
Engineering Research Software
in Computational Science and Engineering
Fundamentals
NHR@FAU 2025-05-20

BuildRun TestsTests passed?

Python

Yes

No

GitLab CI Pipeline
Runs on GitLab Runner

CMake

Tabular data (Pandas CSV files)
Jupyter notebooks (.ipynb, HTML, PDF)

Diagrams (PDF, PNG)
Tables (LaTex)

 Secondary data
as GitLab

artifacts ready
for download

Process and
visualize
results

Create
publication /

insert diagrams
and tables

Publish data, and
source code on a
data repository

(DOIs)

Cross-link
research
artifacts

Submit the publication
to peer review

Automatic Step Manual step

Merge the
feature branch

Download Download

Researcher's
repository:

feature branch

Perform Research
(Jupyter notebooks,
project source code)

Push
changes

Researcher

Researcher

Trigger CI
pipeline

Not necessary
for interpreted

languages

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 1 / 102

Outline

Introduction

Version control

Test Driven Development

Cross-linking research data

Continuous Integration

Conclusions of the theoretical part

Hands-on part

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 2 / 102

Motivation: multiphase flow simulation methods
Lagrangian / Eulerian Interface Advection (LEIA) methods

Fluids that do not mix are separated by an interface Σ(t) (surface in 3D).
Goal: track Σ(t) as it moves in time t and changes its topology.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 3 / 102

Motivation: multiphase flow simulation software
Lagrangian / Eulerian Interface Advection (LEIA) Methods

LEIA methods 1, 2, 3, 4, 5 require thorough testing:
Verification cases: evolution of Σ(t) and two-phase flows with exact solutions.
Validation with respect to experiments.
Testing serial and parallel computational efficiency.

1Marić, T., Marschall, H., & Bothe, D. (2015). lentFoam–A hybrid Level Set/Front Tracking method on unstructured
meshes. Computers & Fluids, 113, 20-31.

2Tolle, T., Bothe, D., & Marić, T. (2020). SAAMPLE: A Segregated Accuracy-driven Algorithm for Multiphase
Pressure-Linked Equations. Computers & Fluids, 200, 104450.

3Marić, T., Kothe, D. B., & Bothe, D. (2020). Unstructured un-split geometrical Volume-of-Fluid methods–A review.
Journal of Computational Physics, 420, 109695.

4Marić, T. (2021). Iterative Volume-of-Fluid interface positioning in general polyhedrons with Consecutive Cubic Spline
interpolation. Journal of Computational Physics: X, 11, 100093.

5Tolle, T., Gründing, D., Bothe, D., & Marić, T. (2021). Computing volume fractions and signed distances from triangulated
surfaces immersed in unstructured meshes. arXiv preprint arXiv:2101.08511.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 4 / 102

Computational Science and Engineering software in
university research groups
Boundary and initial conditions

Publish or perish 6 prioritizes publications over scientific software.
Dedicated resources for increasing software quality are usually not available.
Ph.D. students rotate every 3-5 years, postdocs every 1-2 years.

Little or no overlap between successors and predecessors.
Large-scale software design is not a mandatory part of the CSE curriculum.

Different CSE background: (Applied) Mathematics, Mechanical Engineering, Physics, Informatics.

6Symbol of a publish-or-perish simplification of the workflow :)

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 5 / 102

NFDI4Ing to the rescue!
Resources for engineering research software

NFDI4Ing resources.
Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 6 / 102

https://nfdi4ing.de

Computational Science and Engineering software in
university research groups
The chaos scientific legacy code

Betty is a CSE researcher, working with a legacy research code.
Why is Betty so (rightfully) angry?

Betty inherited a research software that is only partially tested.
Betty inherited a research software that isn’t automatically tested.

Betty changes one part of the code and gets her model running, only to see
10 other things fail, after days of manually running tests.

Betty’s software has no documentation of the scientific workflow.
Betty doesn’t know how to use existing scripts to run simulations and
analyze (reproduce) results.

Betty’s software has disjoint (diverging) versions - that she can’t integrate.
Betty can’t even find code versions used to generate results in the
publications from her research group.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 7 / 102

Computational Science and Engineering software in
university research groups
The chaos of developing entirely new research software

"Après moi, le déluge" - "After me, the flood"

Louis XV of France

Research software generally does not matter, as long as papers are published ().

Missed opportunities - Industrial Career
DevOps - Development Operations is gaining traction in Engineering.
Companies buy software based on internal benchmarks - automatic testing.
Re-use of software implementations within the company - version-control.
Re-use of research data within the company - cross-linking digital artifacts.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 8 / 102

https://en.wikipedia.org/wiki/Apr%C3%A8s_moi,_le_d%C3%A9luge

Computational Science and Engineering software in
university research groups
The chaos of developing entirely new research software

"Après moi, le déluge" - "After me, the flood"

Louis XV of France

Research software generally does not matter, as long as papers are published ().

Missed opportunities - Acadmic Career
Finding results made easy by cross-linking code versions, data and publications.
Faster extension / combination of existing ideas if their respective versions are integrated.
Faster comparison of results with previous ideas automating verification / validation.
Automatic reproducibility of results using automated testing and version control.
Faster onboarding with documented scientific verification and validation workflows.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 9 / 102

https://en.wikipedia.org/wiki/Apr%C3%A8s_moi,_le_d%C3%A9luge

Computational Science and Engineering software in
university research groups
Continuous integration and cross-linking to the rescue

Automated testing (verification and validation), version control, and cross-linking reports, source
code and research data increase Findability, Accessibility and Reproducibility (FAIR) and speed up
research.

Continuous Integration (CI) = automatic testing + version control.
CSE research requires scientific workflows: initialize simulations, run parameter variations,
agglomerate data, visualize, and check results.
CI can be used to automate and document scientific workflows.
CI ensures that the integration of new changes does not break existing functionality.
Once the changes are integrated, the publication, the source code and the data are published
on pre-print and data repositories and cross-linked using git tags and DOIs.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 10 / 102

 https://www.go-fair.org/fair-principles

Outline

Introduction

Version control

Test Driven Development

Cross-linking research data

Continuous Integration

Conclusions of the theoretical part

Hands-on part

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 11 / 102

Software engineering: version control
What is version control?

Management of versions of (usually) textual data, like publications and scientific codes.
Nowadays version control is essential for scientific codes of all shapes and sizes.
A basis for productive research in teams and increasing the quality of scientific software7.

