FAU FRIEDRIj?_—_ALEXANDER
AT

N-NURNBERG

Multicore Performance and Tools

Part 1: Topology and affinity

Tools for Node-level Performance Engineering

* Node Information
/proc/cpuinfo, numactl, hwioc, likwid-topology, likwid-powermeter

= Affinity control and data placement
OpenMP and MPI runtime environments, hwiloc, numactl, likwid-pin

= Runtime Profiling
Compilers, gprof, perf, HPC Toolkit, Intel Amplifier, ...

= Performance Analysis

Intel VTune, likwid-perfctr, PAPI-based tools, HPC Toolkit, Linux
perf

= Microbenchmarking
STREAM, likwid-bench, Imbench, uarch-bench

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

_IKWID performance tools

_IKWID tool suite:

Like

I
Knew
What . 1=
I’'m ‘
Doing

Tl

u https://youtu.be/6uFl1HPg-88 L

Open source tool collection
(developed at RRZE):

J. Treibig, G. Hager, G. Wellein: LIKWID: A lightweight

< ’ httP S: / / g ithub.com / RRZE-HPC / likwid performance-oriented tool suite for x86 multicore
environments. PSTI2010, Sep 13-16, 2010, San Diego,

CA. DOI: 10.1109/1CPPW.2010.38

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

https://github.com/RRZE-HPC/likwid
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
https://youtu.be/6uFl1HPq-88

LIKWID Tool Suite

= Command line tools for Linux:
easy to install
works with standard Linux kernel
simple and clear to use
supports most X86 CPUs

(E'ffé Q%I\AP\SS,)POWERg and \\\\E
"

= Current tools:

likwid-topology - Print thread and cache topology

likwid-pin - Pin threaded application without touching code

likwid-perfctr - Measure performance counters

likwid-mpirun — Pin & measure MPI(+X) applications

likwid-bench - Microbenchmarking tool and environment

... SOmMme more

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

FAU FRIEDRIj?_—_ALEXANDER
AT

N-NURNBERG

Reporting topology

likwid-topology

>

https://youtu.be/mxMWjNe73SI

Output of 1likwid-topology —-g
on one node of A64FX node (OOKAMI cluster)

CPU name:
CPU type: Fujitsu A64FX
CPU stepping: 0

hhkkhkhkkkhkkkhkhkkkhkhkhkkhkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkkhkhkhkkhkhkkkhkhkhkkkhkhkkkhkhkkkk

Hardware Thread Topology
khkkhkhkkkhkkkhkhkkkhkhkhkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkkkk

Sockets: 4

Cores per socket: 12

Threads per core: 1 A" phySicaI

I(-)IWThread ghread gore lgie ﬁocket isvailable processor IDS

1 0 1 0 0 *

46 0 10 0 3 *

a7 0 11 0 3 *

sommer 01 (oi23aserssion, T Remark: System announces 4 CPU
Socket 1: (12 13 14 15 16 17 18 19 20 21 22 23) i i i i
Socket 1: e e pn223) sockets but in reality its 4 CPU dies on a
Socket 3: (36 37 38 39 40 41 42 43 44 45 46 47) single socket

hhkkhkhkkkhkkkhkhkkkhkhkhkkhkhkkkhkhkhkkhkhkhkkhkhkhkkkhkhkhkkhkhkkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkhkkkhkhkkkhkhkkkk

Cache Topology
hhkkhkhkkkhkkkhkhkkkhkhkkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkhkkhkhkkkhkhkkkhkhkhkkhkhkkkhkhkkkk

Level: 1

Size: 64 kB

Cache groups: (0) (1) (2) (3) (4) (5) (6) () (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (
21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (388) (39) (40) (41) (42) (43

) (44) (45) (46) (47)

2
Size: 8
(

°8

45 46 47)

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

Output of 1ikwid-topology continued

hkkhkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkhkhkkkkxk

NUMA Topology
hhkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkkkhkkkkxkx

NUMA domains: 4

Domain: 0

Processors: (012345678910 11)
Distances: 10 20 30 30

Free memory: 6892.44 MB

Total memory: 8096.12 MB

Domain: 1

Processors: (12 13 14 15 16 17 18 19 20 21 22 23) Output similar to
Distances: 20 10 30 30 numactl --hardware
Free memory: 6733.31 MB

