

Gaberle, Cedric

Applied Quantum Computing Workshop

Introduction to Quantum Computing

Goethe University Frankfurt, Germany Modular Supersomputing and Quantum Computing

Kettenhofweg 139; 60325 Frankfurt am Main

gaberle@em.uni-frankfurt.de https://msqc.uni-frankfurt.de

Frankfurt/Main, 13th June 2024

Outline

Mathematical Preliminary Remarks
Superposition & Entanglement
How to Program a Real Device
Where Are We?

Mathematical Preliminary Remarks

Kets and Vector Spaces

Kets are column vectors in Braket (Dirac) notation $|\psi
angle\equivec\psi$

Definition

Vector Space \mathcal{V} :

- $\blacktriangleright |u\rangle + |v\rangle \in \mathcal{V}$
- $a|u\rangle \in \mathcal{V}$
- $\blacktriangleright |u\rangle + (|v\rangle + |w\rangle) = (|u\rangle + |v\rangle) + |w\rangle$
- $\blacktriangleright | u \rangle + | v \rangle = | v \rangle + | u \rangle$
- $\blacktriangleright \hspace{0.1 cm} |0\rangle \hspace{0.1 cm} (\text{zero vector}) \in \mathcal{V}$

- $\blacktriangleright |u\rangle \in \mathcal{V}$
- $\blacktriangleright a(b | u \rangle) = (ab) | u \rangle$

$$\blacktriangleright 1 |u\rangle = |u\rangle$$

- $\bullet \ a(|u\rangle + |v\rangle) = a |u\rangle + a |v\rangle$
- $\blacktriangleright (a+b) |u\rangle = a |u\rangle + b |u\rangle$

 $|\psi
angle\in\mathcal{V}\coloneqq$ Quantum State ightarrow Holds all information about the particle

Kets and Vector Spaces

 $|\psi\rangle\in\mathcal{V}:=$ Quantum State \rightarrow Holds all information about the particle

→ For any physical quantity, $|\psi\rangle$ is in a superposition of all possible outcome kets with coefficients related to the probability of that outcome

Example: Energy

- Discret energy eigenstates E_1, E_2, \ldots
- $|\psi\rangle = a_1 |E_1\rangle + a_2 |E_2\rangle + \dots$ (could be infinite outcomes)
- → For discret values ⇒ Sums and coefficient values
- \rightarrow For continuous values \Rightarrow Integrals and coefficient wavefunctions

Kets and Vector Spaces

! Outcome states form a basis for the vector space ${\mathcal V}$!

- Outcome states == eigenstates
- Possible outcome states can be infinite #
 - \hookrightarrow Infinite combination of basis states to form $|\psi
 angle\in\mathcal{V}$ may violate Definition 1
 - ⇒ Every convergent sum of vectors must converge to an element inside the vector space (*Cauchy Completeness*)

Definition

A Hilbert space \mathcal{H} is a Cauchy complete, infinite-dimensional, complex vector space with an inner product.

For a Hilbert space \mathcal{H} Definition 1 is extended by $\sum_{i}^{\infty} |e_i\rangle \in \mathcal{H}$ **Usually:** Quantum Vector Space = Hilbert Space

Inner Product

Definition

Inner product on \mathcal{H} is a mapping $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$, satisfying:

$$\langle u | av + bw \rangle = a \langle u | v \rangle + b \langle u | w \rangle$$

• $\langle u | v \rangle = \langle v | u \rangle^*$ (Complex Conjugate)

• $\langle u|u\rangle \ge 0$: $\forall u \in \mathcal{H}$, with equality if and only if $u = \mathbf{0}$

Length of vector *u* in terms of inner product (*Norm*): $||u|| = \sqrt{\langle u|u \rangle} \in \mathbb{R}$, since $\langle u|u \rangle \in \mathbb{R}$

 \hookrightarrow Measures magnitude of *u* in \mathcal{H}

Orthogonality: $u \perp v \leftrightarrow \langle u | v \rangle = 0$

Definition

Bras are Hermitian conjugates of kets and therefore row vectors. A bra is a linear functional that acts on ket vectors to produce (complex) numbers.

$$\blacktriangleright \ \forall \left| u \right\rangle \in \mathcal{H} : \exists \left\langle u \right| \in \mathcal{H}^* \qquad \qquad \blacktriangleright \ \left| u \right\rangle^\dagger = \left\langle u \right|$$

! Bra is an operator in \mathcal{H}^* (Hilbert Dual Space) !

 \hookrightarrow **Dual Space** := Given a vector space \mathcal{V} the corresponding dual space \mathcal{V}^* is the vector space of all linear functionals in \mathcal{V} .

 \hookrightarrow Linear Functional := Any linear map $L: \mathcal{V} \to \mathbb{C}$

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Bra & Braket

To extract a certain value of physical information from the state $|\psi\rangle$ we need a linear functional mapping $L |\psi\rangle \rightarrow c$

- ➡ Bra $\langle \cdot | :=$ linear functional L
- \blacktriangleright $\langle \cdot | | \psi \rangle$ (compare to inner product)
 - \Rightarrow **Riesz Representation Theorem:** For any linear functional *L* that operates linearly on vectors $v \in \mathcal{H}$, there exists a unique vector *u* such that the action of *L* on *v* can be represented as the inner product of *u* and *v*.
 - $\Rightarrow \langle \phi | | \psi \rangle \stackrel{!}{=} \langle \phi | \psi \rangle$

Bra and inner product are formally different mathematical entities!

