_ UNIVERSITAT GREIFSWALD FRIEDRICH-ALEXANDER
Wissen lockt. Seit 1456 R ANGEN-NURNBERG

Erlangen Regional
Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitéat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 13: MPI+OpenMP hybrid programming

(some material by Rolf Rabenseifner, HLRS, and Claudia Blaas-Schenner, TU Wien)

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

MPI+OpenMP hybrid programming

The basics

MPI1+OpenMP hybrid programming
Socket 1 Socket 1 = Part of _the modern cluster topology is
‘ ‘ accessible to shared-memory
| __Multicore_ | | __Multicore | parallellzatlon
CcPU cPuU = OpenMP is the typical choice for that
eceee = |dea: Combine threading on the node
Socket 2 Socket 2 level with MPI across nodes
= But how? And are there good
- Mlicore__. - Mlucore__. arguments to do it at all?
= |ots of choices...

Node Interconnect

HTHE
C__
THTHA

| == L
EE‘ |EE =1 =

O O

I—

Parallel Programming 2020

2021-01-25 3

Why MPI1+OpenMP? — the fiction

= |t *fits” the hierarchical structure of modern compute nodes — threading for
multicore, MPI for internode communication

= Not always. OpenMP opens its own can of worms, and you have to know how to
deal with it (ccNUMA, overhead, affinity).

= |t reduces the communication volume and number of messages

= Not always. MPI communication can also be optimized in MPI-only programs,
and the inter-node communication volume may be the same.

= OpenMP is more lightweight and thus more efficient then MPI on the node
level

= Not generally. This depends entirely on the code. Also, compare a full-node
OpenMP barrier with an MPI latency...

Summary: There is no definite answer. It's complicated.

Parallel Programming 2020 2021-01-25 4

Enabling thread interoperability in MPI

= UseMPI Init thread() Iinstead of MPI Init () for initialization

int MPI Init thread(int * argc, char ** argv([],
int thread level required, // input
int * thread level provided) ;// output

Minimum
« REQUIRED values (increasing order): rfr?“'rz‘?' ol atrr‘]y
~ MPI_THREAD SINGLE Only one thread will execute haeviicag

— MPI_THREAD FUNNELED Only master thread will make MPI-calls
- MPI_THREAD SERIALIZED Multiple threads may make MPI-calls,

but only one at a time
— MPI_THREAD MULTIPLE Multiple threads may call MPI,

with no restrictions
* returned provided may be less or more than required by the application

Parallel Programming 2020 2021-01-25 7

Thread interoperability levels

, l l
T PR S 1Y
v

o

v v

l
v
g

4— | <4 dnt}
< ldW}

Parallel Programming 2020 2021-01-25

Compile, link, run

= Use appropriate OpenMP compiler switch (-openmp, -fopenmp,
-mp, -gsmp=openmp, ...) and MPI compiler script (if available)

= Link with MPI library

= Usually wrapped in MPI compiler script

= If required, specify to link against thread-safe MPI library

- Often automatic when OpenMP or auto-parallelization is switched on

= Running the code
Highly non-portable! Consult system docs! (if available...)
If you are on your own, consider the following points

Make sure OMP_NUM_THREADS etc. is available on all MPI processes
- Start “env VAR=VALUE ... <YOUR BINARY>" instead of your binary alone
- Use an appropriate MPI launching mechanism (often multiple options available)

Figure out how to start fewer MPI processes than cores
on your nodes

Parallel Programming 2020 2021-01-25

Compiling from a single source

Make use of predefined symbols!

#ifdef OPENMP # OpenMP defined when OpenMP is active
// all that is special for OpenMP
#endif

#ifdef USE MPI # USE_MPI defined with -DUSE_MPI
// all that is special for MPI

#endif
rank = 0;
size = 1;

#ifdef USE MPI
MPI Init(...);
MPI Comm rank(..., &rank);
MPI Comm size(..., &size);
#endif

Parallel Programming 2020

2021-01-25

10

Compile, link, run

= Examples

« Cray XC40 (2 NUMA domains w/ 12 cores each):
e ftn -h omp ...
* export OMP_NUM THREADS=12

* aprun -n nprocs -N nprocs per node \
-d $OMP_NUM THREADS a.out

* Intel lvy Bridge (10-core 2-socket) cluster, Intel MPI/OpenMP
* mpiifort -qopenmp ...
 OMP NUM THREADS=10 mpirun -ppn 2 -np 4 \
-~env I_MPI_PIN DOMAIN socket \
-env KMP AFFINITY scatter ./a.out

