
Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg

Institute of Physics, Universität Greifswald

Lecture 13: MPI+OpenMP hybrid programming

(some material by Rolf Rabenseifner, HLRS, and Claudia Blaas-Schenner, TU Wien)



MPI+OpenMP hybrid programming  

The basics



2021-01-25 3Parallel Programming 2020

MPI+OpenMP hybrid programming

▪ Part of the modern cluster topology is 

accessible to shared-memory 

parallelization

▪ OpenMP is the typical choice for that

▪ Idea: Combine threading on the node 

level with MPI across nodes

▪ But how? And are there good 

arguments to do it at all?

▪ Lots of choices…

Node Interconnect

Socket 1

Multicore

CPU

Socket 2

Multicore

CPU

Socket 1

Multicore

CPU

Socket 2

Multicore

CPU

O
M

P

O
M

P O
M

P
O

M
P

O
M

P
O

M
P



Why MPI+OpenMP? – the fiction

▪ It “fits” the hierarchical structure of modern compute nodes – threading for 

multicore, MPI for internode communication

▪ Not always. OpenMP opens its own can of worms, and you have to know how to 

deal with it (ccNUMA, overhead, affinity).

▪ It reduces the communication volume and number of messages

▪ Not always. MPI communication can also be optimized in MPI-only programs, 

and the inter-node communication volume may be the same.

▪ OpenMP is more lightweight and thus more efficient then MPI on the node 

level

▪ Not generally. This depends entirely on the code. Also, compare a full-node 

OpenMP barrier with an MPI latency…

Summary: There is no definite answer. It’s complicated. 

2021-01-25Parallel Programming 2020 4



2021-01-25 7Parallel Programming 2020

Enabling thread interoperability in MPI

▪ Use MPI_Init_thread() instead of MPI_Init() for initialization

int MPI_Init_thread(int * argc, char ** argv[],

int thread_level_required,   // input

int * thread_level_provided);// output

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE Only one thread will execute

– MPI_THREAD_FUNNELED Only master thread will make MPI-calls

– MPI_THREAD_SERIALIZED Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE Multiple threads may call MPI, 

with no restrictions
• returned provided may be less or more than required by the application

Minimum 

required for any

threading with 

MPI



2021-01-25 8Parallel Programming 2020

Thread interoperability levels

MPI_THREAD_FUNNELED MPI_THREAD_SERIALIZED MPI_THREAD_MULTIPLE

M
P

I

M
P

I



2021-01-25 9Parallel Programming 2020

Compile, link, run

▪ Use appropriate OpenMP compiler switch (-openmp, -fopenmp, 

-mp, -qsmp=openmp, …) and MPI compiler script (if available)

▪ Link with MPI library

▪ Usually wrapped in MPI compiler script

▪ If required, specify to link against thread-safe MPI library

▪ Often automatic when OpenMP or auto-parallelization is switched on

▪ Running the code

▪ Highly non-portable! Consult system docs! (if available…)

▪ If you are on your own, consider the following points

▪ Make sure OMP_NUM_THREADS etc. is available on all MPI processes

▪ Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone

▪ Use an appropriate MPI launching mechanism (often multiple options available)

▪ Figure out how to start fewer MPI processes than cores 

on your nodes



2021-01-25 10Parallel Programming 2020

Compiling from a single source

Make use of predefined symbols!

#ifdef _OPENMP # _OpenMP defined when OpenMP is active

// all that is special for OpenMP

#endif

#ifdef USE_MPI  # USE_MPI defined with -DUSE_MPI

// all that is special for  MPI

#endif

rank = 0;

size = 1;

#ifdef USE_MPI

MPI_Init(...);

MPI_Comm_rank(..., &rank);

MPI_Comm_size(..., &size);

#endif



2021-01-25 11Parallel Programming 2020

Compile, link, run

▪ Examples

• Cray XC40 (2 NUMA domains w/ 12 cores each):
• ftn -h omp ...

• export OMP_NUM_THREADS=12

• aprun -n nprocs -N nprocs_per_node \

-d $OMP_NUM_THREADS a.out

• Intel Ivy Bridge (10-core 2-socket) cluster, Intel MPI/OpenMP
• mpiifort -qopenmp ...

