NHRJFAU

Parallel Programming
of High-Performance Systems

A collaborative course of NHR@FAU and LRZ Garching

Georg Hager, Volker Weinberg, Ayesha Afzal, Markus Wittmann

Introduction to HPC

NHRJFAU

Supercomputing

HPC applications

= What are supercomputers good for?
Weather and climate prediction

= Drug design

= Simulation of biochemical reactions

= Processing and analysis of measurement data
= Properties of condensed matter

= Fundamental interactions and structure of matter .
= Fluid simulations, structural analysis, fluid-structure interaction
= Mechanical properties of materials

= Rendering of 3D images and movies
= Simulation of nuclear explosions

= Medical image reconstruction

PPHPS 2024 | HPC Introduction 3

HPC algorithms

= \Whatever the application, there’'s usually a numerical algorithm behind it
= Computational science - many standard algorithms

= “Seven dwarfs”

1. Dense linear algebra
Sparse linear algebra
Spectral methods
N-body methods
Structured grids
Unstructured grids
Monte Carlo methods

See also:
The Landscape of Parallel Computing
Research: A View from Berkeley, Chapter 3

N o oA w N

PPHPS 2024 | HPC Introduction

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf#page=9

Parallel computing

Task: Map a numerical algorithm to the hardware of a parallel computer

Goal: Execute the task as fast and effectively as possible

PPHPS 2024 | HPC Introduction 5

What is “performance”™?

Performance metric:
“Flops” (+-*/)

Lattice site updates

Iterations

“Solving the problem”...
P Work

“Wall-clock time”

PPHPS 2024 | HPC Introduction

The Top500 list

= Survey of the 500 most powerful supercomputers
= http://www.top500.0rg
= Performance ranking?
= Solve large dense system of equations: Ax = b ("LINPACK")

o
Y e
- g _“-

The List,

= Max. performance achieved with 64-Bit floating-point numbers: R,,, ;.
= Published twice a year (ISC in Germany, SC in USA)

= First: 1993 (#1: CM5 / 1,024 procs.): 60 Gflop/s
= November 2023 (#1: Frontier / 8.7 mio cores): 1.194 Eflop/s

= Performance increase: 75% p.a. from 1993 — 2023

PPHPS 2024 | HPC Introduction 7

http://www.top500.org/

Supercomputing in Germany — Federal Centers

Julich Supercomputing Center:
JUWELS (37 + 10 PF/s)

Hannover Berlin

NHR[_JFAU}

e

ey -nn‘l"
| jth
8 k K

|
il

< |4

Leibniz Supercomputing
Center: SuperMUC-NG
(26.8 PF/s)

HLRS: Hawk (26 PF/s)

PPHPS 2024 | HPC Introduction

The NHR Alliance

¥ = Provides nationwide HPC resources
= for researchers at German universities
= Tier-2 systems capabilities

BERLIN @ = Strengthen users in HPC methods
’ @PADE;ngfﬂNGE . » Foster the development of Scientific
G ® DRESDEN Computing
@HANZ : = Support young researchers
®DA§§LTNAGDETN-§ = E.g., NHR Graduate School
@ KARLSRUHE = Efficiency and sustainability

https://www.nhr-verein.de/en/

PPHPS 2024 | HPC Introduction 9

https://www.nhr-verein.de/en/

Fritz cluster at NHR@FAU

Typical Peak

#nodes Node conf. Storage

job sizes (FP64)

992 Intel Ice Lake 2" 36 ¢ (8360Y)

(71,424 cores) 256 GB 1-64 nodes (i? IF::|I=://SS;
1 x HDR100 Shared PFS '
Fritz . - 3PB
64 Intel Sapphlre 2 * 52 ¢ (8470) « >20 GB/s
Rapids 1TB/2TB 1-4nodes 426 TF/s
(6,656 cores) 1 x HDR100

(NHR:87%; FAU: 0%)

178 Fritz - Megware D50TNP, Xeon Platinum 8360Y 36C 71,424 3.58 5.45 @
2.4GHz, InfiniBand HDR100, MEGWARE
Universitaet Erlangen - Regionales Rechenzentrum

Erlangen Power consumption (kW)
Germany for LINPACK

PPHPS 2024 | HPC Introduction 10

NHRJFAU

Computer architecture

A very quick overview

At the core: the stored-program computer

Instructions

Control Unit

{ Memory }

Input/Output

Main performance limitation:
Memory access!

