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Mathematical Preliminary Remarks



Kets and Vector Spaces ‘ UNIVERSITAT

Kets are column vectors in Braket (Dirac) notation |1 = 1

Definition

Vector Space V:

> |u)+|v)eV > —|u) eV

> alu) eV > a(b|u)) = (ab) [u)

> W)+ (V) +|w)) = (lu)+|V)+lw) > 1]u) = |u)

> |u) +|v) =|v) +|u) > a(|u) +|v)) = alu) + alv)
» |0) (zero vector) € V > (a+ b)|u) = alu) + b|u)

|) € V := Quantum State — Holds all information about the particle
2/30



Kets and Vector Spaces UNIVERSITAT

|v) € V := Quantum State — Holds all information about the particle

— For any physical quantity, |¢) is in a superposition of all possible
outcome kets with coefficients related to the probability of that
outcome

Example: Energy
» Discret energy eigenstates E1, Eo, . ..
> ) = a1|E1) + a2 |Ez) + ... (could be infinite outcomes)

— For discret values = Sums and coefficient values

— For continuous values = Integrals and coefficient wavefunctions
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Kets and Vector Spaces UNIVERSITAT
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I Outcome states form a basis for the vector space V' !
w Qutcome states == eigenstates
w Possible outcome states can be infinite #

— Infinite combination of basis states to form |¢)) € V may violate Definition
1

= Every convergent sum of vectors must converge to an element inside the
vector space (Cauchy Completeness)

Definition
A Hilbert space # is a Cauchy complete, infinite-dimensional, complex
vector space with an inner product.

For a Hilbert space # Definition 1 is extended by >".° |e;) € H
Usually: Quantum Vector Space = Hilbert Space 4/30



Inner Product
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Definition

Inner product on H is a mapping (-|-) : H x H — C, satisfying:

> (ulav + bw) = a(ulv) + b(ulw) » (ulu) >0 :VYu e H, with

> (ulv) = (v|u)" (Complex equality if and only if u =0
Conjugate)
Length of vector u in terms of inner product (Norm): ||u|| = \/(u|u) € R,

since (u|u) € R
— Measures magnitude of u in H

Orthogonality: v L v < (u|v) =0
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Bra & Braket
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Bras are Hermitian conjugates of kets and therefore row vectors. A bra is a
linear functional that acts on ket vectors to produce (complex) numbers.

> Viu)y e H:3(ul€H > |u)f = (u]

I Bra is an operator in #* (Hilbert Dual Space) !

— Dual Space := Given a vector space V the corresponding dual space
V* is the vector space of all linear functionals in V.

— Linear Functional := Any linearmap L:V — C
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Bra & Braket UNIVERSITAT
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To extract a certain value of physical information from the state |¢) we need
a linear functional mapping L [)) — ¢
w Bra (-| = linear functional L
w (.| |1)) (compare to inner product)
— Riesz Representation Theorem: For any linear functional L that
operates linearly on vectors v € H, there exists a unique vector u such
that the action of L on v can be represented as the inner product of u
and v.
= (¢l ) = (¢lv)
Bra and inner product are formally different mathematical entities!

— Braket notation makes connection seamless
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Observable Operators
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Observables are any physical quantities one could measure and therefore
"observe” from a particle. Observables are linear operators on H, i.e. a
map M on vector space that preserves linear structure of that space:

> M(|u) + |v)) = M|u) + M |v) > M(c|u)) = cM|u)

I Linear operator is an abstract map, while a matrix is a representation of a
linear operator in a particular basis !
w Quantum mechanics has no standard basis
— Work with abstract representations of operators
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Observable Operators UNIVERSITAT
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» Possible outcomes of applying the linear operator corresponding to the
observable (measurement) = eigenvalues

» States corresponding to these outcomes =- eigenvectors (=
eigenstates)

» Particle in superposition of all possible outcomes of measurement =
linear combination of observable’s eigenvectors
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Observable Operators UNIVERSITAT
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Observables satisfy the following conditions:
» Observables have real eigenvalues g; € R
» Observable’s eigenstates must span the entire vector space

