to the next etype after the last one that will be accessed (formula is
not valid if EOF is reached)

= Behaves nearly like standard serial file 1/0

Parallel Programming 2020 2021-01-18

36

Individual file pointers

= Set offset of individual file pointer fp:
int MPI File seek (MPI File fh, MPI Offset offset, int whence) ;

MPI SEEK SET set fp to offset
MPI_SEEK CUR set fp to fp + offset
MPI_SEEK_ END set fp to EOF + offset

= Get offset of individual file pointer:
int MPI File get position(MPI File fh, MPI Offset *offset);

= Get absolute byte position from offset for current view
int MPI File get byte offset(MPI File fh,
MPI Offset offset, MPI Offset *disp);

Parallel Programming 2020 2021-01-18 37

Shared file pointers

int MPI File read shared(MPI File fh,
void *buf, int count, MPI Datatype datatype,
MPI Status *status);

= One shared file pointer per MPI_File open

= All processes must have the same view

= |ndividual file pointers are not affected

= Ordering during serialization is not deterministic

= Use *ordered (collective call) if determinism is required
= Use *shared routines to get/set file pointer

Parallel Programming 2020 2021-01-18

38

UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Examples and use cases

Example: global matrix subarray

= Task
= read a global matrix of size 20x30 from a file
= store a subarray into a local array on each process
= according to a given distribution scheme
= 2-dimensional distribution scheme: (BLOCK,BLOCK)

» larray = local array in each MPI process
= subarray of the global array garray

= Remember: Contiguous index is language dependent
- Fortran: (1,1), (2,1), (3,1), ... , (1,10), (2,10), (3,10), ..., (20,30)
= C/C++:[01[0], [0][1], [O][2], ... , [101[O], [10][1], [10]([2], ..., [20][30]

= same ordering on file (garray) and in memory (larray)

Global matrix subarray

= Process topology: 2x3 C (contiguous indices on the file and in memory) >
(0,0) -
= global array on the file:
20x30
= distributed on local arrays =
in each processor: 10x10 E
LL
v

(19,29)

Parallel Programming 2020 2021-01-18 41

Golbal matrix subarray

double larray[10][10];
MPI Offset disp, offset, disp = 0, offset = 0;

ndims=2; Create
psizes[0]=2; period[0]=0; virtual
psizes[1]=3; period[1]=0; topology

MPI Cart create (MPI_COMM WORLD, ndims, psizes, period, 1, &comm);

MPI Comm rank (comm, &rank) ;
MPI Cart coords (comm, rank, ndims, coords);

gsizes[0]=20; 1sizes[0]=10; starts[0]=coords[0]*1lsizes[O0]; 3 Create
gsizes[1]=30; 1sizes[1]=10; starts[l]=coords[l]*1lsizes[1l];

. . . . custom
MPI_Type create_ subarray(ndims, gsizes, lsizes, starts,

MPI_ORDER C, MPI DOUBLE, &stype); datatype

MPI Type commit (&stype);

MPI File open(comm, file name, MPI MODE READ, MPI INFO NULL, &fh); Open file

MPI F:Lle set view(fh, disp, MPI_DOUBLE, stype, natlve , MPI INFO NULL) ; .

MPI File read at all (fh, offset, -7 s create view,
B B - larray, lsizes[0]*1lsizes[1], MPI_DOUBLE, read data

&status) ;

Parallel Programming 2020 2021-01-18 42

Global matrix subarray

= All MPI coordinates and indices start with O,

even in Fortran (i.e., with MPI_ORDER FORTRAN)

= MPIindices (here starts) may differ () from Fortran indices

= Block distribution on 2*3 processes.

rank =0 rank =1 rank = 2

coords = (0, 0) coords = (0, 1) coords = (0, 2)

starts = (0, 0) starts = (0,10) starts = (0,20)

garray(0:9, 0:9) garray(0:9, 10:19) garray(0:9, 20:29)
= larray(0:9, 0:9) larray (0:9, 0:9) larray(0:9, 0:9)

rank = 3 rank = 4 rank =5

coords = (1, 0) coords = (1, 1) coords = (1, 2)

starts = (10, 0) starts = (10,10) starts = (10,20)

garray (10:19, 0:9) garray (10:19, 10:19) garray (10:19, 20:29)
= larray(0:9, 0:9) larray(0:9, 0:9) larray(0:9, 0:9)

Parallel Programming 2020

2021-01-18

43

MPI I/O application scenarios |

= Scenario A:

= Solution 1:

= Solution 2:

Each process has to read the whole file
MPI File read all blocking

collective with individual file pointers, with same view
(displacement+etype+filetype) On all processes

MPI File read all begin nonblocking

collective with individual file pointers, with same view
(displacement+etype+filetype) On all processes,
then computing some other initialization,

MPI File read all end

Parallel Programming 2020

2021-01-18

44

MPI I/O application scenarios Il

= Scenario B:

= Solution:

= Scenario C:

= Solution:

The file contains a list of tasks,
each task requires different compute time

MPI_File_read_shared

non-collective with a shared file pointer
(same view is necessary for shared file pointer)

The file contains a list of tasks,
each task requires the same compute time

MPI File read ordered
collective with a shared file pointer
(same view is necessary for shared file pointer)

MPI Flle read all

collective with individual file pointers,
different views: filetype With
MPI Type create subarray (.., &filetype)

Parallel Programming 2020

2021-01-18

45

MPI I/O error handling

= File handles have their own error handler
Default is MPI_ERRORS RETURN, i.e., non-fatal

= message passing: MPI_ERRORS ARE FATAL
Default is associated with MPT FILE NULL

= message passing: with MPI_COMM WORLD

Changing the default, e.g., after MPI_Init

MPI_File set errhandler (MPI_FILE NULL, MPI_ERRORS ARE FATAL);

MPI is undefined after first erroneous MPI call,

but a “high-quality implementation™ will support I/O error handling facilities

Parallel Programming 2020

2021-01-18

46

MPI I/O summary

Rich functionality provided to support various data representations and
access options

MPI 1/O routines provide flexibility as well as portability

Collective I/O routines can improve I/O performance

Full implementation of MPI I/O available in all major implementations
= Intel MPI

= Open MPI
= MVAPICH

Generally, use of MPI I/O is often limited to special file systems;
do not expect it to work on your average NFS-mounted $HOME

= If it works at all, data loss might occur!

Parallel Programming 2020 2021-01-18

47

