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Shared memory

= Single address space for all

processors/cores
= Cache coherent, i.e., changes in one
. . CPU CPU
cache will be communicated to all \
others for consistency Shared
Memory
CPU CPU

= Two basic variants: UMA and ccNUMA
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UMA vs. ccNUMA

[cache-coherent] cache-coherent
Uniform Memory Access Non-Uniform Memory Access
All memory accessible by all Latency and bandwidth vary
cores with same latency and depending on mutual position of qf‘.
bandwidth core and memory \\q'
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Why ccNUMA?

" Momory bandweth: @ﬂ @ﬂ

____________________________________________________

_V — womor
b= [ ] J

I/ data transferred over memory bus [byte]
T wallclock time [s]

= Advantage: Easier (cheaper) to build multiple domains with smaller
bandwidth than one UMA domain with high bandwidth

* Disadvantage: Adds “topology” (non-uniformity in memory access, need to
know where my threads are running)
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Simultaneous multi-threading (SMT)

Execution units
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SMT benefits and caveats

= Can provide better throughput if there is parallelism in the code
= i.e., more instructions executed per second
= This is not automatic — code must have multiple threads/processes
= “If in doubt, give it a try!”

= Almost all chip resources are shared among hardware threads
= Execution units, caches, memory interface

= Sharing these resources may prevent SMT from improving performance or even
give a performance hit

= SMT introduces another layer of topology on top of it all
= Learn how to ignore it if necessary
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A modern dual-socket node

= AMD “Rome” (Zen2) dual-socket
system

= 64 cores per socket (with SMT)

= 8 cores per die, 8 dies per
socket

= Shared L3 cache for core quadruplets
(half dies)

= AMD “Infinity Fabric” between dies
and sockets

= Up to four ccNUMA domains per node
= Configurable NPS1, NPS2, NPS4 alajeld

= Two DDR4 memory channels per
ccNUMA domain
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STREAM benchmark on 2x24-core AMD Zen

Anarchy vs. thread pinning
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There are several reasons for caring
about affinity:
Eliminating performance variation

Making use of architectural features

Avoiding resource contention
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Cache coherence in shared-memory computers

= Data in cache is only a copy of data in memory
= Data is always cached in blocks (“cache lines”) of, e.g., 64 bytes
= Multiple copies of same data on multiprocessor systems — consistency?
= Without cache coherence, shared cache lines can become clobbered

= Cache coherence protocol keeps track of cache line (CL) status
= Simple protocol: MESI
= Cache line can be
- Modified
- Exclusive
- Shared
- Invalid
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Without cache coherence protocol

P1 P2
Load Al Load A2
Write Al=0

Write A2=0

Write-back to memory leads to
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not be
merged to:

A1, A2
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With cache coherence protocol

P2
Load Al Load A2
Write Al=0:
1. Request exclusive
access to CL
2. Invalidate CL in C2
3. Modify A1 in C1
Write A2=0:

1. Request exclusive
CL access f
2. CL write back+ Invalidate

3. Load CL to C2
C2 is exclusive owner of CLL =~ <= 4 Modify A2 in C2
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Cache coherence

= Cache coherence can cause substantial overhead

= may reduce available bandwidth

= “False sharing” when multiple cores modify same CL frequently
= Different implementations

= Snoop: On modifying a CL, a CPU must broadcast its address to the whole
system

= Directory, “snoop filter”: Hardware (“network™) keeps track of which CLs are
where and filters coherence traffic

= Directory-based ccNUMA can reduce pain of additional coherence traffic

= Multiple cores should never write frequently to the same cache line (“false
sharing”)! Very bad performance may ensue.
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Summary on shared-memory architecture

= Basic building block of all modern CPU-based clusters: shared-memory
“‘compute node”
= Significant “topology” within the node
= Simultaneous multi-threading (hyper-threading)
= Shared/private caches
= Memory interfaces
= Sockets (“packages”)
= Topology has important performance implications
= Thread-core affinity (pinning) is decisive!
= Cache coherence mechanisms make programming easier
= In general, nothing to worry about except when you have to ;-)
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Distributed memory: no cache-coherent single address space

—

o [

(|||||||L(|||||

o IIE I IIIIL

LDDJ“LLDDJEDD"E B

Cluster/
supercomputer

Modern supercomputers are
shared-/distributed-memory hybrids
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Distributed-memory systems “back in the day”

“Pure” distributed-memory system: P P P P P
* |ndividual processors with exclusive local [—= c c c c

memory (M) and a network interface (NI) —— —— —— ——
- one “node” == one processor core M N B M M

— A , A

= Dedicated communication network (] [nc | [ae ] [ne| [
= Parallel program == one process per
node Communication network

= Data exchange via “message passing”
over the network

= This was a thing not so long ago...
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Distributed-memory systems today

“Hybrid” distributed-/shared-memory
systems

= Cluster of networked
shared-memory nodes

= ccNUMA architecture per node 2l00E Bl

= Multiple cores per ccNUMA
domain
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Communication network

= Expect strong topology effects in communication performance
= Intra-socket, inter-socket, inter-node, all have different 4 and b
= On top: Effects from network structure
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Point-to-point data transmission performance

= Simple “Hockney model” for data
transfer time

|74 |74
Teomm = /1+3’ Beff:

Tcomm

A: latency, b: asymptotic BW

= Reality is more complicated
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= Protocol switches Message length [byte]
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Characterizing communication networks