→ Braket notation makes connection seamless

Definition

Observables are any physical quantities one could measure and therefore "observe" from a particle. Observables are linear operators on \mathcal{H} , i.e. a map \hat{M} on vector space that preserves linear structure of that space:

$$\hat{M}(|u\rangle + |v\rangle) = \hat{M} |u\rangle + \hat{M} |v\rangle \qquad \qquad \hat{M}(c |u\rangle) = c \hat{M} |u\rangle$$

! Linear operator is an abstract map, while a matrix is a representation of a linear operator in a particular basis !

- Quantum mechanics has no standard basis
 - → Work with abstract representations of operators

- Possible outcomes of applying the linear operator corresponding to the observable (*measurement*) ⇒ eigenvalues
- States corresponding to these outcomes ⇒ eigenvectors (:= eigenstates)
- ► Particle in superposition of all possible outcomes of measurement ⇒ linear combination of observable's eigenvectors

Observable Operators

Observables satisfy the following conditions:

- Observables have real eigenvalues $e_i \in \mathbb{R}$
- Observable's eigenstates must span the entire vector space
 - \hookrightarrow span($|E_1\rangle, |E_2\rangle, \dots$) = { $\sum_i c_i |E_i\rangle : \forall c_i$ }
 - \hookrightarrow Any quantum state can be written as linear combination of eigenstates
- Eigenstates must be mutually orthogonal
- \Rightarrow Oberservable's eigenstates form an orthonormal (eigen-)basis

Particles being in eigenstates have no uncertainty, repeated measurement yields the same eigenvalue every time.

Hermitian Operators

Definition

Each linear operator \hat{A} defines a Hermitian adjoint operator \hat{A}^{\dagger} that satisfies

! The Hermitian adjoint of a scalar c is the complex conjugate: $c^{\dagger} = c^{*}$!

Definition

An operator \hat{A} is hermitian, or self-adjoint, if and only if

$$\hat{A}^{\dagger} = \hat{A} \rightarrow \langle u | \hat{A} | v \rangle = \langle u | \hat{A} v \rangle = \langle \hat{A} u | v \rangle : \forall u, v \in \mathcal{H}$$

! All observables are hermitian !

Unitary Operators

Definition

Operators that preserve the inner product structure, meaning the length of vectors and angles between them, i.e. $\langle u|v\rangle = \langle \hat{U}u|\hat{U}v\rangle$, are called unitary operators and satisfy the following property:

$$\blacktriangleright \ \hat{U}^{\dagger} = \hat{U}^{-1} \ \rightarrow \ \hat{U}^{\dagger}\hat{U} = \hat{U}\hat{U}^{\dagger} = \mathbf{I}$$

! Following Definition 8, we can easily see that unitary operators conserve probability !

Unitary Operators

All eigenvalues of an unitary operator must have magnitude 1

- $|e_i|^2 = 1 : \forall eigenvalues(\hat{U})$
 - \hookrightarrow Unit complex numbers
 - → All eigenvalues have unit length
- Eigenvalues tell us, how much the operator scales its eigenvector
 - → Unitary operators should not change the length of their (eigen-)vectors
 Example:

Consider \hat{U} on eigenvector $|v\rangle$

$$\hat{U}\ket{m{v}}=\lambda\ket{m{v}}$$

 $||\hat{U}|v\rangle|| = ||\lambda|v\rangle||$

 $\begin{aligned} ||\hat{U}|v\rangle|| &= |\lambda||||v\rangle|| \text{ (for } |v\rangle \neq \mathbf{0} : |||v\rangle|| > 0\\ ||\hat{U}|v\rangle|| &= |||v\rangle|| \Rightarrow |\lambda| = 1 \end{aligned}$

Quantum computing is (mathematically spoken) just linear algebra

- Quantum states are vectors represented as kets $|\cdot\rangle$
- Operators are matrices
- Eigenvalues are the ground states

Superposition & Entanglement

Superposition

Quantum Superposition is one of the fundamental principles of quantum mechanics / computing.

Definition

Any state can be expanded as a sum of possibly infinite eigenstates of an Hermitian operator forming a complete basis. Such a superposition of eigenstates is called *quantum superposition*.

 → Contrary to classical mechanics where properties are always well defined

On interaction with the external world, the superposition reduces to a single eigenstate (wave function collapse)

Coefficients of eigenstates in the superposition of a particle are related to the probability of the outcome (collapsing into the eigenstate).

Definition

Born's rule states that the probability density of finding a system in a given state when measured is proportional to the square of the amplitude of the system's wavefunction at that state.

Definition

Qubit (Quantum Bit) is the basic unit of quantum information. A qubit is a 2-state quantum-mechanical system.

