
Efficient parallel programming
on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

(c) NHR@FAU 2023 2ccNUMA

ccNUMA – The “other affinity”
 ccNUMA:

 Whole memory is transparently accessible by
all processors
 but physically distributed across multiple

locality domains (LDs)
 with varying bandwidth and latency
 and potential contention (shared memory

paths)
 How do we make sure that memory access is

always as "local" and "distributed" as
possible?

Note: Page placement is implemented in units of
OS pages (often 4 KiB, possibly more)

(c) NHR@FAU 2023 3ccNUMA

How much does nonlocal access cost?

Example: AMD “Naples” 2-socket system
(8 chips, 2 sockets, 48 cores):
STREAM Triad bandwidth measurements [Gbyte/s]

So
ck

et
 0

So
ck

et
 1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node
MEM node

 numactl can influence the way a binary maps its memory pages:
numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node>
and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across
all <nodes>

 Examples:

for m in `seq 0 7`; do
for c in `seq 0 7`; do

env OMP_NUM_THREADS=6 \
numactl --membind=$m likwid-pin –c M${c}:0-5 ./stream

done
done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./stream

 But what is the default without numactl?

(c) NHR@FAU 2023 4ccNUMA

numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?

ccNUMA map scan
for Naples system

(c) NHR@FAU 2023 5ccNUMA

ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor that first touches it!
(Except if there is not enough local memory available)

Caveat: “to touch” means “to write,” not “to allocate”
 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)
huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

(c) NHR@FAU 2023 6ccNUMA

Coding for ccNUMA data locality

integer,parameter :: N=100000000
double precision, allocatable :: A(:), B(:)
allocate(A(N),B(N))

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=100000000
double precision, allocatable :: A(:), B(:)
allocate(A(N),B(N))
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
...
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

Simplest case: explicit initialization

integer,parameter :: N=10000000
double precision, allocatable :: A(:), B(:)
allocate(A(N),B(N))

READ(1000) A

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision, allocatable :: A(:), B(:)
allocate(A(N),B(N))
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
!$OMP single
READ(1000) A
!$OMP end single
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

(c) NHR@FAU 2023 7ccNUMA

Coding for ccNUMA data locality
Sometimes initialization is not so obvious: I/O cannot be easily parallelized, so “localize”
arrays before I/O

(c) NHR@FAU 2023 8ccNUMA

Coding for Data Locality

 Required condition: OpenMP loop schedule of initialization must be the same as in all
computational loops
 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to be sure…
 Imposes some constraints on possible optimizations (e.g. load balancing)
 Presupposes that all worksharing loops with the same loop length have the same thread-

chunk mapping
 If dynamic scheduling/tasking is unavoidable, the problem cannot be solved completely if a

team of threads spans more than one LD
 Static parallel first touch is still a good idea
 OpenMP 5.0 will have rudimentary memory affinity functionality

 How about global objects?
 Initialized before main() is called
 If communication vs. computation is favorable, might consider properly placed copies of

global data
 C++: Arrays of objects and std::vector<> are by default initialized sequentially

 STL allocators provide an elegant solution

(c) NHR@FAU 2023ccNUMA

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {
public:
T* allocate(size_type numObjects, const void

*localityHint=0) {
size_type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m);
int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)
for(i=0; i<pages; ++i) {
ofs = static_cast<size_t>(i) << PAGE_BITS;
p[ofs]=0;

}
return static_cast<pointer>(m);

}
...
};

Application:
vector<double,NUMA_Allocator<double> > x(10000000);

9

(c) NHR@FAU 2023 10ccNUMA

Diagnosing bad locality

 If your code is cache bound, you might not notice any
locality problems
 Otherwise, bad locality limits scalability

(whenever a ccNUMA node boundary is crossed)
 Just an indication, not a proof yet

 Running with numactl --interleave might give
you a hint
 See later

 Consider using performance counters
 likwid-perfctr can be used to measure non-local memory accesses
 Example for Intel dual-socket system (Ivy Bridge, 2x10-core):

$ likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

serial init.

cc
N

U
M

A
do

m
ai

n
bo

un
da

ry

SC23 11Node-Level Performance Engineering

Using performance counters for diagnosis
 Intel Ice Lake SP node (running 2x32 threads):

measure inter-socket traffic

 Output:

Caveat: NUMA metrics vary strongly among CPU models

+-----------------------------------+------------+-------------+
| Metric | HWThread 0 | HWThread 32 |
+-----------------------------------+------------+-------------+
Runtime (RDTSC) [s]	12.3681	12.3681
Runtime unhalted [s]	12.1108	8.2227
Clock [MHz]	3281.3537	3103.6518
CPI	5.4670	35.5873
Received data bandwidth [MByte/s]	22127.2106	21358.7412
Received data volume [GByte]	273.6708	264.1663
Sent data bandwidth [MByte/s]	21358.7391	22127.2191
Sent data volume [GByte]	264.1663	273.6709
Total data bandwidth [MByte/s]	43485.9496	43485.9603
Total data volume [GByte]	537.8370	537.8372
+-----------------------------------+------------+-------------+

$ likwid-perfctr -g UPI –C S0:0@S1:0 ./a.out

About half of the overall
memory traffic is caused by
the remote domain!

OpenMP STREAM triad on a dual AMD Epyc 7451 (“Naples”)
(6 cores per LD)

1. Parallel init: Correct parallel initialization
2. LD0: Force data into LD0 via numactl –m 0
3. Interleaved: numactl --interleave <LD range>

(c) NHR@FAU 2023ccNUMA 13

(c) NHR@FAU 2023 14ccNUMA

A weird observation

Lo
ng

er
ru

nt
im

e

 Experiment: memory-bound Jacobi solver with sequential data initialization
 No parallel data placement at all!
 Expect no scaling across LDs

 Convergence threshold 𝛿𝛿
determines the runtime
 The smaller 𝛿𝛿, the longer the run

 Observation
 No scaling across LDs for large 𝛿𝛿

(runtime 0.5 s)
 Scaling gets better with smaller 𝛿𝛿

up to almost perfect efficiency 𝜀𝜀
(runtime 91 s)

 Conclusion
 Something seems to “heal” the bad

access locality on a time scale of tens of seconds

(c) NHR@FAU 2023 15ccNUMA

Riddle solved: NUMA balancing

 Linux kernel supports automatic page migration

$ cat /proc/sys/kernel/numa_balancing
0
$ echo 1 > /proc/sys/kernel/numa_balancing # activate

 Active on all current Linux distributions, some performance impact for
single core execution
 Parameters control aggressiveness

 Default behavior is “take it slow”
 Do not rely on it! Parallel first touch is still a good idea!

$ ll /proc/sys/kernel/numa*
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_delay_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_max_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_min_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_size_mb

(c) NHR@FAU 2023 16ccNUMA

Summary on ccNUMA issues

 Identify the problem
 Is ccNUMA an issue in your code?
 Simple test: run with numactl --interleave

 Consider performance counters if available
 Apply first-touch placement in initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Automatic page migration
 Slow process, may take many seconds (configurable)
 Not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Consider round-robin placement as a quick (but non-ideal) fix
 OpenMP 5.0 has some data affinity support

	Efficient parallel programming �on ccNUMA nodes
	ccNUMA – The “other affinity”
	How much does nonlocal access cost?
	numactl as a simple ccNUMA locality tool :�How do we enforce some locality of access?
	ccNUMA default memory locality
	Coding for ccNUMA data locality
	Coding for ccNUMA data locality
	Coding for Data Locality
	Coding for Data Locality:�NUMA allocator for parallel first touch in std::vector<>
	Diagnosing bad locality
	Using performance counters for diagnosis
	OpenMP STREAM triad on a dual AMD Epyc 7451 (“Naples”)�(6 cores per LD)
	A weird observation
	Riddle solved: NUMA balancing
	Summary on ccNUMA issues