— span(|E1),|E2),...) ={>;Ci|Ei) : Vci}
— Any quantum state can be written as linear combination of eigenstates

» Eigenstates must be mutually orthogonal
= Oberservable’s eigenstates form an orthonormal (eigen-)basis

Particles being in eigenstates have no uncertainty, repeated measurement
yields the same eigenvalue every time.
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Hermitian Operators

Definition
Each linear operator A defines a Hermitian adjoint operator A' that satisfies

> (ulAv) = (Alulv) > (A+B) = At 4 B
< AP > (AB) = BIAI

| The Hermitian adjoint of a scalar ¢ is the complex conjugate: ¢ = ¢* !

Definition
An operator A is hermitian, or self-adjoint, if and only if
> A=A > (ulAlv) = (u|Av) = (Au|v) :Vu,v e H

I All observables are hermitian ! 11/30



Unitary Operators
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Definition
Operators that preserve the inner product structure, meaning the length of

vectors and angles between them, i.e. (u|v) = (Uu|Uv), are called unitary
operators and satisfy the following property:

> Ul =01 - UU=00" =1

I Following Definition 8, we can easily see that unitary operators conserve
probability !
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Unitary Operators
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All eigenvalues of an unitary operator must have magnitude 1
> |2 = 1:V eigenvalues(U)
— Unit complex numbers

— All eigenvalues have unit length

» Eigenvalues tell us, how much the operator scales its eigenvector
— Unitary operators should not change the length of their (eigen-)vectors

Example:

Consider {J on eigenvector |v)

Ulv)y = \|v)

1T 1= A1) ]

1O1v) || = N[ IV) [] (for [v) #0: [[[v)[| >0
1O [ =[[V)]l = Al =1
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Quantum computing is (mathematically spoken) just linear algebra
» Quantum states are vectors represented as kets |-)
» Operators are matrices

» Eigenvalues are the ground states
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Superposition & Entanglement



Superposition
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Quantum Superposition is one of the fundamental principles of quantum
mechanics / computing.

Definition

Any state can be expanded as a sum of possibly infinite eigenstates of an
Hermitian operator forming a complete basis. Such a superposition of
eigenstates is called quantum superposition.

— Contrary to classical mechanics where properties are always well
defined

On interaction with the external world, the superposition reduces to a single
eigenstate (wave function collapse)
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Coefficients of eigenstates in the superposition of a particle are related to
the probability of the outcome (collapsing into the eigenstate).

Definition
Born’s rule states that the probability density of finding a system in a given

state when measured is proportional to the square of the amplitude of the
system’s wavefunction at that state.

16/30



Spin-} System
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Definition
Qubit (Quantum Bit) is the basic unit of quantum information. A qubit is a
2-state quantum-mechanical system.

» Use spin property of the particle (spin-up, spin-down)
» Spin is an intrinsic property of all particles
> Spin-1 objects cannot be accurately described using classical physics

— Simple(st) system requiring quantum mechanics
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Stern-Gerlach Experiment UNIVERSITAT

FRANKFURT AM MAIN

» Silver atoms send through spatially-varying magnetic field
Line 2 Repeated measurement in same basis yields same result (eigenstates)
Line 4 Changing measurement basis destroys all previous information
— Uncertainty Principle: spin cannot be measured on two perpendicular
directions at the same time

z+ .
Source S-G(z-axis) N
Z_
Z+ z+ .
Source S-G (z-axis) 1 S-G (z-axis)
Z_
z+ x+
Source S-G (z-axis) S-G(xaxis) [ 7 .
z- i X-
z+ X+ z+
Source S-G (z-axis) S-G (x-axis) S-G (z-axis)
z- i X- i
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Bloch Sphere

Abstract visualization of a
qubit.

