



# Programming Techniques for Supercomputers: Parallel Computers: Shared Memory

Modern multi- and manycore chips

Parallel Computers: Basic Classifications

Parallel Computers: Shared-memory computers

Prof. Dr. G. Wellein (a,b)

(a) Erlangen National High Performance Computing Center (NHR@FAU)

(b) Department für Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg, Sommersemester 20224







Intel Ice Lake NVIDIA A100 AMD MI100 Fujitsu A64FX (ARM)

Parallel Computers: Shared Memory

Modern multi- and manycore chips

Parallel Computers: Basic Classifications

Parallel Computers: Shared-memory computers

Be prepared for more cores with less complexity and slower clock!

#### Modern Multicore Processors

From single core to multicore

Put  $n_{core}$  copies of core with their local caches on a chip and connect to shared cache / memory interface

Floating Point (FP) Peak Performance of a single chip:

$$P_{chip} = n_{core} \cdot P_{core}$$
 
$$P_{core} = n_{super}^{FP} \cdot n_{FMA} \cdot n_{SIMD} \cdot f$$

Intel Xeon ("Ice Lake")



Intel Xeon Platinum 8360Y ("Ice Lake"):

$$f = 1.8, ..., 2.6 \ GHz \ (36 \ cores; AVX512)$$

$$n_{core} = 36$$
;  $n_{super}^{FP} = 2$ ;  $n_{FMA} = 2$ ;  $n_{SIMD} = 8$ 

TOP1 – 1998 
$$\rightarrow P_{chip} = 2.1, ..., 3.0 \frac{TF}{s}$$
 (double)

# Nvidia A100 "Ampere" SXM4 specs

#### Architecture

- 54.2 B Transistors
- ~ 1.4 GHz clock speed
- ~ 108 "SM" units (cores)
  - 64 SP / 32 DP FMA units each (SIMT)
  - 2:1 SP:DP performance
  - 4 "Tensor Cores" each
- 9.7 TFlop/s DP peak (FP64)
- 19.5 TFlop/s DP peak (Tensor)
- 40 MiB L2 Cache
- 40/80 GB (5120-bit) HBM2
- MemBW ~ 1555 GB/s (theoretical)
- MemBW ~ 1400 GB/s (measured)





 $n_{core} = 108$   $n_{SIMD} = 32 \frac{Flop}{inst}$   $n_{tensor} = 64 \frac{Flop}{inst}$   $n_{super} = 1 \frac{inst}{cy}$   $n_{FMA} = 2$   $f = 1.4 \frac{Gcy}{s}$ 

# AMD MI100 specs

#### Architecture

- 50 B Transistors
- ~ 1.5 GHz clock speed
- ~ 120 "CU" units (cores)
  - 64 SP / 32 DP FMA units each (SIMT)
  - 2:1 SP:DP performance
  - No DP matrix units
- 11.5 TFlop/s DP peak (FP64)
- 8 MiB L2 Cache
- **32** GB (4096-bit) HBM2
- 1229 GB/s (theoretical)



## Fujitsu A64FX (FX1000 processor)



Architecture

- 8.8 B Transistors
- Up to 2.2 GHz clock speed
- Up to 12x4 cores + 2-4 assistant cores
  - 2x 512-bit SIMD units each core (ARM SVE)
  - no SMT
- 3.4 TFlop/s DP peak (SP 2x)
- 32 MiB L2 Cache
- 32 GiB HBM2 Memory
  - MemBW ~ 860 GB/s (measured)

TOP500: #5 (06/2024) "Fugaku"

$$f = 2.2 \text{ GHz}$$
;  $n_{core} = 48$ ;  $n_{super}^{FP} = 2$ ;  $n_{FMA} = 2$ ;  $n_{SIMD} = 8 \rightarrow P_{chip} = 3.4 \text{ TF/s (double)}$ 

#### Trading single thread performance for parallelism: GPGPUs vs. CPUs

GPU/A64FX vs. CPU light speed estimate (per device)

MemBW  $\sim 2-5 x$ 

PeakPerf (DP)  $\sim 3-4 \text{ x}$ 





|                               | 2x Intel Xeon Platinum<br>8360Y | Fujitsu A64FX     | NVidia A100<br>"Ampere" |  |
|-------------------------------|---------------------------------|-------------------|-------------------------|--|
| Cores@Clock                   | 2 x 36 @ ≥1.8 GHz               | 48 @ 2.2 GHz      | 108 SMs @ ~1.4 GHz      |  |
| DP peak                       | 4.2,,6 TFlop/s                  | 3.4 TFlop/s       | 19.5 TFlop/s            |  |
| Stream BW (meas.)             | 2 x 170 GB/s                    | 860 GB/s (HBM)    | 1400 GB/s               |  |
| Transistors / TDP             | ~? Billion / 2x250 W            | 8 Billion / ~200W | 54 Billion/400W         |  |
| Threads to saturate bandwidth | ~30                             | ~20               | ~20.000                 |  |