Total memory: 8181.69 MB

Domain: 2

Processors: (24 25 26 27 28 29 30 31 32 33 34 35)
Distances: 30 30 10 20

Free memory: 7137.19 MB

Total memory: 8181.69 MB

Domain: 3

Processors: (36 37 38 39 40 41 42 43 44 45 46 47)
Distances: 30 30 20 10

Free memory: 7272.06 MB

Total memory: 8161.31 MB

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

FAU -

N-NURNBERG

Enforcing thread/process affinity under the Linux OS

likwid-pin

>

https://youtu.be/PSJKNQaqwB0

DAXPY test on A64F X

Anarchy vs. thread pinning

600 SIETETeTeTETRETsTE s s X
' ! ' ! ' ! PlP[P[PIP|P|[P|P|P|[P]P|P I’PPPPPPPPPPPP\
- OpenMP-parallel i i L2 I L2 '\
500~ A(:)=A(:)+s*B(:) - g I 3 Core-
° ° ° - | Memory Interface I Memory Interface | memory
B No pinning B T s Memory N Memory ‘ group
2 400~ _ 1] | N / (CMG)
O ot _
§300— / \ . P|P[P|[P]P|P|P]P[P|[P]P|P P|P|[P|P[P]P|P|P[P|P|P|P
é i 7 - L2 L2
8 _ - N —
M 200 - i | Memory Interface Memory Interface |
i) i Memory Memory ‘
100 — Mean-max-min =
. 20 runs per point | - | | ' 1 ' |
I | L l I | l .
% 10 20 30 40 50 700~ “Compact” pinning -
cores g (fill first socket first))
There are several reasons for caring about 2 ool i
affinity: £ ool i
=
ERai
Eliminating performance variation @ 300]
200 |
Making use of architectural features ol i
idi I I | | ! | ! |
Avoiding resource contention 0g = % o e 30
cores
Topology, Affinity, Clock Speed (c) NHR@FAU 2021 10

Interlude: Why the weird scaling behavior?

[[I | [[[|

6
i 1Somp parallel do schedule(static)
;:5 do i =1,N
= a(i) = b(i) + s * c(1)
O 4
3 | implicit barrier
S 3
£
s |
5
e
1 Socket 0 Socket 1
E A A
0 N A

4 8 12 16 20 24 28 32 36
cores

= Every thread has the same workload

= Performance of left socket is saturated Waiting @

barrier

time

= Barrier enforces waiting of “speeders” at sync point

/]

= Average performance of each “right” core == average _+

- 000000

performance of each “left” core = linear scaling Barrier

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

More thread/process affinity (“pinning”) options

= Highly OS-dependent system calls
But available on all systems

. Linux: sched setaffinity()
Windows: SetThreadAffinityMask ()

Hwloc project (http://www.open-mpi.de/projects/hwloc/)

Support for “semi-automatic” pinning

= All modern compilers with OpenMP support

= Generic Linux: taskset, numactl, 1ikwid-pin (see below)
= OpenMP 4.0 (OMP_PLACES, OMP_PROC_BIND)

= Slurm Batch scheduler
Affinity awareness in MPI libraries

= OpenMPI
= Intel MPI ...

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

13

http://www.open-mpi.de/projects/hwloc/

Overview likwid-pin

= Pins processes and threads to specific cores without touching code
= Directly supports pthreads, gcc OpenMP, Intel OpenMP

= Based on combination of wrapper tool together with overloaded pthread library
—> binary must be dynamically linked!

= Supports logical core numbering within a node

= Simple usage with physical (kernel) core IDs:
$ likwid-pin -c 0-3,4,6 ./myApp parameters
$ OMP NUM THREADS=4 likwid-pin -c 0-9 ./myApp params

= Simple usage with logical core IDs (“thread groups”):
$ likwid-pin -c S0:0-7 ./myApp params
$ likwid-pin -c Cl:0-2 ./myApp params

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

LIKWID terminology: Thread group syntax

= The OS numbers all processors (hardware threads) on a node

= The numbering is enforced at boot time by the BIOS

= LIKWID introduces thread groups consisting of processors sharing a topological entity

(e.g. socket or shared cache)

= Athread group is defined by a single character + index

= Example for likwid-pin:
$ likwid-pin -c S1:0-3 ./a.out

Thread group expressions may be chained with @:

$ likwid-pin -c S0:0-3@S1:0-3 ./a.out

Physical processors first!

+-———=- + +--———- + +---——- + +---——- +
| O 4] | 1 51 | 2 6| | 3 7|
+-———=- + +--———- + +---——- + +---——- +
+-———=- + +--———- + +---—-- + +---——- +
| 32kB| | 32kB| | 32kB| | 32kB|
+-———=- + +--———- + +---——- + +---——- +
+-———=- + +--———- + +---—-- + +---——- +
| 256kB| | 256kB| | 256kB| | 256kB|
+-———=- + +--———- + +---——- + +---——- +
e +
I 8MB I
e +

Topology, Affinity, Clock Speed

(c) NHR@FAU 2021

15

LIKWID Currently available thread domains

Possible unit prefixes

5}
[TH | I | | 2
[T || IS | IS | D

o
N nOde e e e

Default if —c is not
specified!