» North and south pole are
typically chosen to
correspond to the
standard basis vectors
|0) and |1)

» Points on the surface
correspond to pure states
(any superposition of
basis states)

> V) = af0) +5[1)

UNIVERSITAT
FRANKFURT AM MAIN

19/30



Superposition UNIVERSITAT

» Quantum state hold information about the two basis states at the same
time

» Contrary to the classical information holding only single state
information (0 or 1)

» QC can encode 2" states simultaneously
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Entanglement
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Definition
Quantum Entanglement is the phenomenon that occurs when a group of

particles is generated in a way such that the quantum state of each particle
of the group cannot be described independently of the state of the others.

» Measurement of physical properties (e.g. momentum, position, ...) of
entangled particles are correlated

» Entangled quantum state cannot be factored as a product of
single-qubit states
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Entanglement
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1 1
Consider the Hadamard operator H = % (1 )

and the controlled not operator (CNOT) CX =

o O O = =

1 0
» Write the basis states in their vector form |0) = <O>; 1) = <1>
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What happens to the states when an Hadamard gate is applied?

H10) = 5510) + L5 [1) = |+)
HI1) = 5510y = L5]1) = |-)

» The Hadamard transforms basis states into (uniform) superpositions

» Hadamard is reversible (applying two subsequent H results in the
same state)

— Hadamard operator is unitary and hermitian
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Multi-Qubit System Representation
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» System consisting of multiple qubits can be written as tensor products
of its qubit-states

1
> 10)®0) = | | =100) = [0},
0
0
0@ = | ;| =on =1,

0
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CX
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Apply CNOT on a system of 2 qubits

CX |00) = |00)
CX|01) = |01)
CX|10) = |11)
CX|11) = |10)

» The first qubit is called Control Qubit
» Second qubit is the Target Qubit
» The CNOT operator negates/flips the target if the control qubit is 1
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Perform a Hadamard on the first and a CNOT from first to second qubit of
the system

CX H; |00) = 21 — |o)

» Performing this sequence of operators on all four basis states of the
2-qubit system yields the Bell States
— Bell states are the maximally entangled states of the 2-qubit system
— Measurement of first qubit guarantees measuring the second qubit
yields the same value
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Remember: Entangled states cannot be factored as a product of states

Consider |¢)) = «|0) + #|1) and |¢) = v|0) + 0 |1)
Trying to factorize:

100) + [11)
V2
|00) + [11)
V2

(@]0) + 8[1)) @ (v[0) +6[1)) =
ay]00) + d |01) + By [10) + 36 [11) =

| 1 | | |
éayiﬁ; ad=0; py=0; 66 =

=a=0v~y=0/¢

1
V2
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How to Program a Real Device
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» Different Quantum Software Development Kits (QuantumSDKs) are
available
— One of them is Qiskit, provided and maintained by IBM

» Quantum code runs through multiple compilation and transpilation
steps
» Code on the most abstract level is compiled to an intermediate
representation (IR), e.g. OpenQASM
» IRs serve as a bridge to translate and optimize code-logic to quantum
instructions
» IR gets transpiled to the used hardware’s specifics
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Simulator vs. Emulator vs. Real Device UNIVERSITAT
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Simulator Real Device
Emulator -
» Simulates o . » Utilizes actual
» Mimics behavior
quantum quantum
. . of quantum
operations using , , hardware
, algorithms using .
classical L » Provided through
approximations
hardware cloud access
» Usually faster . ,
» Exact » Subject to noise
, than exact
representation : . and decoherence
(no noise/error) simulation C i
» Can requir
» Can be runon a' eq.u. € ,
» Can be run on noise-mitigation
personal
your personal (or better
computer _ .
computer noise-correction)
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Where Are We
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QTRL

Quantum Technology
Readiness Levels
describing the maturity
of Quantum Computing
Technology

QCs (QAs) exceed power of
classical computers

Scalable version of QC (0QA)
completed and qualified in test

Prototype QC (QA) built solving
small but user-relevant problems

Annealing
= QTRL 8

Gate-based
w QTRLS5
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