PPHPS 2024 | HPC Introduction

12

From theory to reality: General-purpose (cache based) microprocessor core

Measures to improve performance:

» |nstruction execution is pipelined

= |nstructions are executed out of program
order (semantics permitting)

» [nstructions can be inherently parallel
(SIMD)

= Caches store often used data for quick
reference

L1 lcache

Instruction Cache

P e

Modern CPU
core

= Reorder buffer / Register renaming p—
9]
B, % Scheduler
9
o
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
o | [aw | Vieat’) Viows [svome] |
kDD ADRS | | ADRS JMP
DIV I ‘ l 44 I
A 4
Data Cache l ¥ €= Data flow
Control flow
L1 Dcache <+’ Memory control __—~ Pot bottieneck

PPHPS 2024 | HPC Introduction

13

Memory hierarchy

= Data transfers are the #1 limiting factor in
computing Core

= Main memory is too slow to keep up with the CPU’s Latency (sl
hunger for data

Bandwidth
[bytes/s]

= You can either build a small and fast memory or a
large and slow memory
= Caches hold often-used data for fast reference 10-8
= Multiple levels (the larger the slower) 10"
= Data transfers occur in “bursts” of single cache 107
lines (typically 64 bytes) 10 100

= The purpose of many optimizations is to avoid
slow data paths

PPHPS 2024 | HPC Introduction

Shared memory: a single cache-coherent address space

—

~

[Kowapy]

n

Multi-core processc

(]
Multiple CPU chips
per node

PPHPS 2024 | HPC Introduction

15

Distributed memory: no cache-coherent single address space

0 o o
[DDDD {EEEE)
OO OO =
OOEC | I:I'IEI‘I:I'I:I_nﬁT_,l
~ II:II_._I —y D\q_,
(EEEE =
Dl (B[B
(EEEmE L=
000) bed)
s Em=
()) 5]
[[e | —

Cluster/
supercomputer

Modern supercomputers are
shared-/distributed-memory hybrids

PPHPS 2024 | HPC Introduction

16

Parallelism in modern computers

: Core ode (2 sockets + memory + I/O,
Registers Exec. units H possibly multiple chips
per socket)
L1 cache .

L2 cache

Supercomputer
(many nodes, high-performance

network, storage)
Die or multiple dies, “package” (up to >100 cores)

PPHPS 2024 | HPC Introduction 17

A modern CPU compute node (AMD Zen2 “Rome”)

(=

Memory]

==

16 MiB L3

BELED

RETED

didjid|d

16 MIB L3

16 MIB L3

RETES

16 MiB L3

RELED

d

d]

ald]

L[T e el

RETE

PPHPS 2024

HPC Introduction

18

Adding accelerators to the node

T
Plplirlp

—
> =
g 3
2 3
N 4
— —
2 5
H
& g
= <
M
- cry
ory
ory
[j = a 2
S
— Ja %}
Tal
2 - =
5
£ g
H 3
_
—
z H
£ :
H 2
)

PlPIP|P

accelerator
die core

hyper-thread

PPHPS 2024 | HPC Introduction

19

Turning it into a cluster

NIC —

NIC -~

NIC —

NIC ----

NIC —

NIC -~

communication network

20

HPC Introduction

PPHPS 2024

Adding permanent storage

NIC —

NIC —

NIC —

communication network

PPHPS 2024

HPC Introduction

21

https://creativecommons.org/licenses/by-sa/3.0/deed.en

NHRJFAU

Finding parallelism and
mapping it to the hardware

Finding parallelism

= ... may be simple or might be a challenge.
Example: summing up many numbers

/ z =581 TS +S3+ 54+ 55+ Sg+ -+ Sg999999 + S1000000

Z = ((-. (((((s1*+52) + 53) + 54) + 55) + S¢) + *** + S999999) *+ S1000000)

Sequential summation

2 = ((51+s2) + (53 +54)) + ((S5 +56) + -=+) + -+ + (S999999 + S1000000))

(Stepwise) parallel summation

PPHPS 2024 | HPC Introduction 23

Finding parallelism: data parallelism on coarse level

= Example: domain decomposition (e.g., in Computational Fluid Dynamics)

= Mapping of 3D mesh to processes/threads

- Cartesian/unstructured grid

- Next-neighbor communication
by message passing

= Simple communication, load balancing

| Initial configuration |

Ll

v

|Solve equations in each block|

!

| Exchange boundary cells |

!