PTfS 2024 May 28, 2024

# There is no single driving force for single core performance!

$$P_{chip} = n_{core} \cdot n_{super}^{FP} \cdot n_{FMA} \cdot n_{SIMD} \cdot f$$

|                 | $n_{core}$ | nst./cy | $n_{FMA}$ | n <sub>SIMD</sub> ops/inst |         | Chip           | f [GHz]   | P <sub>chip</sub><br>[GF/s] |
|-----------------|------------|---------|-----------|----------------------------|---------|----------------|-----------|-----------------------------|
| Nehalem         | 4          | 2       | 1         | 2                          | Q1/2009 | X5570          | 2.93      | 46.8                        |
| Westmere        | 6          | 2       | 1         | 2                          | Q1/2010 | X5650          | 2.66      | 63.6                        |
| Sandy Bridge    | 8          | 2       | 1         | 4                          | Q1/2012 | E5-2680        | 2.7       | 173                         |
| Ivy Bridge      | 10         | 2       | 1         | 4                          | Q3/2013 | E5-2660 v2     | 2.2       | 176                         |
| Haswell         | 14         | 2       | 2         | 4                          | Q3/2014 | E5-2695 v3     | 2.3       | 515                         |
| Broadwell       | 22         | 2       | 2         | 4                          | Q1/2016 | E5-2699 v4     | 2.2       | 774                         |
| Skylake         | 28         | 2       | 2         | 8                          | Q3/2017 | Platinum 8180  | 2.5       | 2,240                       |
| Ice Lake        | 36         | 2       | 2         | 8                          | Q2/2021 | Platinum 8360Y | 1.8 / 2.6 | 2,073/2,995                 |
| Sapphire Rapids | 52         | 2       | 2         | 8                          | Q1/2023 | Platinum 8470  | 2.0       | 3,328                       |
| AMD Rome        | 64         | 2       | 2         | 4                          | Q4/2019 | EPYC 7742      | 2.25      | 2,304                       |
| IBM POWER8      | 10         | 2       | 2         | 2                          | Q2/2014 | S822LC         | 2.93      | 234                         |
| Fujitsu A64 FX  | 48         | 2       | 2         | 8                          |         |                | 2.2       | 3,400                       |

AVX-512 (36c): Base / Max. Turbo

PTfS 2024 May 28, 2024 10

# There is no single driving force for single core performance!



|               | $n_{core}$ | n <sup>FP</sup><br>super<br>inst./cy | $n_{FMA}$ | n <sub>SIMD</sub> ops/inst |         | Chip  | f [GHz] | P <sub>chip</sub> [GF/s] |
|---------------|------------|--------------------------------------|-----------|----------------------------|---------|-------|---------|--------------------------|
| Nvidia P100   | 56         | 1                                    | 2         | 32                         | Q2/2016 |       | 1.3     | 4,660                    |
| Nvidia A100   | 108        | 1                                    | 2         | 32                         | 2020    |       | 1.4     | 9,700                    |
| Nvidia H100   | 132        | 2                                    | 2         | 32                         | 2024    | GH100 | 2.0     | 33,400                   |
| AMD MI100     | 120        | 1                                    | 2         | 32                         |         |       | 1.5     | 11,500                   |
| AMD MI250     | 2*110      | 1                                    | 2         | 64                         | 2022    |       | 1.7     | 24,000                   |
| Xeon Phi 7250 | 68         | 2                                    | 2         | 8                          | Q2/2016 |       | 1.4     | 3,046                    |

PTfS 2024 May 28, 2024 11





Parallel Computers: Shared Memory

Modern multi- and manycore chips

Parallel Computers: Basic Classifications

Parallel Computers: Shared-memory computers



## Parallel computers – Classifications

- Parallel Computing: A number of compute elements solve a problem in a cooperative way
- Parallel Computer: A number of compute elements connected such way to do parallel computing for a large set of applications
- Classification according to Flynn: Multiple Instruction Multiple Data (MIMD)



## Parallel Computers - Classifications

Classification according to address space organization

Shared-Memory Architectures:

Cache-Coherent Single Address Space



Distributed-Memory Architectures

No (Cache-Coherent) Single Address Space



Hybrid architectures containing both concepts are state-of-the art (e.g., "Emmy" / "Meggie" / "Fritz" cluster @ RRZE)







Parallel Computers: Shared Memory

Modern multi- and manycore chips

Parallel Computers: Basic Classifications

Parallel Computers: Shared-memory computers

### Parallel computers – Shared-Memory Architectures

- Shared memory computers provide
  - Single shared address space for all processors

memory access

• All processors share the same view of the address space!