= Network bisection bandwidth B}, is a general metric for the data transfer
“capability” of a system:

Minimum sum of the bandwidths of all connections cut when splitting the
system into two equal parts

= More meaningful metric for system
scalability: bisection BW per node: By, /N,,pdes

= Bisection BW depends on
= Bandwidth per link
= Network topology
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Network topologies: bus

= Bus can be used by one connection , , ,

at a time . .
= Bandwidth is shared among ‘ ‘ ‘

all devices

= Bisection BW is constant 2 B, /N, ,4es ~ 1/N,pdes

= Examples: diagnostic buses, old Ethernet network with hubs, Wi-Fi
channel

= Advantages = Disadvantages
= Low latency = Shared bandwidth, not scalable
= Easy to implement = Problems with failure resiliency (one

defective agent may block bus)
= Large signal power per agent
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Network topologies: non-blocking crossbar
= Non-blocking crossbar can mediate

a number of connections among - ? ? ?

groups of input and output elements (]
@
@

oo
= This can be used as a SOl
n-port non-blocking

switch (fold at the secondary diagonal)

.
s,
\
.

2x2
= Switches can be cascaded to form hierarchies switching

element
(common case)
= Allows scalable communication at high hardware/energy costs

= Crossbars are rarely used as interconnects for large scale computers
- NEC SX9 vector system (“IXS”)
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Network topologies: switches and fat trees

= Standard clusters are built with switched networks
= Compute nodes (“devices”) are split up in groups — each group is
connected to single (non-blocking crossbar-)switch (“leaf switches”)

= |Leaf switches are connected with each other using an additional switch
hierarchy (“spine switches”) or directly (for small configurations)

= Switched networks: “Distance” between any two devices is heterogeneous
(number of “hops” in switch hierarchy)

= Diameter of network: The maximum number of hops required to connect
two arbitrary devices (e.g., diameter of bus=1)

= “Perfect” world: “Fully non-blocking”, i.e. any choice of N,,,4.s/2 disjoint
node (device) pairs can communicate at full speed
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Fat-tree switch hierarchies

* “Fully non-blocking” |
N odes/2 €nd-to-end con-nections with full BW

BT .

SW 1 sw2 || sws SW 4

G000 GO0 | OLOE  Gbbd

9 Bb =B X Nnodes/27 Bb/Nnodes - B/Z

= Sounds good, but see next slide

= “Pruned tree” “spine” switch

SW
= Spine does not support N,,,g4es/2 k=3 |
full BW end-to-end connections
= By /N, ,4es = const.= B/(2k), i

with k = pruning factor SEApBOOOEEES &&N\HHHH

= Resource management
(job placement) is crucial node “leaf” switch
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A “single” 288-port InfiniBand DDR switch

[ Spine switch level; 12 switches

/

288 ports
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Examples for fat-tree networks in HPC

= Ethernet
= 1,10, 25, and 100 Gbit/s variants

» [nfiniBand: Dominant high-performance “commodity” interconnect
= DDR: 20 Gbit/s per link and direction (Building blocks: 24-port switches)

= QDR: 40 Gbit/s per link and direction, building blocks: 36-port switches
- “Large” 36x18=648-port switches

= FDR-10 / FDR: 40/56 Gbit/s per link and direction
= EDR: 100 Gbit/s per link and direction, HDR: 200 Gbit/s

= Expensive & complex to scale to very high node counts
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Mesh networks

= Fat trees can become prohibitively expensive in large systems

= Compromise: Meshes
= n-dimensional Hypercubes
= Toruses (2D / 3D)
= Dragonfly
= Many others (including hybrids)

Example: 2D
torus mesh

ey
s
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2D torus mesh

= This is not a non-blocking corossbar!
= Intelligent resource management and routing algorithms are essential

= Direct connections only between
direct neighbors

= Each node is/has a router

= Toruses in very large systems:
Cray XE/XK series, IBM Blue Gene

d-1)/d
= B, ~ N/ S B,/N,, 4.s—0 forlarge N

nodes nodes

=  Sounds bad, but those machines show

good scaling for many codes
= Well-defined and predictable

bandwidth behavior!

g
‘..
‘-
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HPE Slingshot (Dragonfly topology)

HPE SLINGSHOT

Dragonfly Network Architecture
» Packet-by-packet routing of unordered traffic

(e.g. MPI/Lustre bulk data) optimally routed at each hop
» Adaptive routing of ordered traffic (e.g. Ethernet)

Each new flow can take an optimal new path

Rosetta Switch

64 port switch, 200 Gb/s

» Advanced adaptive routfing
» Congestion control, QoS

Cassini NIC

MPI hardware tag matching

MPI progress engine

Hardware support for one-sided operations

Hardware support for collective operations
200 Gb/s

—1

Destination

Slide by C. Simmendinger, HPE
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Summary of distributed-memory architecture

= “Pure” distributed-memory parallel systems are rare
= Hierarchical parallelism rules
= Simple latency/bandwidth model good for insights, but unrealistic
= Protocol switches, contention
= Wide variety of network topologies available
= Nonblocking crossbar
= Fat tree
= Meshes (torus, hypercube, Dragonfly, hybrids)
= Adds more layers of topology on top of node level

» For advanced programming of hybrid hierarchical systems, see
“Hybrid Programming in HPC — MPI+X" tutorial by HLRS, NHR@FAU, VSC
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