Parallel Programming 2020 2021-01-25

11

Some nomenclature

Pure MPI Fully hybrid Mixed mode
o o S 5
= = I I
S o "—% %

* 1 MPI process * 1 MPI process « >1 MPI

per core per node processes per
* No threading * OpenMP only node

within a node « >1 OpenMP

threads per
process

Parallel Programming 2020 2021-01-25

12

Thread and process binding

= Highly nonportable - many options
= Example: Fully hybrid on dual-socket 6-core cluster

[32¢8 | [328 | [3268 | [32x8 | [32kB | 3248]

[3268 | [32«e | [32vB | [32k8 | [32k8 | [32+B |

[256kB | [256KkB | [256KB | [256KB | [256KB | [256KB]

[256kB | [256KkB | [256KB | [256kB | [256kB | [256KE |

| 12 MB |

| 12 MB |

—————————

[328 | [328 | [328 | [326 | [32kB | [328]

[3268 | [32«e | [32vB | [32k8 | [32k8 | [32vB |

[256kB | [256kB | [256KB | [256KB | [256KB | [256KB]

[256kB | [256KkB | [256KB | [256kB | [256KB | [256KB |

| 12 MB |

| 12 MB |

LIKWID:

likwid-mpirun -np 2 -pin N:0-11 ./a.out

Intel MPl+compiler:
OMP_NUM THREADS=12 mpirun -ppn 1 -np 2 \
—env KMP AFFINITY scatter ./a.out

Parallel Programming 2020

2021-01-25

13

Thread and process binding

= Example: Mixed mode (1 process with 6 threads per socket) on dual-socket 6-core

cluster

[32k8 | [32k8 | [32k8 | [32x8 | [32kB | [328 |

[32x8 | [32x8 | [32x8 | [32kB | [32k8 | [3248]

[256kB | [256kB | [256kB | [256KB | [256KB | [256KB |

[256kB | [256kB | [256kB | [256KB | [256KB | [256KB]

| 12 MB |

I 12 M8 I

-

[32k8 | [32k8 | [328 | [32k | [32kB | [32«8 |

[328 | [32x8 | [32x8 | [32kB | [32kB | [3248]

[256kB | [256kB | [256kB | [256KE | [256KE | [256k8 |

[256k8 | [256kB | [256kB | [256K8 | [256Kk8 | [256KE |

| 12 MB |

[12 MB |

LIKWID:
likwid-mpirun -np 4 \
-pin S0:0-5_S1:0-5 ./a.out

Intel MPI+compiler:

OMP_NUM THREADS=6 mpirun -ppn 2 -np 4 \
-env I_MPI_PIN DOMAIN socket \
—env KMP AFFINITY scatter ./a.out

Parallel Programming 2020

2021-01-25

14

Pure MPI — pros and cons

Pros

Simpler programming, easier
affinity enforcement

May need multiple processes to
saturate network bandwidth

No thread safety concerns
Only one level of Amdahl’s
Only one bag of overheads

No (?) ccNUMA page placement
problems

cons

Hard to exploit multiple levels of
parallelism

Replicated data can get out of
hand

Lots of processes > lots of
messages

Load balancing is difficult

No guaranteed communication
overlap

Parallel Programming 2020

2021-01-25

15

Effective communication bandwidth saturation

)

“Multi-mode” Ping-Pong test on Hawk @ HLRS

[T

Eelll |/ BB H=id || Hi=H
It HIH RS SR I H AR
SRS I S IS
Bl || filo (el | Bl

30 : 120
@ 251 ° @100
2 2
> n 1 >
o) O
O oo - ©. 80
= =
% L Multiple pairs | % -
2 required toksgwate = Scalable BW within
o networ I S node due to
g ok _ - T 40
S internode > ceNUMA
o | | o) intranode
< sf - g 20
0 | | | | 0 | | | | | | HPE MPT
2 4 6 8 10 20 30 40 50 60 70 v2.23
pairs # pairs
Parallel Programming 2020 2021-01-25 16