- Two basic categories of shared memory systems
  - Uniform Memory Access (UMA):
     Memory is equally accessible to all processors with the same performance (Bandwidth & Latency)
  - cache-coherent Non Uniform Memory Access (ccNUMA):
     Memory is physically distributed:
     Performance (Bandwidth & Latency)
     is different for local and remote





## Parallel computers: Shared-memory: UMA

- UMA Architecture: switch/bus arbitrates memory access
  - Special protocol ensures cross-CPU cache data consistency
  - Flat memory: Access time to a given memory location is same for all CPUs



# Parallel computers: Shared-memory: UMA / Bus based

- Worst case: bus system single memory path to multiple processors
  - Only "one consumer" at a time can use the bus and access memory at any one time

- Collisions occur frequently, causing one or more CPUs to wait for "bus ready" (contention) →

Saturation

One consumer / core may not be able to saturate the bus

Multi-core architectures:Bus-type Memory Interface

- **→**UMA
- →Bandwidth saturates when increasing core count (i.e. utilization)



## Parallel computers: Shared Memory: UMA Nodes

#### Examples:

- Dual-/quad-/hexa-/octo-/.../32-core laptop/desktop/server processor
- IBM Power8/BlueGene processor series
- NEC vector systems
- nVIDIA GPUs
- Intel Xeon Phi (KNC, KNL,...)

#### Advantages

- Cache Coherence (see below) is "easy" to implement → single controller
- Easy to optimize memory access
- Incremental parallelization

#### Disadvantages

 Bus-type memory bandwidth limits scalability in terms of consumers (2 – 30 cores per UMA node)

## Parallel shared memory computers: ccNUMA/Node Layout

#### ccNUMA:

- Single cache coherent address space although multiple physically distributed memory (interfaces/controllers) are used
- Hardware and software layers establish a shared address space and the cache coherency
- Access time to a given memory location may depend on the CPU/core requesting the data (topology)
- Example: AMD "Naples" dual-socket system (2 sockets, 48 cores)
   with 8 Memory Interfaces ("NUMA Domains")



#### Parallel shared memory computers: ccNUMA/Node Layout



PTfS 2024 May 28, 2024 22

### Parallel shared memory computers: ccNUMA/Node Layout

#### ccNUMA:

- Advantages:
  - Aggregate memory bandwidth is scalable within node (multiple memory controller)
  - Systems with >1024 cores are available
  - Example: 2 socket AMD Rome/Milan (64c) compute node ("Alex"):
     8 Memory Interfaces connected by Infinity fabric
- Disadvantages:
  - Cache Coherence hard to implement / expensive
  - Performance depends on topology, i.e. access to local or remote memory
- All modern multi-socket compute nodes



#### ccNUMA in a single multicore processor!

AMD Magny-Cours+ & Intel Cluster on Die mode

ccNUMA can be found within a single multicore processor chip

AMD: single chip ccNUMA since Magny Cours:

"Naples/EPYC" has 4 memory controllers per chip!

 Intel: Cluster on Die (CoD) mode since Haswell (sub-NUMA Cluster / SNC for Skylake+)

BIOS boot-time option: single chip UMA or ccNUMA

Standard 2 socket HPC server → always NUMA





Where does my data end up?

→ OpenMP programming lectures

Intel with CoD / SNC NOT enabled

#### ccNUMA in a single multicore processor

- AMD / Intel processors may support NUMA-modes in a single multicore processor chip
  - Boot time option → BIOS
  - AMD: Single chip ccNUMA since Magny Cours
  - AMD Rome/Milan 64 cores (c) supports 4 options ("NPS mode")
    - NPS = 1 UMA mode (no NUMA characteristics): 64 c + 4 memory interfaces (MI)
    - NPS = 2 2 NUMA domains with 32 c + 2 MI each
    - NPS = 4 4 NUMA domains with 16 c + 1 MI each

How to determine NUMA configuration of node / chip → LIKWID topology Where does my data end up? → OpenMP programming lectures



#### Multicore nomenclature: 2 x AMD Rome 64c (NPS=4)