• OMP_NUM_THREADS=10 mpirun –ppn 2 –np 4 \

-env I_MPI_PIN_DOMAIN socket \

-env KMP_AFFINITY scatter ./a.out



2021-01-25 12Parallel Programming 2020

Some nomenclature

Pure MPI

• 1 MPI process 

per core

• No threading
O

M
P

O
M

P

Fully hybrid

• 1 MPI process 

per node

• OpenMP only 

within a node

O
M

P
O

M
P

O
M

P
O

M
P

Mixed mode

• >1 MPI 

processes per 

node

• >1 OpenMP 

threads per 

process



2021-01-25 13Parallel Programming 2020

Thread and process binding

▪ Highly nonportable → many options

▪ Example: Fully hybrid on dual-socket 6-core cluster

LIKWID:

likwid-mpirun –np 2 -pin N:0-11 ./a.out

Intel MPI+compiler:
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 \

–env KMP_AFFINITY scatter ./a.out



2021-01-25 14Parallel Programming 2020

Thread and process binding

▪ Example: Mixed mode (1 process with 6 threads per socket) on dual-socket 6-core 

cluster

LIKWID:
likwid-mpirun –np 4 \

–pin S0:0-5_S1:0-5 ./a.out

Intel MPI+compiler: 
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \

–env I_MPI_PIN_DOMAIN socket \

–env KMP_AFFINITY scatter ./a.out



2021-01-25 15Parallel Programming 2020

Pure MPI – pros and cons

Pros

▪ Simpler programming, easier 

affinity enforcement

▪ May need multiple processes to 

saturate network bandwidth

▪ No thread safety concerns

▪ Only one level of Amdahl’s 

▪ Only one bag of overheads

▪ No (?) ccNUMA page placement 

problems

Cons

▪ Hard to exploit multiple levels of 

parallelism

▪ Replicated data can get out of 

hand

▪ Lots of processes → lots of 

messages

▪ Load balancing is difficult

▪ No guaranteed communication 

overlap



2021-01-25 16Parallel Programming 2020

Effective communication bandwidth saturation

“Multi-mode” Ping-Pong test on Hawk @ HLRS

Multiple pairs 

required to saturate 

network BW
Scalable BW within 

node due to 

ccNUMA

HPE MPT 

v2.23



2021-01-25 17Parallel Programming 2020

Saving memory with hybrid MPI+OpenMP

▪ Case study: NAS Parallel 

Benchmarks,

two variants (BT-MZ, SP-

MZ) on Cray XT5

▪ Massive data replication

among MPI ranks

▪ > 5x memory savings with

8 threads per rank

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,  Alice Koniges, Nicholas J. Wright:

Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray XT5 Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.



2021-01-25 18Parallel Programming 2020

Communication/computation overlap

▪ Naïve approach: nonblocking MPI calls

▪ Example: Cartesian domain decomposition with halos

for(iterations) {

MPI_Isend(halo data to neighbors)

MPI_Irecv(halo data from neighbors)

for(bulk grid points) {

update bulk (local domain),

i.e., all points that do not need the halo

}

MPI_Waitall(...)

for(boundary points) {

update points that need the halo

}

}



2021-01-25 19Parallel Programming 2020

Communication overlap: the problem

▪ Remember the “non-blocking MPI 

overlap benchmark”?

▪ Asynchronous communication is not 

guaranteed by non-blocking MPI

→ Hybrid MPI+OpenMP provides a 

solution

“Meggie” cluster 

@RRZE



2021-01-25 20Parallel Programming 2020

Explicit communication overlap with MPI+OpenMP: the idea

if (my_thread_rank < 1) {

MPI_Send/Recv…. 

i.e., communicate all halo data

} else {

Execute those parts of the application

that do not need halo data

(on non-communicating threads)

}

Execute those parts of the application

that  need halo data

(on all threads)



2021-01-25 21Parallel Programming 2020

Explicit communication overlap with MPI+OpenMP

Three problems with standard loop worksharing:

▪ Application problem: separate application into two parts (“bulk” vs. “boundary”)

→ may be hard to do

▪ Sub-teams problem: split OpenMP 

team into communicating & 

computing sub-teams

→ convenient worksharing directives 

not applicable

▪ Load balancing must be done 

manually

… but is it really so bad?

if (my_thread_rank < 1) {

MPI_Send/Recv(...);

} else {

my_range=(high-low-1)/(num_threads-1)+1;

my_low=low+(my_thread_rank+1)*my_range;

my_high=low+(my_thread_rank+1+1)

*my_range;

my_high=max(high, my_high)

for (i=my_low; i<my_high; i++) {

...

}

}



2021-01-25 22Parallel Programming 2020

OpenMP taskloop to the rescue?