7Maric, Tomislav, Lehr, Jan-Patrick, Papagiannidis, Ioannis, Lambie, Benjamin, Bothe, Dieter, & Bischof, Christian. (2021,
April). A Workflow for Increasing the Quality of Scientific Software (Version 1.0). Zenodo.
http://doi.org/10.5281/zenodo.4668439

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 12 / 102

http://doi.org/10.5281/zenodo.4668439

Software engineering: version control
Why use version control?

Why use version control in scientific codes?
The ability to work with others (colleagues or students) on your research project.

Work together faster.
Re-use an interpolation method of a colleague in the group.

The ability to trivially try out new ideas and switch back if they don’t work.
Speeds up research!

The ability to easily recover versions of your project in the same folder.
Recovering a specific version in a predecessor project code.

The ability to understand the motivation behind changes via comments.
Crucial for continuing existing research projects.

The ability to increase the reproducibility of scientific results.
Basis for cross-linking of data, source code and publications / reports.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 13 / 102

Software engineering: version control
Git version control system (VCS)

An effective and easy to use software with a set of commands for version control.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 14 / 102

Software engineering: version control
Git basics on a single slide

The code/text folder is called a repository.
An online folder shared with the team is the remote repository (short: remote).
Create a new version: checkout a new branch.
Integrate with another version: merge with a branch.
Add changes in a branch: add changes.
Integrate changes into a branch: commit changes.
Share changes with others: push to upstream repository.
Get latest changes: pull from the upstream repository.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 15 / 102

Software engineering: version control
Git basics: resources

Learn basic git concepts, they are the same everywhere.
Git in 15 minutes
Git within Matlab
Feature branch workflow
GitLab for beginners

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 16 / 102

https://www.youtube.com/watch?v=USjZcfj8yxE
https://de.mathworks.com/help/matlab/source-control.html
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.youtube.com/watch?v=Jt4Z1vwtXT0

Software engineering
Decentralized version control

Remote repository

Upstream branch

"Change database"

Local repository 1

Local branch A

"Change database"

Local repository 2

Local branch B

"Change database"
ch

ec
ko

ut
checkout

Although git tracks only changes, every repository is still a complete copy of the project.
Offline work is supported!

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 17 / 102

Software engineering: version control
Version control "enforces" modularity

Git conflicts
A file is changed differently on two branches and a merge is needed.
Two team members edit the same file at once.

Modularity reduces conflicts and speeds up teamwork
Book chapters as separate files vs. book chapters as folders and sections as separate files.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 18 / 102

Software engineering: version control
Modularity via Separation of Concerns and Single Responsibility

University research teams (like our LEIA lecture team!) are generally small (2 - 5 members).
Separation of Concerns (SC) and Single Responsibility Principle (SRP) significantly simplify the branching model.

Separation of Concerns: code is organized in non-overlapping layers and sections.
Single Responsibility: functions or classes perform single clear tasks.
SC and SRP can be applied to any software.
Dogmatism should be avoided: single responsibility vs less responsibilities.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 19 / 102

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Single-responsibility_principle

Simple version-control branching model
Separation of Concerns and Single Responsibility

University research teams working on the same project are generally small (2 - 5 members).
Separation of Concerns (SC) and Single Responsibility Principle (SRP) significantly simplify the branching model.

Separation of Concerns: code is organized in non-overlapping layers and sections.
Single Responsibility: functions or classes perform single clear tasks.
SC and SRP can be applied to any software.
Dogmatism should be avoided: single responsibility vs less responsibilities.
OpenFOAM already uses object-oriented and generic software design patterns.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 20 / 102

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Single-responsibility_principle

Simple version-control branching model
Change integration

Maintainers (postdocs, experienced Ph.D. students) manage the integration.
Keep the branching model as simple as possible.
Main and development branches are protected and managed by Maintainers.
Maintainers are responsible for git tags and cleanup:

Main: integrations from accepted publications and development branch.
Development: integration of (CI)-tested improvements.
Feature: SRP reduces git-conflicts with researchers working on different files.

Complex branching workflow ⇒ complications with onboarding new members.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 21 / 102

Outline

Introduction

Version control

Test Driven Development

Cross-linking research data

Continuous Integration

Conclusions of the theoretical part

Hands-on part

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 22 / 102

(Test Driven Development)
Program CSE tests first

TDD8 for CSE
Define verification and validation tests at the start.
Focus placed the final result: interpolation, integration, discretization, PDE solution, physics.
Top-down, instead of bottom-up test coverage.
Don’t go overboard with unit-tests : extend unit-tests when debugging a failing CSE test.
Focus kept on tests with real-world (publication) input.

8Freeman, Steve, and Nat Pryce. Growing object-oriented software, guided by tests. Pearson Education, 2009.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 23 / 102

(Test Driven Development)
Verification and validation tests define the Application Programming Interface

New code: it is easier to program the API you wish for, if you are its first user.
Make the class interface easy to use correctly and difficult to use incorrectly9.
Reduce number of function arguments, single responsibility, clear naming, ...

Legacy code: extend existing API without modification.
OpenFOAM: understanding class hierarchies, finding a base class with Runtime Type Selection and
a virtual function to overload.

The test application is the solver application with a different input.
If possible, testing and solution is done by the same code.
This prevents code duplication.
Data output and additional checks can be disabled by (compile-time) options.

9Scott Meyers. 2014. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14 (1st. ed.).
O’Reilly Media, Inc.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 24 / 102

Test Driven Development
Jupyter notebooks

Jupyter notebooks10

Documentation: geometry, initial and boundary conditions, error norms, comparison data.
Processing: verification errors (conservation, convergence, stability), validation errors.
Result analysis: very straightforward, interactive, remote.

10https://jupyter.org/

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 25 / 102

https://jupyter.org/

Test Driven Development
(Parameter tests)

Python Study
Runner

Secondary data

CASE 000

Secondary data

CASE 001

STUDY A

Parameter
study A

notebook

Secondary data

CASE 000

Secondary data

CASE 001

STUDY B
Project

notebook Parameter
study B

notebookResults viewed
"live" in a Browser

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 26 / 102

Test Driven Development
Parameter tests: primary data (simulation results) organization

The quality of CSE software is measured using verification and validation data.
Effective comparison with others (previous versions) hinges on data organization.

Legacy code:
use the existing folder structure and parameterization tools ,
The mapping (case000) → (parameter vector) must be stored (YAML, ...)