- Use spin property of the particle (spin-up, spin-down)
- Spin is an intrinsic property of all particles
- Spin- $\frac{1}{2}$ objects cannot be accurately described using classical physics
 - \rightarrow Simple(st) system requiring quantum mechanics

Stern-Gerlach Experiment

- Silver atoms send through spatially-varying magnetic field
 Line 2 Repeated measurement in same basis yields same result (eigenstates)
 Line 4 Changing measurement basis destroys all previous information
 - → Uncertainty Principle: spin cannot be measured on two perpendicular directions at the same time

Bloch Sphere

Abstract visualization of a qubit.

- North and south pole are typically chosen to correspond to the standard basis vectors
 and |1>
- Points on the surface correspond to pure states (any superposition of basis states)

$$\blacktriangleright |\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

- Quantum state hold information about the two basis states at the same time
- Contrary to the classical information holding only single state information (0 or 1)
- QC can encode 2ⁿ states simultaneously

Entanglement

Definition

Quantum Entanglement is the phenomenon that occurs when a group of particles is generated in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others.

- Measurement of physical properties (e.g. momentum, position, ...) of entangled particles are correlated
- Entangled quantum state cannot be factored as a product of single-qubit states

Entanglement

Consider the Hadamard operator
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

and the controlled not operator (CNOT) $CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
Write the basis states in their vector form $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Hadamard

What happens to the states when an Hadamard gate is applied?

$$H \left| 0 \right\rangle = rac{1}{\sqrt{2}} \left| 0 \right\rangle + rac{1}{\sqrt{2}} \left| 1 \right\rangle \coloneqq \left| + \right\rangle$$

$$|H|1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle := |-\rangle$$

- The Hadamard transforms basis states into (uniform) superpositions
 Hadamard is reversible (applying two subsequent H results in the same state)
 - \leftrightarrow Hadamard operator is unitary and hermitian

Multi-Qubit System Representation

 System consisting of multiple qubits can be written as tensor products of its qubit-states

$$\bullet |0\rangle \otimes |0\rangle = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} = |00\rangle := |0\rangle_2$$
$$|0\rangle \otimes |1\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} = |01\rangle := |1\rangle_2$$

Apply CNOT on a system of 2 qubits

 $egin{aligned} CX \left| 00
ight
angle &= \left| 00
ight
angle \ CX \left| 01
ight
angle &= \left| 01
ight
angle \ CX \left| 10
ight
angle &= \left| 11
ight
angle \ CX \left| 11
ight
angle &= \left| 10
ight
angle \end{aligned}$

The first qubit is called Control Qubit

- Second qubit is the Target Qubit
- The CNOT operator negates/flips the target if the control qubit is 1

Perform a Hadamard on the first and a CNOT from first to second qubit of the system

CX $H_1 |00\rangle = rac{|00
angle + |11
angle}{\sqrt{2}} = |\Phi^+
angle$

 Performing this sequence of operators on all four basis states of the 2-qubit system yields the *Bell States*

- \hookrightarrow Bell states are the maximally entangled states of the 2-qubit system
- → Measurement of first qubit guarantees measuring the second qubit yields the same value

Entanglement

Remember: Entangled states cannot be factored as a product of states

Consider $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ and $|\phi\rangle = \gamma |0\rangle + \delta |1\rangle$ Trying to factorize:

$$\begin{aligned} (\alpha |0\rangle + \beta |1\rangle) \otimes (\gamma |0\rangle + \delta |1\rangle) &= \frac{|00\rangle + |11\rangle}{\sqrt{2}} \\ \alpha\gamma |00\rangle + \alpha\delta |01\rangle + \beta\gamma |10\rangle + \beta\delta |11\rangle &= \frac{|00\rangle + |11\rangle}{\sqrt{2}} \\ \Rightarrow \alpha\gamma \stackrel{!}{=} \frac{1}{\sqrt{2}}; \ \alpha\delta \stackrel{!}{=} 0; \ \beta\gamma \stackrel{!}{=} 0; \ \beta\delta \stackrel{!}{=} \frac{1}{\sqrt{2}} \\ \Rightarrow \alpha = 0 \lor \gamma = 0 \not \epsilon \end{aligned}$$

How to Program a Real Device

Coding

- Different Quantum Software Development Kits (QuantumSDKs) are available
 - \hookrightarrow One of them is Qiskit, provided and maintained by IBM
- Quantum code runs through multiple compilation and transpilation steps
 - Code on the most abstract level is compiled to an intermediate representation (IR), e.g. OpenQASM
 - IRs serve as a bridge to translate and optimize code-logic to quantum instructions
 - IR gets transpiled to the used hardware's specifics

Simulator vs. Emulator vs. Real Device

Simulator

- Simulates quantum operations using classical hardware
- Exact representation (no noise/error)
- Can be run on your personal computer

Emulator

- Mimics behavior of quantum algorithms using approximations
- Usually faster than exact simulation
- Can be run on personal computer

Real Device

- Utilizes actual quantum hardware
- Provided through cloud access
- Subject to noise and decoherence
- Can require noise-mitigation (or better noise-correction) 29/30

Where Are We

Quantum Technology Readiness Level (QTRL)

Annealing QTRL 8

Gate-based → QTRL 5