▪ #pragma omp taskloop [clauses]

for-loop

breaks loop into chunks and makes 

them tasks

▪ Can be combined with “normal” tasks

→As long as tasking is OK for the “bulk,” 

this solves at least two of the three 

problems

→Issues: ccNUMA placement, overhead

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

{

communicate(halo);

compute(boundary);

}

#pragma omp taskloop \

grain_size(100)

for(<bulk_points>) {

update_bulk(...);

}

}

}



Sparse matrix-vector multiplication

A case study for hybrid programming with MPI and OpenMP

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with
explicit communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-
358 (2011). DOI: 10.1142/S0129626411000254, Preprint: arXiv:1106.5908

http://dx.doi.org/10.1142/S0129626411000254
http://arxiv.org/abs/1106.5908


Sparse matrices

▪ “Sparse” matrix   “Nnz grows slower than quadratically with N”
▪ Nnzr = avg. # nonzeros per row

▪ A different sparsity pattern (“fingerprint”)

for each problem
▪ Even changes with different numbering of DoFs

▪ Performance of spMVM c = Ab
▪ Always memory-bound for large Nnz

▪ Usage of memory BW divided between nonzeros

and RHS/LHS vectors

▪ Sparsity pattern has strong impact

▪ Storage format, too

▪ Storage formats
▪ Compressed Row Storage (CRS): Best for modern cache-based µP

▪ Jagged Diagonals Storage (JDS): Best for vector(-like) architectures

▪ Special formats exploit specific matrix properties

N

N

Nnz nonzeros

Nnzr

2021-01-25Parallel Programming 2020 24



2021-01-25 25Parallel Programming 2020

Sparse MVM

▪ Key ingredient in many algorithms

▪ Eigenvalue solvers: Lanczos, Davidson, Jacobi-Davidson

▪ Sparse linear systems solvers: Jacobi, GS, CG, and derivatives

= + • Nr

General case: 

some indirect 

addressing 

required!



2021-01-25 26Parallel Programming 2020

Distributed-memory sparse MVM

=

P0

P3

P2

P1

*
Nonlocal 

RHS 

elements 

for P0

Local operation –

no communication

required

P0

P1

P2

P3

P0

P1

P2

P3



2021-01-25 27Parallel Programming 2020

SpMVM with MPI, variant 1

▪ “Vector mode” without overlap

▪ Multithreaded computation

(all threads)

▪ Masteronly style; MPI communication only 

outside of computation

▪ Benefit of threaded MPI process only due 

to message aggregation and (probably) 

better load balancing



2021-01-25 28Parallel Programming 2020

SpMVM with MPI, variant 2

▪ “Vector mode” with naïve overlap 

(“good faith hybrid”)

▪ Relies on MPI to support async 

nonblocking PtP

▪ Multithreaded computation (all threads)

▪ Still simple programming

▪ Drawback: Result vector

is written twice to memory

▪ modified performance

model



2021-01-25 29Parallel Programming 2020

SpMVM with MPI, variant 3

▪ “Task mode” with dedicated 

communication thread

▪ Explicit overlap, more complex to 

implement

▪ One thread missing in team of compute 

threads

▪ Drawbacks

▪ Result vector is written twice to memory

▪ No simple OpenMP worksharing; must revert to 

manual or tasking solutions



2021-01-25 30Parallel Programming 2020

Results for HMeP matrix 

▪ Dual-socket 6-core cluster vs. Cray XE6

▪ Dominated by communication (and some load imbalance for large #procs)

▪ Task mode pays off esp. with one process (12 threads) per node

▪ Task mode overlap (over-)compensates additional LHS traffic

Task mode uses virtual 

core for communication

@ 1 process/core

50% efficiency w/ 

respect to best 1-

node performance



2021-01-25 31Parallel Programming 2020

Results for sAMG matrix 

▪ Much less communication-bound

▪ # of threads per process makes hardly any difference 

▪ If pure MPI is good enough, don’t bother going hybrid!



2021-01-25 32Parallel Programming 2020

Hybrid MPI+OpenMP conclusions

▪ Do not be fooled by lore and anecdotal evidence

▪ The benefit of going hybrid (starting from MPI) depends 

heavily on the particular code 

▪ Main advantages: Explicit communication overlap, “easier” 

load balancing, less intra-node MPI

▪ Main challenges: OpenMP overhead, ccNUMA

▪ If possible, use a performance model to check whether your 

MPI implementation is “good enough”