New code:
1. Simple folder and file structure
2. HDF511 or other open data format.
3. Alternative to HDF5: ExDir12

11https://www.hdfgroup.org/solutions/hdf5
12Dragly, Svenn-Arne, et al. "Experimental Directory Structure (Exdir): An alternative to HDF5 without introducing a new

file format." Frontiers in neuroinformatics 12 (2018): 16.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 27 / 102

https://www.hdfgroup.org/solutions/hdf5

Test Driven Development
Parameter tests: secondary data (tables and diagrams) organization

pandas.MultiIndex CSV with metadata for secondary data
pandas.MultiIndex saved in "metadata columns".
Metadata is repeated: not an issue for the small secondary data!
Metadata in columns → pandas.MultiIndex→ strongly simplified data analysis.
Direct readable export of tables to LaTex!

H L_INF O(L_INF) EPSILON_R_EXACT_MAX O(EPSILON_R_EXACT_MAX)
VELOCITY_MODEL

SHEAR_2D 0.125000 0.032961 1.833407 0.032961 1.833407
SHEAR_2D 0.062500 0.009249 1.955529 0.009249 1.955529
SHEAR_2D 0.031250 0.002385 1.988745 0.002385 1.988745
SHEAR_2D 0.015625 0.000601 1.997178 0.000601 1.997178
SHEAR_2D 0.007813 0.000150 1.999294 0.000150 1.999294
SHEAR_2D 0.003906 0.000038 1.999294 0.000038 1.999294

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 28 / 102

https://pandas.pydata.org/

Outline

Introduction

Version control

Test Driven Development

Cross-linking research data

Continuous Integration

Conclusions of the theoretical part

Hands-on part

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 29 / 102

Cross-linking data, source code and reports/publications
Schematic diagram

Dataset Software Image

Remote git
repository

PIDs
article DOI

Repository
Snapshot

PIDs
git repo URL
git tag

Article

DOILiterature
survey

Researcher

Data
Repository

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 30 / 102

(Cross-linking data, source code and reports/publications)
Singularity

Whence the Singularity Image13?
More intuitive than Docker: Singularity handles images as files.
Built for HPC from the start.
Doesn’t require root rights.
Results as actual files, not "data in spinning containers".
Maps user folder to the container: result data remains on the host.

Why not replace Docker with Singularity within GitLab CI?
We’re learning how to do this using GitLab custom executors.
Does the workflow still survive publish-or-perish test?

Why a source-code snapshot on-top of the image and the repository?
Repositories get migrated, deleted, and some researchers still fear images.
Quick and direct access to source code from the publication.

13https://sylabs.io/docs/

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 31 / 102

https://docs.gitlab.com/runner/executors/custom.html

(Cross-linking data, source code and reports/publications)
Singularity simplifies reproducibility

The source code and the data stored in the image can be quickly reproduced.
Article reviewers can clone, build, run and visualize easily.

Example: Singularity Image from an active review
Clone the code repository from the image:
geophase-JCOMP-D-19-01329R2.sif clone geophase
Build:
geophase-JCOMP-D-19-01329R2.sif build geophase build
Run tests:
geophase-JCOMP-D-19-01329R2.sif run-tests geophase build
Open the jupyter notebook:
geophase-JCOMP-D-19-01329R2.sif jupyter-notebook geophase

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 32 / 102

https://git.rwth-aachen.de/leia/geophase/-/blob/JCOMP-D-19-01329R2/geophase.def

Outline

Introduction

Version control

Test Driven Development

Cross-linking research data

Continuous Integration

Conclusions of the theoretical part

Hands-on part

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 33 / 102

Continuous Integration of Scientific Software
Research Software Workflow I

while Results are unsatisfactory do
Work on algorithms.
(Compile the code.)
for All studies do

Prepare the study.
Run the study.
Analyze results.
Move results to a report.

end for
Compare old and new results.

end while

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 34 / 102

Continuous Integration of Scientific Software
Research Software Workflow II

Issues...
Starting studies takes time.
Analyzing results takes time.
Often the results are not checked "live" as
the study runs - waste of research time and
CPUh.
Only the researcher knows the details
behind the initialization, running and
post-processing scripts - when this person
leaves, the reproducibility is gone.
A researcher may forget to run a study and
believe all tests have passed.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 35 / 102

Continuous Integration of Scientific Software
Automating the research workflow I

while Results are unsatisfactory do
Work on algorithms.
(Compile the code.)
for All studies do

Prepare the study.
Run the study.
Analyze results.
Move results to a report.

end for
Compare old and new results.

end while

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 36 / 102

Continuous Integration of Scientific Software
Automating the research workflow I

while Results are unsatisfactory do
Work on algorithms.
(Compile the code.)
Run initialization scripts (jobs).
Run simulation scripts (jobs).
(Run postprocessing scripts (jobs)).
Visualize results live in Jupyter notebooks.

end while

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 36 / 102

Continuous Integration of Scientific Software
Automating the research workflow II

Manual steps of the research workflow,

(Compile the code.)
for All studies do

Prepare the study.
Run the study.
Analyze results.
Move results to a report.

end for
Compare old and new results.

are now automated using scripts that do not require additional knowledge / input (metadata).

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 37 / 102

Continuous Integration of Scientific Software
Automating the research workflow III

1. The new results are satisfactory.
2. Similar automated workflows are executed

for existing tests.
3. All results are checked.
4. The milestone has been reached, the version

can be integrated.
Works well manually when there aren’t many
previous verification/validation tests and their
analysis is relatively simple.
Are we sure that we ran all the tests and
examined the results properly?

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 38 / 102

Continuous Integration of Scientific Software
Automating the research workflow III

Manual testing takes a lot of time.
Manual testing of all previous tests is prone
to error - even if V&V scripts do not require
metadata.
Relevant V&V tests are automated using
Continuous Integration (CI).

Changes are pushed to the upstream
version control repository.
The remote repository starts the so-called
CI test pipeline (a sequence of tests).
Tests are automatically run, processed and
visualized.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 39 / 102

(Continuous) Integration of scientific software
Schematic diagram for the team workflow

BuildRun TestsTests passed?