Saving memory with hybrid MPI+OpenMP

= Case study: NAS Parallel
Benchmarks,
two variants (BT-MZ, SP-
MZ) on Cray XT5

= Massive data replication
among MPI ranks

Relative Memory Usage
to MPI

= > 5x memory savings with
8 threads per rank

1.2

1.0

0.8 -

0.6

0.4

0.2

0.0

| BT-MZ
M SP-MZ
256*1 128*2 64*4 32*8

MPI * OpenMP

Hongzhang Shan, Haogiang Jin, Karl Fuerlinger, Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray XT5 Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Parallel Programming 2020

2021-01-25

17

Communication/computation overlap

= Naive approach: nonblocking MPI calls
= Example: Cartesian domain decomposition with halos

for (iterations) {
MPI Isend(halo data to neighbors)
MPI Irecv(halo data from neighbors)
for (bulk grid points) {
update bulk (local domain), %
i.e., all points that do not need the halo

CUUBDY,

}
MPI Waitall(...) Yo% % %%

for (boundary points) ({
update points that need the halo

}

Parallel Programming 2020 2021-01-25

18

Communication overlap: the problem

= Remember the “non-blocking MPI 010 '

overlap benchmark™?

= Asynchronous communication is not 0.1}

guaranteed by non-blocking MPI

—> Hybrid MPI+OpenMP provides a
solution

Overall time [s]
o
o
(o))

“Meggie” cluster
@RRZE

0—0 default

o—o async progress

002 004 006 008

Computation time [s]

0.1

Parallel Programming 2020

2021-01-25

Explicit communication overlap with MP1+OpenMP: the idea

if (my thread rank < 1) {

MPI_Send/Recv.... G
i.e., communicate all halo data g
A By
} else { =

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

Execute those parts of the application
that need halo data
(on all threads)

Parallel Programming 2020 2021-01-25 20

Explicit communication overlap with MPI+OpenMP

Three problems with standard loop worksharing:
= Application problem: separate application into two parts (“bulk” vs. “boundary”)

- may be hard to do

= Sub-teams problem: split OpenMP
team into communicating &
computing sub-teams
—> convenient worksharing directives
not applicable

» Load balancing must be done
manually

.. but is it really so bad?

if (my_ thread rank < 1) {
MPI Send/Recv(...);

} else {
my_range=(high—low—1)/(num_threads—1)+1;
my low=low+ (my thread rank+l)*my range;
my high=low+ (my thread rank+1+1)

*my range;
my high=max(high, my high)
for (i=my_ low; i<my high; i++) {

}

Parallel Programming 2020

2021-01-25 21

OpenMP taskloop to the rescue?

" #pragma omp taskloop [clauses] $pragma omp parallel
for-loop {
#pragma omp single
breaks loop into chunks and makes t
#pragma omp task
them tasks {

communicate (halo) ;
compute (boundary) ;

}

- As long as tasking is OK for the “bulk,” #pragma omp taskloop \
grain size(100)

this solves at least two of the three o (e et
problems update bulk(...);

- Issues: ccNUMA placement, overhead } }

}

= Can be combined with “normal’ tasks

Parallel Programming 2020 2021-01-25

22

FRIEDRICH-ALEXANDER

UNIVERSITAT _
ERLANGEN-NURNBERG

Sparse matrix-vector multiplication
A case study for hybrid programming with MPIl and OpenMP

http://dx.doi.org/10.1142/S0129626411000254
http://arxiv.org/abs/1106.5908

Sparse matrices

“Sparse” matrix = “N,, grows slower than quadratically with N”
= N,, = avg. # nonzeros per row

A different sparsity pattern (“fingerprint”)

for each problem

= Even changes with different numbering of DoFs

Performance of spMVM c =A-b
Always memory-bound for large N,,
Usage of memory BW divided between nonzeros

and RHS/LHS vectors

Sparsity pattern has strong impact

Storage format, too

Storage formats

= Compressed Row Storage (CRS): Best for modern cache-based pP
= Jagged Diagonals Storage (JDS): Best for vector(-like) architectures
= Special formats exploit specific matrix properties

N

Parallel Programming 2020

2021-01-25

24

Sparse MVM

= Key ingredient in many algorithms
= Eigenvalue solvers: Lanczos, Davidson, Jacobi-Davidson
= Sparse linear systems solvers: Jacobi, GS, CG, and derivatives