— Check for convergence |

)

-
w
U
N

PPHPS 2024 | HPC Introduction

24

Finding parallelism: functional parallelism on coarse level

= Example: functional decomposition (e.g., multi-physics codes)
= Different functional units of a program are mapped to different processors
= Every sub-task is different from the others and has different communication

requirements

= Problem: load balancing

Air flow

A 4

Heat transfer

/

\
Example:

Climate model

Cloud motion

PPHPS 2024 | HPC Introduction

25

Finding parallelism: data parallelism on intermediate level

= Example: work sharing in shared memory via threading

= Here: matrix-vector multiplication (dense MVM)

#pragma omp parallel for

for (int r=0; r<rows; ++r)
for(int c=0; c<cols; ++c)
ylr] += m[r][c] * x[c];

= Execute a complete kernel (“solver”)
on multiple threads, share data

= “Loop parallelism”
= Programming techniques

= OpenMP threading, or any other threading model (e.g., POSIX threads)

= Auto-parallelizing compilers (don’t hold your breath)

Thread 0

Thread 1
b

Thread 2
L L]

PPHPS 2024 | HPC Introduction

26

Finding parallelism: instruction and data parallelism on fine level

= |nstruction-level parallelism exploits concurrency in an instruction stream

Example: dense MVM

for (int r=0; r<rows; ++r)
for (int c=0; c<cols; ++c)
ylr] += & ;

g + 1 MUL + 1 ADD per it.

Pipelining
= Execution units can work on multiple instructions
and interleave their execution

Superscalarity
= Multiple execution units can work concurrently

Mostly
automatic, done
by hardware,
compiler can
help

PPHPS 2024 | HPC Introduction

27

Levels of parallelism in large parallel systems

2 Core B “tE: ==
b ILP, pipelining, SIMD —
Chip SErrerEr B A

() : :

© cores

©

&)

£ o

2 S

£ Node 3

chips, sockets, accelerators o

2
|_

(O]

) Cluster

©

S nodes, network

PPHPS 2024 | HPC Introduction

Take-home messages

= There is abundant parallelism in modern computers
= Execution units, cores, chips, nodes, (accelerators)

= The parallelism available to an application is usually limited
= Serial fraction, communication, hardware bottlenecks

» Parallelization is the developer’s task

= You might be lucky — there may be a library that solves your problem
= Else it's hard work

* [nterested in in-depth performance engineering?

= Next opportunity: Online “Node-Level Performance Engineering” course,
June 18-21, 2024, HLRS Stuttgart

= https://www.hlrs.de/training/2024/nlp

PPHPS 2024 | HPC Introduction

29

https://www.hlrs.de/training/2024/nlp

	Parallel Programming �of High-Performance Systems
	Supercomputing
	HPC applications
	HPC algorithms
	Parallel computing
	What is “performance”?
	The Top500 list
	Supercomputing in Germany – Federal Centers
	The NHR Alliance
	Fritz cluster at NHR@FAU
	Computer architecture
	At the core: the stored-program computer
	From theory to reality: General-purpose (cache based) microprocessor core
	Memory hierarchy
	Shared memory: a single cache-coherent address space
	Distributed memory: no cache-coherent single address space
	Parallelism in modern computers
	A modern CPU compute node (AMD Zen2 “Rome”)
	Adding accelerators to the node
	Turning it into a cluster
	Adding permanent storage
	Finding parallelism and �mapping it to the hardware
	Finding parallelism
	Finding parallelism: data parallelism on coarse level
	Finding parallelism: functional parallelism on coarse level
	Finding parallelism: data parallelism on intermediate level
	Finding parallelism: instruction and data parallelism on fine level
	Levels of parallelism in large parallel systems
	Take-home messages