Python

Yes

No

GitLab CI Pipeline
Runs on GitLab Runner

CMake

Tabular data (Pandas CSV files)
Jupyter notebooks (.ipynb, HTML, PDF)

Diagrams (PDF, PNG)
Tables (LaTex)

 Secondary data
as GitLab

artifacts ready
for download

Process and
visualize
results

Researcher

Researcher's
repository Team's repository

Perform Research
(Jupyter notebooks,
project source code)

Push
changes

Merge
request

Create
publication /

insert diagrams
and tables

Publish data, and
source code on a
data repository

(DOIs)

Cross-link
research
artifacts

Submit the publication
to peer review

Automatic Step Manual step

Research
Team

Accept merge
request

Download Download

Not necessary
for interpreted

languages Working in a team.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 40 / 102

(Continuous) Integration of scientific software
CI in a nutshell I

A text (YAML) file is added to a repository, that specifies the tests (jobs) in a CI pipeline.
When the YAML file is pushed to an upstream git repository (GitLab), GitLab creates a CI
pipeline from the YAML file.
The CI pipeline needs a machine for running tests - the GitLab runner.

Shared runners on gitlab.com have limited capacity.
We can install and register our own GitLab runner.

A Docker image encapsulates the computing environment.
Virtualization/Containerisation increases reproducibility and simplifies testing.

The Docker image must be publicly accessible for it to be used by a shared runner.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 41 / 102

(Continuous) Integration of scientific software
CI in a nutshell II

initialization_param_study:
stage: running
dependencies:

- build_release
script:

run the parameter variation tests
- cd cases/initialization/3dinit
- ./create_and_run_levelset.sh
- ./reproduce_publication_results.sh

artifacts:
paths:

- cases/initialization/3dinit/*.csv
- cases/initialization/3dinit/*.pdf

Example YAML file
The CI pipeline starts the right scripts in the
right order: it documents the research
workflow.
A click of a button in a web browser
reproduces results for any version of the
research software.
Continuous integration is used to integrate
only those changes that improve the
software and don’t break existing tests.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 42 / 102

(Continuous) Integration of scientific software
CI in a nutshell I

An example CI pipeline

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 43 / 102

(Continuous) Integration of scientific software
CI in a nutshell II

Files created within a CI job are gone when the job ends.
GitLab uses job artifacts to pass on data from one job to the
next.
Job artifacts can only be files stored in project’s sub-folders.
Libraries and applications are passed to other jobs as artifacts.
Artifacts can be downloaded on the GitLab project website.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 44 / 102

(Continuous) Integration of scientific software
Running tests I

Python Study
Runner

Secondary data

CASE 000

Secondary data

CASE 001

STUDY A

Parameter
study A

notebook

Secondary data

CASE 000

Secondary data

CASE 001

STUDY B
Project

notebook Parameter
study B

notebookResults viewed
"live" in a Browser

Organize your simulation studies.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 45 / 102

(Continuous) Integration of scientific software
Running tests II

Success of CSE methods is measured using verification and validation data.
Effective comparison with others (previous versions) hinges on data organization.
Goal: easily programmatically identify parameters used in a simulation case.

Legacy code:
use the existing folder structure and parameterization tools
The mapping (case000) → (parameter vector) must be stored (YAML, ...)

New code:
1. Simple folder and file structure
2. HDF514 or other open data format.
3. Alternative to HDF5: ExDir15

14https://www.hdfgroup.org/solutions/hdf5
15Dragly, Svenn-Arne, et al. "Experimental Directory Structure (Exdir): An alternative to HDF5 without introducing a new

file format." Frontiers in neuroinformatics 12 (2018): 16.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 46 / 102

https://www.hdfgroup.org/solutions/hdf5

(Continuous) Integration of scientific software
Running tests I

Python Study
Runner

Secondary data

CASE 000

Secondary data

CASE 001

STUDY A

Parameter
study A

notebook

Secondary data

CASE 000

Secondary data

CASE 001

STUDY B
Project

notebook Parameter
study B

notebookResults viewed
"live" in a Browser

Associate simulation cases with their metadata.
{case000 : {N_CELLS: 32, MODEL : shear2D}}
Store this information using a standard open-source format (Interoperability in FAIR).

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 47 / 102

https://www.go-fair.org/fair-principles/

(Continuous) Integration of scientific software
Running tests II

Use Jupyter notebooks16 and pandas17 for
Documentation: geometry, initial and boundary conditions, error norms, comparison data.
Data processing: verification errors (conservation, convergence, stability), validation errors
Result analysis: interactive and remote, while simulations are running!

16https://jupyter.org/
17https://pandas.pydata.org/

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 48 / 102

https://jupyter.org/
https://pandas.pydata.org/

(Continuous) Integration of scientific software
Processing and visualizing tests

jupyter nbconvert notebook.ipynb --execute --to FORMAT

Agglomerate secondary data into pandas.MultiIndex CSV files.
Run each jupyter notebook in the repository.
Export secondary data and notebooks in different formats as artifacts.
Visualization

Download the artifact and open the notebook .
Notebooks contain information on failing tests.
Mapping "caseID" → "parameters" is crucial for re-starting failed parameter variations!

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 49 / 102

(Continuous) Integration of scientific software
Secondary data I

Data used for diagrams and tables in a
publication.
Data we compare our results with.
Data we waste time scanning from
(sometimes our own) publications in CSE.

Imagine scanning this diagram.
Preprint: https://arxiv.org/abs/2109.01595

Data: https://doi.org/10.48328/tudatalib-627

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 50 / 102

https://arxiv.org/abs/2109.01595
https://doi.org/10.48328/tudatalib-627

(Continuous) Integration of scientific software
Secondary data II

pandas.MultiIndex CSV with metadata for secondary data
pandas.MultiIndex saved in "metadata columns".
Metadata is repeated: not an issue for the small secondary data!
Metadata in columns → pandas.MultiIndex→ strongly simplified data analysis.
Direct readable export of tables to LaTeX!

H L_INF O(L_INF) EPSILON_R_EXACT_MAX O(EPSILON_R_EXACT_MAX)
VELOCITY_MODEL

SHEAR_2D 0.125000 0.032961 1.833407 0.032961 1.833407
SHEAR_2D 0.062500 0.009249 1.955529 0.009249 1.955529
SHEAR_2D 0.031250 0.002385 1.988745 0.002385 1.988745
SHEAR_2D 0.015625 0.000601 1.997178 0.000601 1.997178
SHEAR_2D 0.007813 0.000150 1.999294 0.000150 1.999294
SHEAR_2D 0.003906 0.000038 1.999294 0.000038 1.999294

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 51 / 102

https://pandas.pydata.org/

(Continuous) Integration of scientific software
Schematic diagram for the individual workflow

BuildRun TestsTests passed?