N
General case:
— +) some indirect
>Nf addressing
required!
J

Parallel Programming 2020 2021-01-25 25

Distributed-memory sparse MVM

Local operation —
no communication

required

PO

P1
Nonlocal

P2 RHS
elements
for PO

P3

Parallel Programming 2020 2021-01-25

26

SpMVM with MPI, variant 1

= “Vector mode” without overlap

= Multithreaded computation N1
(all threads)

= Masteronly style; MPI communication only
outside of computation

threads

SpMVM of all elements

Y—
(@)
>
o
O

2
| —
(O)

e

=
©
(@)
(4]
(@)

o

elements to be transferred

= Benefit of threaded MPI process only due N P
to message aggregation and (probably)
better load balancing time

MPI_ MPI_
Isend Waitall

Parallel Programming 2020 2021-01-25 27

SpMVM with MPI, variant 2

= “Vector mode” with naive overlap
(“good faith hybrid”)

* Relies on MPI to support async
nonblocking PtP

= Multithreaded computation (all threads)
= Still simple programming

threads

—
o
—_
>
o
(o]
£
L —
()
-
—
(1]
o
©
[&]
o

elements to be transferred

SpMVM of local elements
SpMVM: non-local elements

MPI1_ MPI_
Isend Waitall

= Drawback: Result vector
IS written twice to memory

- modified performance
model

time

Parallel Programming 2020 2021-01-25 28

SpMVM with MPI, variant 3

“Task mode” with dedicated
communication thread

= Explicit overlap, more complex to
Implement

= One thread missing in team of compute
threads

= Drawbacks
= Result vector is written twice to memory

= No simple OpenMP worksharing; must revert to
manual or tasking solutions

local gather (copy) of

o=

elements to be transf.
SpMVM: local el.

L

N
\
N
N
N
N
N
\
N
N
N
N
\
N
g
ﬁ

omp_barrier omp_barrier

time

Parallel Programming 2020

2021-01-25

29

Results for HMeP matrix

HMeP
N,,=92527872
N= 6201600

[— 1+ 1T 1 Taskmodeusesvirtual — Q9 F -~ + -~ 1~ T T
60 k core for communication 4k ;7 -
. I @ 1 process/core 11 - RO
v L.
3 = - = .. /
19 50 50% efficiency w/ —//v i
L 11 respect to best 1-]
O 40} - F s -
= node performance
O 'F‘
- - = - = - (b)
S 30 :
g L
L 20 1 F 1 F =
o I >]) g)
10k one MPI process 4 | one MPlprocess | L # one MPI process |
per physical core | per NUMA LD per node
O M 1 A 1 M 1 " 1 M 1 M 1 A 1 M 1 M 1 M 1 M 1 M 1

0 8 16 24 32 0 8 16 24 32 0 8 16 24 32
#nodes #nodes #nodes

= Dual-socket 6-core cluster vs. Cray XE6

= Dominated by communication (and some load imbalance for large #procs)
= Task mode pays off esp. with one process (12 threads) per node

» Task mode overlap (over-)compensates additional LHS traffic

Parallel Programming 2020 2021-01-25

30

Results for sSAMG matrix

T) SAMG
120 (a) vector mode 1F 1F . s, N,,=160222796
without overlap . N=22786800
— _ .. (b)vector mode with
‘3 naive overlap
O 90F == (c)task mode “AF ~1F .
LL sy .
0] best Cray
(o)
2 60 1F 1F . ©
o
£ /
e
g)_ 30F 1F ,‘/ 1F .
one MPI process one MPI process one MPI process
per physical core 1 [per NUMA LD per node '
O h A 1 A 1 M 1 A 1 1 A 1 A 1 A 1 1 A 1 A 1 L 1

0 8 16 24 320 8 16 24 320 8 16 24 32
#nodes #nodes #nodes

= Much less communication-bound
= # of threads per process makes hardly any difference
= |f pure MPI is good enough, don’t bother going hybrid!

Parallel Programming 2020 2021-01-25

Hybrid MP1+OpenMP conclusions

= Do not be fooled by lore and anecdotal evidence

= The benefit of going hybrid (starting from MPI) depends
heavily on the particular code

= Main advantages: Explicit communication overlap, “easier”
load balancing, less intra-node MPI

= Main challenges: OpenMP overhead, ccNUMA

* |f possible, use a performance model to check whether your
MPI| implementation is “good enough”

Parallel Programming 2020 2021-01-25