g+x91) Lodsues 1 JadAH Jualeyo;

5] [E)
(T3 | | | 2 [e

H 16x

% wo | uo JIf Llfn = LLuzn Y le:: Hu 10 wo | [uo | to quzn
sl lefir|PfiP|lP| P JefiejflrpliPliP|P
SERNEEREREE Cielle PH“PMP P
| B FET | N | I | T | T H e | e | e | e | e | e
| e e il e [T] H [THN | BT e e e 2
3] \ =]

S socket

Coherent HyperTransport (16x+8x)

M NUMA domain e

Chipset

. New domain Dx for CPU die
C outer level cache group — in upcoming version

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

Advanced options for pinning: Expressions

= Expressions are more powerful in situations where the pin mask would be very long or clumsy

Compact pinning (counting through HW threads):
$ likwid-pin -c E:<thread domain>:\
<number of threads>\
[:<chunk size>:<stride>]

Scattered pinning across all domains of the designated type:

$ likwid-pin -c <domaintype>:scatter

= Examples:
$ likwid-pin -c E:N:8:1:2 ...
$ likwid-pin -c E:N:120:2:4

= Scatter across all NUMA domains:
$ likwid-pin -c M:scatter

“Compact” placement!

+-———=- + +--———- + +--———- + +---——- +
| 0 11 | 2 31 | 4 5| |16 17|
+-———=- + +--———- + +--———- + +---——- +
+-———=- + +--———- + +--———- + +---——- +
| 32kB| | 32kB| | 32kB| | 32kB|
+-———=- + +--———- + +--———- + +---——- +
+-———=- + +--———- + +--———- + +---——- +
| 256kB| | 256kB| | 256kB| | 256kB|
+-———=- + +--———- + +--———- + +---——- +
et +
I 8MB I
et +

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

17

Example: 1ikwid-pin with Intel OpenMP

Running the STREAM benchmark with 1ikwid-pin:

$ likwid-pin -c S0:0-3 ./stream

Array size = 100000000 (elements), Offset = 0 (elements)

Memory per array = 762.9 MiB (= 0.7 GiB).

Total memory required = 2288.8 MiB (= 2.2 GiB). Main PID always
Each kernel will be executed 10 times. pﬂnned

[pthread wrapper]

[pthread wrapper] MAIN -> 0

[pthread wrapper] PIN MASK: 0->1 1->2 2->3

[pthread wrapper] SKIP MASK: 0x0
threadid 281473873604960 -> hwthread 1 - OK
threadid 281473865150816 -> hwthread 2 - OK
threadid 281473856696672 -> hwthread 3 - OK

Number of Threads requested = 4

Number of Threads counted = 4

[... rest of STREAM output omitted ...]

| Pin all spawned
threads in turn

—

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

Footer

2020-10-15

19

OMP_PLACES and Thread Affinity Lo

Processor: smallest entity able to run a thread or task (hardware thread) <G
Place: one or more processors = thread pinning is done place by place
Free migration of the threads on a place between the processors of that place.

abstract name

threads Hardware thread (hyper-thread)
cores All HW threads of a single core
sockets All HW threads of a socket
abstract name (num places) Restrict # of places available

Or use explicit numbering, e.g. 8 places, each consisting of 4 processors:
« OMP PLACES="{0,1,2,3},{4,5,6,7},{8,9,10,11}, .. {28,29,30,31}"
 OMP PLACES="{0:4},{4:4},{8:4}, .. {28:4}"

* OMP PLACES="{0:4}:8:4"
Caveat: Actual behavior is implementation defined! <lower-bound>:<number of entries>[:<stride>]

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

20

OMP_PROC_BIND variable / proc_bind() clause /5~

Dy,
]]] /o,)e/
Determines how places are used for pinning:

FALSE Affinity disabled
TRUE Affinity enabled, implementation defined
strategy
CLOSE Threads bind to consecutive places
SPREAD Threads are evenly scattered among places
MASTER Threads bind to the same place as the master

thread that was running before the parallel
region was entered

If there are more threads than places, consecutive threads are put into individual
places (“balanced”)

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

21

Some simple OMP_PLACES examples Lo

on,
U
AB64FX with 48 cores, 1x12 cores, 1 thread per physical core, fill 1 CMG

OMP_ NUM THREADS=12 A o abetract of
OMP PLACES=cores ways prerer abstract places

i !
OMP_PROC_BIND=close instead of HW thread IDs!

AB4F X with 48 cores,

24 cores to be used, 2 threads per physical core
OMP_NUM THREADS=24

OMP PLACES—cores(lZ)

OMP PROC BIND=close # spread will also do

Topology, Affinity, Clock Speed (c) NHR@FAU 2021

22