Python

Yes

No

GitLab CI Pipeline
Runs on GitLab Runner

CMake

Tabular data (Pandas CSV files)
Jupyter notebooks (.ipynb, HTML, PDF)

Diagrams (PDF, PNG)
Tables (LaTex)

 Secondary data
as GitLab

artifacts ready
for download

Process and
visualize
results

Create
publication /

insert diagrams
and tables

Publish data, and
source code on a
data repository

(DOIs)

Cross-link
research
artifacts

Submit the publication
to peer review

Automatic Step Manual step

Merge the
feature branch

Download Download

Researcher's
repository:

feature branch

Perform Research
(Jupyter notebooks,
project source code)

Push
changes

Researcher

Researcher

Trigger CI
pipeline

Not necessary
for interpreted

languages Working alone.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 52 / 102

(Continuous) Integration of scientific software
Cross-linking I

Dataset Software Image

Remote git
repository

PIDs
article DOI

Repository
Snapshot

PIDs
git repo URL
git tag

Article

DOILiterature
survey

Researcher

Data
Repository

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 53 / 102

(Continuous) Integration of scientific software
Cross-linking II

Cross-linking is done manually.
Place whatever you can under version control.
When a set of milestones is reached (release) , use git-tags as version snapshots, and upload
the research data to a data repository, e.g. TUDatalib at TU Darmstadt, or Zenodo.

Secondary data (diagrams, tables), raw data (simulations, experiments), archive of the research
software, ...

Data uploaded to a data repository is associated with Persistent Identifiers (PIDs), e.g. DOIs.
Cite the research data using DOIs in the report (article, preprint).
Upload the report to a pre-print repository, e.g. ArXiv.
Edit the data on the data repository and mention the arXivID.
Submit the pre-print to a journal for peer-review.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 54 / 102

https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://tudatalib.ulb.tu-darmstadt.de/
https://zenodo.org/
https://arxiv.org/

Continuous Integration of Scientific Software
Cross-linking III

Research software is compared with existing publications.
A major milestone are improved results for a set of verification / validation tests.
The cross-linking therefore revolves around the publication (pre-print, report, ...).
The cross-linking makes it possible to find the version of research software used to generate
the results in the publication: repository link + git tag, repository snapshot, software image.
Once the version is found, CI automatically reproduces all results from the publication with a
click of a button.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 55 / 102

(Continuous Integration with result visualization)
Test evaluation I

Straightforward for easily quantifiable errors
Examples: volume conservation, order of
convergence, total wall clock time, weak scaling, ...
Python scripts test secondary data agglomerated by
Jupyter notebooks from simulation results.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 56 / 102

(Continuous Integration with result visualization)
Test evaluation II

or

Difficult for errors that cannot be quantified easily
Examples:

Is is the difference between simulation and experiment
data ≤ 4%?
How to quantify the difference for complex signals?

Option 1: Researchers evaluate the test results even
if all CI jobs pass.

A simple and efficient solution .

Option 2: Use statistics to quantify the difference.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 57 / 102

(Continuous) Integration of scientific software
Docker (containerization)

PC / Laptop
HPC Cluster / Workstation

as a CI server

Instead of installing the research software only on the
laptop/PC and the HPC cluster / workstation, we
install it in a virtual environment - a Docker image.
The Docker image then works on any machine that
runs Docker.
Sharing research software becomes trivial - if our
colleague wants to use our software, no installation
(besides Docker) is required.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 58 / 102

(Continuous) Integration of scientific software
Docker (containerization)

Instead of installing the research software only on the
laptop/PC and the HPC cluster / workstation, we
install it in a virtual environment - a Docker image.
The Docker image then works on any machine that
runs Docker.
Sharing research software becomes trivial - if our
colleague wants to use our software, no installation
(besides Docker) is required.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 58 / 102

(Continuous) Integration of scientific software
Computing resources

The GitLab CI requires a GitLab runner: a machine that runs the CI jobs.
1. Short few CPU-core tests: work-PC .
2. Short many-core tests: obtain a workstation with a 64-Core CPU18.
3. HPC tests: combine 1. or 2. with an HPC cluster.

An HPC cluster is relevant for production tests and performance measurements.
This workflow uses coarse ("smoke") tests

Unit tests run for 1. and 2.
Convergence ensured for 1. and 2.
Is efficient in parallel for 1. and 2.

Challenge: Is it possible to combine 1., 2. and 3. and publish instead of perish ?
18Thanks to CRC 1194 at TU Darmstadt.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 59 / 102

https://www.sfb1194.tu-darmstadt.de/index.en.jsp

(Continuous) Integration of scientific software
Summary

BuildRun TestsTests passed?

Python

Yes

No

GitLab CI Pipeline
Runs on GitLab Runner

CMake

Tabular data (Pandas CSV files)
Jupyter notebooks (.ipynb, HTML, PDF)

Diagrams (PDF, PNG)
Tables (LaTex)

 Secondary data
as GitLab

artifacts ready
for download

Process and
visualize
results

Create
publication /

insert diagrams
and tables

Publish data, and
source code on a
data repository

(DOIs)

Cross-link
research
artifacts

Submit the publication
to peer review

Automatic Step Manual step

Merge the
feature branch

Download Download

Researcher's
repository:

feature branch

Perform Research
(Jupyter notebooks,
project source code)

Push
changes

Researcher

Researcher

Trigger CI
pipeline

Not necessary
for interpreted

languages

1: Track changes using version-control.
2: while Milestone not reached do
3: for study in studies do ▷ On an HPC cluster.
4: Automate data processing and visualization.
5: Run study.
6: Check results and apply code changes.
7: end for
8: if results are improved on the HPC cluster then
9: Push changes to the remote repository.
10: if CI pipeline tests pass then
11: Milestone reached.
12: Add new tests to the CI pipeline,
13: Merge feature into development branch.
14: Cross-link publication, data, and source code.
15: end if
16: end if
17: end while

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 60 / 102

(Continuous) Integration of scientific software
Similarity with other workflows / best practices

Our (subjective) estimates* of similarity 1− 5 (higher is more similar), −: aspect not addressed.

DOI Branching model TDD Cross-linking CI (Meta)data standardization

10.12688/f1000research.11407.1 - - - - 1
10.3934/math.2016.3.261 - - - - 2
10.1371/journal.pbio.1001745 1 2 - - -
10.1371/journal.pcbi.1005510 - - 3 1 3
10.1145/2723872.2723881 1 - - 1 -
10.1145/3324989.3325719 1 - - 5 -
10.1371/journal.pone.0230557 1 - - 1 4
10.1145/3219104.3219147 1 - - 4 -

*The list may still be incomplete.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 61 / 102

https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.3934/math.2016.3.261
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1145/2723872.2723881
https://dl.acm.org/doi/10.1145/3324989.3325719
https://doi.org/10.1371/journal.pone.0230557
https://doi.org/10.1145/3219104.3219147

Conclusions

The very basics of version control are essential for teamwork and speed up individual work.
Merge and prune branches periodically.
Write top-level tests first; only if those fail, branch out deeper into the implementation.
Separate concerns and implement single responsibility in your code.
Format secondary data using the simple and open tabular CSV data/metadata format to
simplify data analysis.
Use the same automatic tests with coarse input for quick checks and with fine-grained input
for production-level HPC simulations.
Archive read-only snapshots of your source code and secondary data on a (TUdatalib) data
repository,
Cross-link digital research data artifacts: publication/report, scripts/code, secondary and
primary data.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 62 / 102

Outline

Introduction

Version control

Test Driven Development

Cross-linking research data

Continuous Integration

Conclusions of the theoretical part

Hands-on part

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 63 / 102

(Continuous) Integration of scientific software
Hands on: overview

1. Repository preparation

A minimal repository representing an
exemplary "status quo".

2. Create a Docker image

Configure a reproducible testing environment.

3. Define CI pipeline through a YAML file

Define tests, how and when they are executed
and what results to store.

4. Setup your own GitLab runner

Provide a machine for execution of tests.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 64 / 102

(Continuous) Integration of scientific software
Hands on: prepare the example repository

Create your own copy of the example repository by forking:
Log in to https://gitlab.com/.
Go to https://gitlab.com/tmaric/minimal-cse-ci-examples.
Click fork (upper right corner).
Select a namespace, e.g. your personal one.
Select either Private or Public as visibility level, both are fine.
Click Fork project.
Clone your fork on your machine:
?> git clone your-fork-URL

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 65 / 102

https://gitlab.com/
https://gitlab.com/tmaric/minimal-cse-ci-examples

(Continuous) Integration of scientific software
Hands on: overview

1. Repository preparation

A minimal repository representing an exemplary
"status quo".

2. Create a Docker image

Configure a reproducible testing environment.

3. Define CI pipeline through a YAML file

Define tests, how and when they are executed
and what results to store.

4. Setup your own GitLab runner

Provide a machine for execution of tests.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 66 / 102

(Continuous) Integration of scientific software
Hands on: install Docker I

Specific steps depend on your Linux distribution (Docker documentation)
Here for Ubuntu Focal:
1. ?> sudo apt-get update
2. ?> sudo apt-get install apt-transport-https ca-certificates curl gnupg lsb-release
3. ?> curl -fsSL https://download.docker.com/linux/ubuntu/gpg \

| sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
4. ?> echo \

"deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] \
https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

5. ?> sudo apt-get update
6. ?> sudo apt-get install docker-ce docker-ce-cli containerd.io

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 67 / 102

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/ubuntu/

(Continuous) Integration of scientific software
Hands on: install Docker II

Check your Docker installation by running
?> sudo docker run hello-world

The output should look as shown on the right.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 68 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image

In the minimal-cse-ci-examples repository
?> git checkout starting-point
?> git checkout -b feature/dockerfile

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 69 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image I

Docker images are computing environments
that contain (dependencies) needed to build
the research software, run simulations and
process results.
Sharing docker images removes the need to
install the dependencies on different
machines.
The computing environment in a Docker
image is usually based on an existing Linux
distribution.
The Docker image is built from a text file,
that specifies installation steps for the
dependencies, the so-called Dockerfile.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 70 / 102

https://docs.docker.com/

(Continuous) Integration of scientific software
Hands on: creating a Docker image II

In a file named ’minimal-cse-ci-dockerfile_ubuntu-focal’, write

FROM ubuntu:focal

Set timezone
RUN apt-get update --fix-missing && \

DEBIAN_FRONTEND="noninteractive" apt-get -y install tzdata

We’ll use Ubuntu 20.04 (focal) as the base system.
Steps that are usually done manually (setting the timezone) are automated.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 71 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image III

Dependency installation
Install packages
RUN apt update && apt-get install --fix-missing -y \

Building
build-essential cmake \
Version control
git \
Python
python3 \
Visualization
python3-matplotlib python3-numpy \
Data analysis
python3-pandas \
Test visualization
jupyter-notebook jupyter-nbconvert \
Debugging the image
vim

RUN runs commands in the Docker
container.
The Docker container is a process spawned
using the Docker image as the computing
environment.
Install the software needed for the scientific
workflow (dependencies).

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 72 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image IV

Software setup
Default Ubuntu to python3
RUN update-alternatives --install \

/usr/bin/python python /usr/bin/python3 10

Some specifics
Alternative (g++) compiler.
Alternative working directory.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 73 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image V

Complete Dockerfile for the minimal example
FROM ubuntu:focal

Set timezone
RUN apt-get update --fix-missing && \

DEBIAN_FRONTEND="noninteractive" apt-get -y install tzdata

Install packages
RUN apt update && apt-get install --fix-missing -y \

Building
build-essential cmake \
Version control
git \
Python
python3 \
Visualization
python3-matplotlib python3-numpy \
Data analysis
python3-pandas \
Test visualization
jupyter-notebook jupyter-nbconvert \
Debugging the image
vim

Default Ubuntu to python3
RUN update-alternatives --install \

/usr/bin/python python /usr/bin/python3 10

The example Dockerfile installs all
dependencies for the minimal example on
Ubuntu 20.04.
The installation commands would be
different for another operating system.
A more complex software (e.g. OpenFOAM)
requires a larger Dockerfile.
This lets us define the computing
environments that are supported by the
research software.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 74 / 102

https://gitlab.com/tmaric/minimal-cse-ci-examples/-/blob/main/minimal-cse-ci-dockerfile_ubuntu-focal

(Continuous) Integration of scientific software
Hands on: creating a Docker image VI

Building the image
%?> sudo docker build . \

%-f minimal-cse-ci-dockerfile_ubuntu-focal \
%-t minimal-cse-ci-dockerfile_ubuntu-focal
sudo docker build . -f minimal-cse-ci-dockerfile_ubuntu-focal -t minimal-cse-ci:ubuntu-focal

".": current directory
"-f" name of the Dockerfile (defaults to "Dockerfile")
"-t" tag (name) of the Docker image

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 75 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image VII

Listing Docker images
?> sudo docker image list
REPOSITORY TAG IMAGE ID CREATED SIZE
minimal-cse-ci-dockerfile_ubuntu-focal latest 921233ec4b44 9 minutes ago 982MB

The image is built on the machine (host) where the docker build command is called.
Docker uses a so-called image registry to store images.
For Continuous Integration the images are built on the machine where the tests are run or
shared on Dockerhub.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 76 / 102

https://hub.docker.com/

(Continuous) Integration of scientific software
Hands on: creating a Docker image VIII

"Spinning a container" (running a Docker image)
?> sudo docker run -it minimal-cse-ci-dockerfile_ubuntu-focal /bin/bash
root@b2c14ee0fd58:/# ls
bin boot dev etc home lib lib32 lib64 libx32 media mnt
opt proc root run sbin srv sys tmp usr var
root@b2c14ee0fd58:/# cd
root@b2c14ee0fd58:~# pwd
/root

The container behaves just like a "regular" Ubuntu.
Jobs (test) commands for the Continuous Integration are checked/debugged inside a
running container.

Forgot to install a dependency.
The research software does not compile with installed dependencies.
...

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 77 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image IX

Working within the container : compiling the software
?> git clone https://gitlab.com/tmaric/minimal-cse-ci-examples.git
?> cd minimal-cse-ci-examples && mkdir build && cd build
?> cmake .. && make
?> ./myapp
The same steps will be done in the Docker container by the Continuous Integration

Clone the repo.
Build the software.
Run the tests.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 78 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image X

Analyzing the data using Jupyter notebooks
?> cd ..
?> jupyter nbconvert --execute mynotebook.ipynb --to html

On the cluster, one would start the Jupyter notebook server and connect to it locally.
Here the notebook is used to process the results and visualize secondary data as tables and
diagrams.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 79 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image XI

Extracting the data from the container:
Find the ID of the container you’re on (execute on your machine)
sudo docker ps
Copy the results from the container onto the local machine (execute on your machine)
mkdir container-data
sudo docker cp f2dff55edf7a:/root/minimal-cse-ci-examples \

container-data/
Examine the data and the Jupyter notebook in a browser.

Note: the sequence f2dff55edf7a is system dependent ID, so it’ll be different for you.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 80 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image XII

Saving the container or an image as a tar file
sudo docker commit f2dff55edf7a test:latest
You can exit/close the container by pressing Ctrl+d.
View the newly create image with ’name:tag’ using
sudo docker image list

REPOSITORY TAG IMAGE ID CREATED SIZE
test latest f2dff55edf7a About a minute ago 983MB
Save the image into a tar file
sudo docker save test:latest -o container-archive.tar
Load an image into Docker’s registry to work with it

sudo docker load -i container-archive.tar

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 81 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image XIII

Usually, the Docker image "lives" locally on the test machine.
However, it can also be shared publicly on Dockerhub, for example (don’t do this now)

?> docker login
?> docker tag name:tag username/name:tag
?> docker push username/name:tag

This image can now be used by everyone.
Note: once you exit/stop a container all data/files created inside the container are discarded.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 82 / 102

(Continuous) Integration of scientific software
Hands on: creating a Docker image XIV

BuildRun TestsTests passed?

Python

Yes

No

GitLab CI Pipeline
Runs on GitLab Runner

CMake

Tabular data (Pandas CSV files)
Jupyter notebooks (.ipynb, HTML, PDF)

Diagrams (PDF, PNG)
Tables (LaTex)

 Secondary data
as GitLab

artifacts ready
for download

Process and
visualize
results

Create
publication /

insert diagrams
and tables

Publish data, and
source code on a
data repository

(DOIs)

Cross-link
research
artifacts

Submit the publication
to peer review

Automatic Step Manual step

Merge the
feature branch

Download Download

Researcher's
repository:

feature branch

Perform Research
(Jupyter notebooks,
project source code)

Push
changes

Researcher

Researcher

Trigger CI
pipeline

Not necessary
for interpreted

languages

All the steps done so far manually
using Docker, namely,
1. building the scientific software,
2. running tests,
3. processing data
4. exporting the data and Jupyter

notebooks,
are automated by Continuous
Integration, that uses Docker for
encapsulating the computing
environment.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 83 / 102

(Continuous) Integration of scientific software
Hands on: overview

1. Repository preparation

A minimal repository representing an exemplary
"status quo".

2. Create a Docker image

Configure a reproducible testing environment.

3. Define CI pipeline through a YAML
file
Define tests, how and when they are executed
and what results to store.

4. Setup your own GitLab runner

Provide a machine for execution of tests.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 84 / 102

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project

In the minimal-cse-ci-examples repository
?> git checkout added-dockerfile
?> git checkout -b feature/enable-ci

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 85 / 102

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project I

Adding the .gitlab-ci.yml file your project and pushing the change to the GitLab remote
repo configures the CI pipeline.
The YAML file specifies the Docker image that is used for testing
image: "tmaric/minimal-cse-ci:ubuntu-focal"

stages:
- building
- running
- visualization

and the so-called job stages: collections of jobs for building, running tests and visualization.
For example, the building stage may multiple jobs, building the software for

production,
debugging,
performance measurements.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 86 / 102

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project II

The building stage in the YAML file defines build jobs like this one
build:
stage: building
script:

- git clone https://gitlab.com/tmaric/minimal-cse-ci-examples.git
- cd minimal-cse-ci-examples && mkdir build && cd build
- cmake ..
- make

artifacts:
paths:

- minimal-cse-ci-examples/mynotebook.ipynb
- minimal-cse-ci-examples/build/myapp

where the repository is cloned and built with specific options.
For example cmake -DCMAKE_BUILD_TYPE=Debug can set up the build for debugging.
artifacts are downloadable files passed on to other jobs.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 87 / 102

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project III

The running stage in the YAML file defines how simulations (studies) run
param_study:
stage: running
dependencies:
- build

script:
- cd minimal-cse-ci-examples/build && ./myapp

artifacts:
paths:

- minimal-cse-ci-examples/mynotebook.ipynb
- minimal-cse-ci-examples/build/myapp
- minimal-cse-ci-examples/build/poly-data.csv

Without a successful build, simulations do not run.
Here the artifacts are the secondary data and the notebooks that visualize them.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 88 / 102

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project IV

The visualization stage in the YAML file saves time by converting Jupyter notebooks
convert_notebooks:
stage: visualization
dependencies:
- param_study

script:
- cd minimal-cse-ci-examples
- jupyter nbconvert mynotebook.ipynb --execute --to html

artifacts:
paths:

- minimal-cse-ci-examples/mynotebook.*
- minimal-cse-ci-examples/build/myapp
- minimal-cse-ci-examples/build/polydata.csv

HTML is easiest, other formats are available (PDF, markdown,...).
HTML notebooks can be viewed in the browser.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 89 / 102

https://gitlab.com/tmaric/minimal-cse-ci-examples/-/pipelines

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project V

Final .gitlab-ci.yml file.

Lessons learned I
Defining artifacts path starts at your-project/.
YAML files require debugging:

syntax: use GitLab’s CI Lint tool
everything else: the only way to do this effectively is to commit
changes and push them upstream.

It is possible to partially debug locally using
gitlab-runner exec docker job-name

but this does not work with artifacts and dependencies.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 90 / 102

https://gitlab.com/tmaric/minimal-cse-ci-examples/-/blob/01-with-ci/.gitlab-ci.yml

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project VI

Final .gitlab-ci.yml file.

Lessons learned II
Generally, and for the CI, scripts that reproduce data without
requiring input for the users speed up work.
simulation-directory > ./reproduce-density-ratio-data

It takes time to set up the CI, but it pays off in debugging time as
problems are found automatically.
Exporting *.ipynb jupyter notebooks and their data

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 91 / 102

https://gitlab.com/tmaric/minimal-cse-ci-examples/-/blob/01-with-ci/.gitlab-ci.yml

(Continuous) Integration of scientific software
Hands on: enabling CI for a GitLab project VII

The CI pipeline of the Minimal Working Example (MWE) repository

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 92 / 102

https://gitlab.com/tmaric/minimal-cse-ci-examples/-/pipelines/374606049

(Continuous) Integration of scientific software
Hands on: overview

1. Repository preparation

A minimal repository representing an exemplary
"status quo".

2. Create a Docker image

Configure a reproducible testing environment.

3. Define CI pipeline through a YAML file

Define tests, how and when they are executed
and what results to store.

4. Setup your own GitLab runner

Provide a machine for execution of tests.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 93 / 102

(Continuous) Integration of scientific software
Hands on: setup a GitLab runner I (why a self-managed runner)

An incomplete comparison:

Self-managed runner

No shared runners available
Provided CI/CD minutes of plan
insufficient (e.g. 400 min per month for
GitLab’s free plan)
Control over hardware and runner
configuration

Shared runners

No need to provide "always on" hardware
No need for maintenance

Overall: require less of your time

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 94 / 102

(Continuous) Integration of scientific software
Hands on: setup a GitLab runner II (install GitLab runner)

Using instructions from GitLab documentation for Ubuntu:
1. ?> curl -L \

"https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.deb.sh" \
| sudo bash

2. ?> sudo apt-get install gitlab-runner
Check the status of the runner:

?> sudo systemctl status gitlab-runner.service
The output should indicate that it is active:

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 95 / 102

https://docs.gitlab.com/runner/install/linux-repository.html

(Continuous) Integration of scientific software
Hands on: setup a GitLab runner III (register GitLab runner)

Follow GitLab documentation on how to register a runner:
Obtain a token for project-specific runner: go to your fork of the minimal-cse-ci-examples on
gitlab.com and then to Settings > CI/CD and expand the Runners sections.
There you find a section Specific runners and aforementioned token.

Register your runner (instructions for Linux):
?> sudo gitlab-runner register

You need to provide some information regarding your runner, e.g. your project’s token. See next
slide.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 96 / 102

https://docs.gitlab.com/runner/register/index.html

(Continuous) Integration of scientific software
Hands on: setup a GitLab runner IV (register GitLab runner)

Option Value
GitLab instance URL https://gitlab.com/
Token Obtained from the project on GitLab, see previous slide
Runner description describe the machine used as runner, useful to distinguish multiple

runners
Tags leave empty, not required here. Useful for advanced pipelines
Runner executor docker (see here for comparison of executors.)
Default image Because we chose docker as executor: name of the default Docker

image
You should now see your runner under
Available specific runners:

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 97 / 102

https://docs.gitlab.com/runner/executors/

Hands-on part

From the course description
Participants will apply concepts to their own research projects.
Course content is version-control agnostic; examples use GitLab.
Participants should have GitLab accounts (gitlab.com) and bring laptops.
For examples, a working Python environment (e.g., venv, miniconda, or conda) is required.
Required Python packages: numpy, matplotlib, pandas, pytorch, scikit-learn, jupyter, jupyter
notebook.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 98 / 102

Bring your own project
My project(s)

github.com/tmaric/TwoPhaseFlow
Merge: feature/non-orthogonality, feature/density-ratio, feature/wetting, with main branch.
Cross-link the papers in the main branch with the README.md
Update the compilation for OpenFOAM-v2412.
Investigate GitHub actions.
Implement GitHub actions for selected tests.

github.com/bosh/sepMultiPhaseFlow
Extend the jupyter notebook to easily add results to the benchmark.
Add results from other groups to the benchmark.

gitlab.com/tmaric/fvcreconstruct
Defect Correction reconstruction algoritm which re-uses Finite-Volume error estimates.
Extend the jupyter notebook for the DEC algorithm.
Extend CI for the DEC algorithm.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 99 / 102

Bring your own project
Your project(s)

This is a basics session - simple workflow
Add "git" version-control to your project.
Design a test application that report scientific results in your paper.
Make a test application take coarse input and fine input.
Create a remote repository on gitlab.com
Push your local repository to the remote repository.
Create a gitlab CI pipeline for your remote repository.
Run the pipeline.
Call the test application in the CI pipeline.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 100 / 102

Bring your own project
Dont’ have a project?

Project: function approximation with a deep neural network.

https://shorturl.at/kKauw

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 101 / 102

https://shorturl.at/kKauw

Acknowledgements

Funded by the German Research Foundation
(DFG) – Project-ID 265191195 – CRC 1194 : Z-INF

Funded by the NFDI4Ing consortium: German
Research Foundation (DFG) - project number
442146713.

Engineering Research Software in Computational Science and Engineering Fundamentals - T. Marić NHR@FAU 2025-05-20 102 / 102

https://www.sfb1194.tu-darmstadt.de/index.en.jsp

	Introduction
	Version control
	Test Driven Development
	Cross-linking research data
	Continuous Integration
	Conclusions of the theoretical part
	Hands-on part

